函数的商的导数.ppt
- 格式:ppt
- 大小:123.00 KB
- 文档页数:13
高一数学复习考点知识讲解课件5.2.2函数的和、差、积、商的导数 考点知识1.掌握函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数. 导语同学们,上节课我们学习了基本初等函数的导数,实际上,它是我们整个导数的基础,而且我们也只会幂函数、指数函数、对数函数、三角函数这四类函数的求导法则,我们知道,可以对基本初等函数进行加减乘除等多种形式的组合,组合后的函数,又如何求导,将是我们本节课要解决的内容.一、f (x )±g (x )的导数问题令y =f (x )+g (x ),如何求该函数的导数?提示Δy =[]f (x +Δx )+g (x +Δx )-[]f (x )+g (x );Δy Δx =[]f (x +Δx )+g (x +Δx )-[]f (x )+g (x )Δx=f (x +Δx )-f (x )Δx +g (x +Δx )-g (x )Δx, y ′=lim Δx →0Δy Δx =lim Δx →0⎣⎢⎡⎦⎥⎤f (x +Δx )-f (x )Δx +g (x +Δx )-g (x )Δx =f ′(x )+g ′(x ).所以有[f (x )+g (x )]′=f ′(x )+g ′(x ).两个函数和或差的导数:[f(x)±g(x)]′=f′(x)±g′(x).注意点:推广[f1(x)±f2(x)±…±f n(x)]′=f1′(x)±f2′(x)±…±f n′(x).例1求下列函数的导数:(1)y=x5-x3+cos x;(2)y=lg x-e x.解(1)y′=()x5′-()x3′+()cos x′=5x4-3x2-sin x.(2)y′=(lg x-e x)′=(lg x)′-(e x)′=1x ln10-e x.反思感悟两个函数和(或差)的导数,等于这两个函数的导数的和(或差),对于每一项分别利用函数的求导法则即可.跟踪训练1求下列函数的导数:(1)f(x)=15x5+43x3;(2)g(x)=lg x-e x.解(1)∵f(x)=15x5+43x3,∴f′(x)=x4+4x2.(2)∵g(x)=lg x-e x,∴g′(x)=1x ln10-e x.二、f(x)g(x)和f(x)g(x)的导数1.(f (x )·g (x ))′=f ′(x )g (x )+f (x )g ′(x ),特别地,(Cf (x ))′=Cf ′(x )(C 为常数).2.⎝ ⎛⎭⎪⎫f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0). 注意点:注意两个函数的乘积和商的导数的结构形式.例2求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2;(3)y =e x x ;(4)y =(2x 2-1)(3x +1).解(1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝ ⎛⎭⎪⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3.(3)y ′=⎝ ⎛⎭⎪⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x(3x+1)+(2x2-1)×3=12x2+4x+6x2-3=18x2+4x-3.方法二∵y=(2x2-1)(3x+1)=6x3+2x2-3x-1,∴y′=(6x3+2x2-3x-1)′=(6x3)′+(2x2)′-(3x)′-(1)′=18x2+4x-3.反思感悟(1)先区分函数的运算方式,即函数的和、差、积、商,再根据导数的运算法则求导数.(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练2求下列函数的导数:(1)y=2x3-3x+x+1x x;(2)y=x2+1 x2+3;(3)y=(x+1)(x+3)(x+5).解(1)∵3131222 23y x x x x---=-++,∴135222233322y x x x x---'+--=.(2)方法一y ′=(x 2+1)′(x 2+3)-(x 2+1)(x 2+3)′(x 2+3)2=2x (x 2+3)-2x (x 2+1)(x 2+3)2=4x (x 2+3)2. 方法二∵y =x 2+1x 2+3=x 2+3-2x 2+3=1-2x 2+3, ∴y ′=⎝ ⎛⎭⎪⎫1-2x 2+3′=⎝ ⎛⎭⎪⎪⎫-2x 2+3′ =(-2)′(x 2+3)-(-2)(x 2+3)′(x 2+3)2=4x (x 2+3)2. (3)方法一y ′=[(x +1)(x +3)]′(x +5)+(x +1)(x +3)(x +5)′=[(x +1)′(x +3)+(x +1)(x +3)′](x +5)+(x +1)(x +3)=(2x +4)(x +5)+(x +1)(x +3)=3x 2+18x +23. 方法二∵y =(x +1)(x +3)(x +5)=(x 2+4x +3)(x +5)=x 3+9x 2+23x +15,∴y ′=(x 3+9x 2+23x +15)′=3x 2+18x +23.三、导数四则运算法则的应用例3(1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是()A.2B.22C .1D .2答案B解析设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴k =ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22.(2)设f (x )=a ·e x +b ln x ,且f ′(1)=e ,f ′(-1)=1e ,求a ,b 的值.解f ′(x )=(a ·e x )′+(b ln x )′=a ·e x +b x ,由f ′(1)=e ,f ′(-1)=1e ,得⎩⎨⎧ a e +b =e ,a e -b =1e ,解得⎩⎪⎨⎪⎧a =1,b =0,所以a ,b 的值分别为1,0. 反思感悟(1)熟练掌握导数的运算法则和基本初等函数的求导公式.(2)涉及切点、切点处的导数、切线方程等问题时,会根据题意进行转化,并分清“在点”和“过点”的问题.跟踪训练3(1)已知函数f (x )=a ln x x +1+b x ,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案1,1解析f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎨⎧ f (1)=1,f ′(1)=-12,即⎩⎨⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. (2)曲线y =f (x )=2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为________.答案1解析由题意可知,f ′(x )=2e x ·e x ,f ′(1)=2,∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.(3)导数四则运算法则的应用.2.方法归纳:公式法、转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.函数y=x(x2+1)的导数是()A.x2+1B.3x2C.3x2+1D.3x2+x答案C解析∵y=x(x2+1)=x3+x,∴y′=(x3+x)′=(x3)′+x′=3x2+1.2.已知f(x)=ax3+3x2+2,若f′(-1)=4,则a的值是()A.193B.163C.133D.103答案D解析∵f′(x)=3ax2+6x,∴f′(-1)=3a-6=4,∴a =103.3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为()A .-1B .0C .1D .2答案A解析因为f (x )=12f ′(-1)x 2-2x +3,所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案y =x解析∵f (x )=e x ·sin x ,∴f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .课时对点练1.(多选)下列运算中正确的是()A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′-(x 2)′x 2 D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案AD解析A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确; B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝ ⎛⎭⎪⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为()A.π6B.3π4C.π4D.π3答案B解析因为f ′(x )=x 2-2x ,k =f ′(1)=-1,所以在x =1处的切线的倾斜角为3π4.3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于()A .e 2B .eC.ln22D .ln2答案B解析∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于()A .-1B .-2C .2D .0答案B解析∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.设f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为()A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)答案C解析f (x )的定义域为(0,+∞),又由f ′(x )=2x -2-4x =2(x -2)(x +1)x>0,解得x >2,所以f ′(x )>0的解集为(2,+∞).6.(多选)当函数y =x 2+a 2x (a >0)在x =x 0处的导数为0时,那么x 0可以是()A .aB .0C .-aD .a 2答案AC解析y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .7.已知函数f (x )=x 3-mx +3,若f ′(1)=0,则m =_________________________________. 答案3解析因为f ′(x )=3x 2-m ,所以f ′(1)=3-m =0,所以m =3.8.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________. 答案1解析∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x , ∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22, 得f ′⎝ ⎛⎭⎪⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝ ⎛⎭⎪⎫π4=1. 9.求下列函数的导数:(1)y =ln x +1x; (2)y =cos x e x ;(3)f (x )=(x 2+9)⎝ ⎛⎭⎪⎫x -3x ; (4)f (x )=sin x x n .解(1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=()ln x ′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2. (2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=()cos x ′e x -cos x ()e x′()e x 2=-sin x +cos x e x . (3)f (x )=x 3+6x -27x ,f ′(x )=3x 2+27x 2+6.(4)f′(x)=(sin x)′x n-sin x·(x n)′(x n)2=x n cos x-nx n-1sin xx2n=x cos x-n sin xx n+1.10.已知函数f(x)=ax2+bx+3(a≠0),其导函数f′(x)=2x-8.(1)求a,b的值;(2)设函数g(x)=e x sin x+f(x),求曲线g(x)在x=0处的切线方程.解(1)因为f(x)=ax2+bx+3(a≠0),所以f′(x)=2ax+b,又f′(x)=2x-8,所以a=1,b=-8.(2)由(1)可知g(x)=e x sin x+x2-8x+3,所以g′(x)=e x sin x+e x cos x+2x-8,所以g′(0)=e0sin0+e0cos0+2×0-8=-7,又g(0)=3,所以曲线g(x)在x=0处的切线方程为y-3=-7(x-0),即7x+y-3=0.11.已知曲线f(x)=x2+ax+1在点(1,f(1))处切线的倾斜角为3π4,则实数a等于()A.1B.-1C.7D.-7 答案C解析∵f′(x)=2x(x+1)-(x2+a)(x+1)2=x2+2x-a(x+1)2,又f′(1)=tan3π4=-1,∴a=7.12.已知曲线f(x)=(x+a)·ln x在点(1,f(1))处的切线与直线2x-y=0垂直,则a等于()A.12B.1C.-32D.-1答案C解析因为f(x)=(x+a)·ln x,x>0,所以f′(x)=ln x+(x+a)·1x,所以f′(1)=1+a.又因为f(x)在点(1,f(1))处的切线与直线2x-y=0垂直,所以f′(1)=-12,所以a=-32.13.如图,有一个图象是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R,且a≠0)的导函数的图象,则f(-1)等于()A.13B .-13C.73D .-13或53答案B解析f ′(x )=x 2+2ax +a 2-1,图(1)与图(2)中,导函数的图象的对称轴都是y 轴,此时a =0,与题设不符合,故图(3)中的图象是函数f (x )的导函数的图象.由图(3)知f ′(0)=0,即f ′(0)=a 2-1=0,得a 2=1,又由图(3)得对称轴为-2a 2=-a >0,则a <0,解得a =-1.故f (x )=13x 3-x 2+1,所以f (-1)=-13.14.已知函数f (x )=⎩⎪⎨⎪⎧ 13x 3-4x ,x <0,-1x -ln x ,0<x <1,若f ′(a )=12,则实数a 的值为________.答案14或-4解析f ′(x )=⎩⎨⎧ x 2-4,x <0,1x 2-1x ,0<x <1,若f ′(a )=12,则⎩⎨⎧ 0<a <1,1a 2-1a =12或⎩⎪⎨⎪⎧a <0,a 2-4=12,解得a =14或a =-4.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=________.答案4096解析因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x , 所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8. 因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212=4096.16.已知函数f (x )=ax x 2+b ,且f (x )的图象在x =1处与直线y =2相切. (1)求函数f (x )的解析式;(2)若P (x 0,y 0)为f (x )图象上的任意一点,直线l 与f (x )的图象切于P 点,求直线l 的斜率k 的取值范围.解(1)由题意得f ′(x )=(ax )′(x 2+b )-ax (x 2+b )′(x 2+b )2=a (x 2+b )-2ax 2(x 2+b )2=-ax 2+ab (x 2+b )2,因为f (x )的图象在x =1处与直线y =2相切,所以⎩⎪⎨⎪⎧ f ′(1)=-a +ab(1+b )2=0,f (1)=a 1+b =2,解得⎩⎪⎨⎪⎧a =4,b =1,则f (x )=4x x 2+1. (2)由(1)可得,f ′(x )=-4x 2+4(x 2+1)2,所以直线l 的斜率k =f ′(x 0)=4-4x 20(x 20+1)2=4⎣⎢⎡⎦⎥⎤2(x 20+1)2-1x 20+1, 令t =1x 20+1,则t ∈(0,1], 所以k =4(2t 2-t )=8⎝ ⎛⎭⎪⎫t -142-12, 则在对称轴t =14处取到最小值-12,在t =1处取到最大值4,所以直线l 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-12,4.。