高二数学函数的和差积商的导数1
- 格式:pdf
- 大小:1.41 MB
- 文档页数:16
《函数的和、差、积、商的导数》知识清单在数学的世界里,函数的导数是一个极其重要的概念,它帮助我们理解函数的变化率和单调性等重要性质。
而对于函数的运算,如和、差、积、商,它们的导数也有着特定的规律和计算方法。
下面就让我们一起来详细了解一下。
一、函数的和与差的导数1、定理如果函数\(u(x)\)和\(v(x)\)都可导,那么它们的和\(u(x) + v(x)\)与差\(u(x) v(x)\)的导数分别为:\((u(x) + v(x))'= u'(x) + v'(x)\)\((u(x) v(x))'= u'(x) v'(x)\)2、解释与理解这个定理其实很好理解。
想象一下有两个物体在做直线运动,速度分别由函数\(u(x)\)和\(v(x)\)描述。
那么它们一起运动时(相当于函数的和)的速度变化率,就是各自速度变化率的相加;而它们反向运动时(相当于函数的差)的速度变化率,就是各自速度变化率的相减。
例如,有函数\(f(x) = x^2 + 3x\),其中\(u(x) = x^2\),\(v(x) = 3x\)。
\(u'(x) = 2x\),\(v'(x) = 3\),所以\(f'(x) =(x^2 + 3x)'= 2x + 3\)。
再比如,函数\(g(x) = x^3 2x^2\),其中\(u(x) = x^3\),\(v(x) = 2x^2\)。
\(u'(x) = 3x^2\),\(v'(x) = 4x\),所以\(g'(x) =(x^3 2x^2)'= 3x^2 4x\)。
二、函数的积的导数1、定理如果函数\(u(x)\)和\(v(x)\)都可导,那么它们的积\(u(x) \cdot v(x)\)的导数为:\((u(x) \cdot v(x))'= u'(x) \cdot v(x) + u(x) \cdot v'(x)\)2、解释与理解这个公式可以通过对乘积进行微小变化的分析来理解。