6-1.1拉压杆的应力计算
- 格式:ppt
- 大小:3.73 MB
- 文档页数:20
轴向拉压杆横截面上的应力:正应力:σ=N/A;应力单位N/m2,即Pa。
轴向拉压杆斜截面上的应力:总应力:pα=N/Aα=σcosα;正应力:σα=σcos2α;剪应力:τα= =(σsin2α)/2。
α:由横截面外法线转至斜截面外法线的转角,以逆时针转动为正;Aα:斜截面的面积;σα:拉应力为正,压应力为负;τα:以其对脱离体内一点产生顺时针转动为正,反之为负。
最大剪应力发生在α=±45°处的斜截面上。
轴向拉伸的变形:轴向变形△L=L’-L;ε=△L /L;横向变形:△a=a’-a;ε’=△a/a;虎克定律:应力不超过材料比例极限时,应力与应变成正比。
即:σ= Eε;△L= NL/ EA;EA为杆件的抗压(拉)刚度,表示杆件抵抗拉、压弹性变形的能力。
泊松比ν:应力不超过材料的比例极限时,ν=|ε’/ε|,ν是材料的弹性常数之一,无量纲。
变形能:杆件在外力作用下因变形而存储的能量。
轴向抗压杆的弹性变形能:U=N△L/2。
比能:单位体积存储的变形能。
u=σε/2。
单位:J/m3。
名义剪应力:假定剪应力沿剪切面均匀分布的。
则:τ=V/A V。
A V:剪切面面积。
纯剪切:单元体各个侧面上只有剪应力而无正应力称为纯剪切。
纯剪应力引起剪应变γ,即相互垂直的两线段间角度的改变。
单位为rad。
规定以单元体左下直角增大时,γ为正,反之为负。
剪应力互等定律:在互相垂直的两个平面上,垂直于两平面交线的剪应力,总是大小相等,且共同指向或背离这一交线。
τ=τ’。
剪切虎克定律:剪应力不超过材料的剪切比例极限时,剪应力τ与剪应变γ成正比,即τ=Gγ;G:剪切模量。
对各向同性材料,G=E/2(1+ν)。
扭转:杆两端受到一对力偶矩相等,转向相反,作用平面与杆件轴线相垂直的外力偶作用。
变形特征:杆件表面纵向线变成螺旋线,即杆件任意两横截面绕杆件轴线发生相对转动。
扭转角φ:杆件任意两横截面间相对转动的角度。
扭矩M T:受扭截面上的内力,是一个在截面平面内的的力偶,其力偶称为力偶矩。
第三章 应力与强度计算一.内容提要本章介绍了杆件发生根本变形时的应力计算,材料的力学性能,以及根本变形的强度计算。
1.拉伸与压缩变形 1.1 拉〔压〕杆的应力1.1.1拉〔压〕杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为NF Aσ=(3-1) 式中N F 为该横截面的轴力,A 为横截面面积。
正负号规定 拉应力为正,压应力为负。
公式〔3-1〕的适用条件:〔1〕杆端外力的合力作用线与杆轴线重合,即只适于轴向拉〔压〕杆件; 〔2〕适用于离杆件受力区域稍远处的横截面;〔3〕杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;〔4〕截面连续变化的直杆,杆件两侧棱边的夹角020α≤时,可应用式〔3-1〕计算,所得结果的误差约为3%。
1.1.2拉〔压〕杆斜截面上的应力〔如图3-1〕图3-1拉压杆件任意斜截面〔a 图〕上的应力为平均分布,其计算公式为 全应力cos p ασα= (3-2) 正应力2cos ασσα=〔3-3〕切应力1sin 22ατα=〔3-4〕式中σ为横截面上的应力。
正负号规定:α由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
ασ 拉应力为正,压应力为负。
ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。
两点结论:〔1〕当00α=时,即横截面上,ασ到达最大值,即()max ασσ=。
当α=090时,即纵截面上,ασ=090=0。
〔2〕当045α=时,即与杆轴成045的斜截面上,ατ到达最大值,即max ()2αατ=。
1.2 拉〔压〕杆的应变和胡克定律 〔1〕变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 1l l l ∆=- 轴向线应变 l lε∆=横向变形 1b b b ∆=- 横向线应变 b bε∆'=正负号规定 伸长为正,缩短为负。
《材料力学》课程中杆件内力与变形计算的Matlab实现李春锋;蒲兴龙;于彬;杨旭辉;王丽【摘要】杆件的内力与变形计算是材料力学课程教学的主要任务之一,其确定往往涉及较大的计算量,学生在学习中易形成重计算而轻力学原理与力学思想的学习观念。
将Matlab科学计算软件引入材料力学课程,将杆件内力与变形中比较繁杂的数学运算由计算机完成,一方面能使学生将大量时间用于掌握力学原理和力学思想,提高教学质量和教学效果,另一方面对培养学生用计算机解决问题与创新能力的提高有着积极的推动作用,为相关力学类课程的教学与学习提供一些参考。
%Internal forces and deformation calculation of the prismatic bar is one of the main tasks of mechanics of materials,and its calculation often takes much time. Hence, many students spend much time learning the calculation but neglect the learning of the mechanical calculation principle and mechanics. However, there’re solutions of putting the Matlab scientific computing software into the material mechanics course and making more complex mathematical operations done by the computer on internal forces and deformation calculation, which enable students to focus on the principles of mechanics and mechanical thinking,which also improve teaching quality and teaching effectiveness. In addition, students are promoted to use computers actively to solve problems and to improve their innovation capability. And the solutions also provide some reference for the teaching and learning of other mechanics courses.【期刊名称】《河西学院学报》【年(卷),期】2015(000)002【总页数】12页(P55-65,9)【关键词】材料力学;内力;变形;Matlab;计算【作者】李春锋;蒲兴龙;于彬;杨旭辉;王丽【作者单位】河西学院土木工程学院,甘肃张掖734000;河西学院土木工程学院,甘肃张掖 734000;河西学院土木工程学院,甘肃张掖 734000;河西学院土木工程学院,甘肃张掖 734000;河西学院土木工程学院,甘肃张掖 734000【正文语种】中文【中图分类】O3材料力学课程是土木、机械等专业的核心基础课程,传统力学类课程教学及学习过程中经常要面对大量而繁杂的数学计算,使得教学、学习过程中容易产生重计算而轻视或忽略力学模型的建立及力学原理的学习,其已经暴露出许多不尽如人意的方面,国内很多理工科院校在材料力学课程的教学中进行了较多的探讨与研究.将计算机技术与现代数值计算方法引入材料力学课程的教学,给力学类课程的教学提供了新的教学视野,对提高教学质量,加强学生力学建模与力学原理思想及培养学生创新思维提供了积极的因素.Matlab软件以其强大的计算与图形仿真能力正逐渐成为理工科大学本科生、硕士生、博士生必需掌握的基本技能之一,国内很多学者已将其引入到力学类课程教学中并取得了丰富的成果.罗义银、邓旭辉等[1-4]通过运用Matlab来分析运动学、动力学问题来讲述Matlab在理论力学教学中的运用,李银山[5-6]将 Maple软件作为学习理论力学、材料力学的工具,并将之编写为教材,王玉山等[7]介绍了Matlab在材料力学超静定问题求解及梁变形可视化中的应用,张宁等[8]利用Simmechanics对曲柄连杆机构进行了运动学和动力学仿真,敖文刚[9]利用Matlab设计了虚拟实验可视化用户界面,可将分析结果以曲线动画和表格表达出来.内力与变形计算是《材料力学》课程教学的重要内容,采用Matlab软件进行较为系统的构件、简单结构内力与变形计算的研究还不是很多,较系统的对材料力学课程中的拉压、扭转、弯曲及梁的剪力与弯矩问题进行计算机分析仿真,并利用Matlab自身强大的数据图形处理能力对分析结果以图形输出,使学生能在课堂上直观了解工程实际问题的处理过程,既可提高学生的学习兴趣,又可增强学生对工程实际的感性认识和解决工程问题的能力,对《材料力学》课程的教学方法改革将有着重要的补充意义.1.1 静定问题1.1.1 拉(压)杆件计算的Matlab仿真(1)计算方法拉压杆的内力与应力计算是《材料力学》课程四种基本计算内容之一.对于常见的杆系结构,其求解往往涉及线性方程组的求解,耗时耗力.运用Matlab软件只需针对所建立力学模型列出方程(组),运用Matlab软件下的solve命令即可得到结果.其计算的基本思路可概括如下:①确定荷载;②画受力分析图;③静力平衡方程,求解.(2)举例与Matlab仿真计算例题1:如图1所示,实心圆钢杆AB和AC在点A铰接连接,在A点作用有铅垂向下的力F= 35KN.已知杆AB和AC的直径分别为d1=12mm和d2=15mm,钢的弹性模量E=210Gpa.试求各杆轴力及A点的铅垂位移.Matlab程序:%考虑节点位移问题;以水平向右为X正方向1.1.2 等直圆杆的扭转计算与Matlab仿真(1)计算方法等直圆杆扭转时的应力计算,需要先从变形几何方面和物理方面两方面确定切应力在横截面上的分布规律,然后再考虑静力平衡进行求解.几何方面通过一点处切应变随该点在横截面上的位置变化而变化的规律,通过下面公式计算.在物理方面,由剪切胡克定律可知,在线弹性范围内,切应力与切应变成正比计算,即在静力学方面,由合力矩原理可得扭矩T.结合三方面便可算出等直圆杆在扭转时的切应力.其计算的基本思路可概括为:①确定作用在圆杆上的外力偶;②列静力平衡方程;③求解并画扭矩图.(2)举例与Matlab仿真计算例题2:一传动轴如图2所示,其转速n=300r/min,主动轮输入的功率P1=500kW.若不计轴承摩擦所耗的功率,三个从动轮输出的功率分别为P2=150kW,P3=150kW及P4=200kW,试做轴的扭矩图.运行结果:如图2所示.1.1.3 静定梁的计算与仿真(1)计算方法梁截面内力求解的基本方法是截面法,工程常根据梁截面内力图以确定梁构件的配筋计算图,依据所绘制梁的内力图,一方面可直观地确定出梁的“危险点”、“危险截面”.另一方面是完成梁的截面尺寸设计和强度、刚度校核的关键环节.其计算的基本思路可概括如下:①计算支座约束力;②建立剪力函数(剪力的单位kN);③建立弯矩函数(弯矩的单位kN·m);④绘制剪力图;⑤绘制弯矩图;(2)举例与Matlab仿真计算例题3:已知简支梁上均布荷载与力偶共同作用时,Me=4KN.m,q=0.2KN/m,l=10m,b=2m,绘制其剪力及弯矩图,计算简图如图3所示.运行结果:如图3所示.1.2 超静定问题1.2.1 拉(压)杆件超静定问题计算与Matlab仿真(1)计算方法实际工程中,大多数杆件结构为超静定结构,其特点是未知力的数目多于独立静力平衡方程的数目,在计算时首先要确定体系的超静定次数,根据变形协调条件,得出补充方程,再依据平衡条件求出未知力,最后得到结构体系的内力图,计算思路简单,但计算量非常之大.其常用基本计算思路可概括如下:①确定荷载;②画受力分析图,确定超静定次数并列静力平衡方程;③建立杆件的变形方程(几何关系);④建立物理方程(力与变形之间的关系);⑤求解.(2)举例与Matlab仿真计算例题4:如图4所示,支架承受荷载F=10KN,1、2、3各干由同一材料制成,其横截面积分别为A1=100mm2,A2=150mm2和A3=200mm2.试求各杆轴力.1.2.2 扭转超静定计算与Matlab仿真(1)计算方法扭转变形是结构体系中杆件的基本变形之一,工程中的大部分构件在正常工作阶段需考虑其扭转效应,扭转超静定问题比简单的扭转问题更为复杂,需要考虑杆件在扭转时的几何条件、物理条件,然后联合求解.其计算的基本思路可概括如下:①确定荷载;②画受力分析图,确定超静定次数并列静力平衡方程;③建立杆件的变形方程(几何关系);④建立物理方程(力与变形之间的关系);⑤联合求解.(2)举例与Matlab仿真计算例题5:如图5所示,圆截面杆AC的直径d1=100mm,A端固定,在截面B承受外力偶矩Me= 7kN.m,截面C的上、下两点处的直径均为d2=20mm的圆杆EF、GH铰接.已知各杆件材料相同,弹性常数间的关系为G=0.4E.试求杆AC的最大切应力.Matlab程序:%考虑杆件的扭转问题1.2.3 简单超静定梁的计算与Matlab仿真(1)计算方法在超静定梁的计算中,需要运用变形计算法来对其求解,确定超静定次数是解决此问题的首要条件,超静定次数决定了补充方程的个数,将梁所受的约束去掉加为未知力,根据叠加原理求解此问题.其解决思路可概括如下:①确定超静定次数;②确定静定基(去约束,加未知力);③建立补充方程(变形条件);④联合静力方程求解;⑤绘制内力图.(2)举例与Matlab仿真计算例题6:如图6所示,矩形梁AB受到均布荷载q=5kN/m的作用,其梁的截面尺寸为b=250mm,h=500mm,梁的跨度为l=6m,弹性模量E=210Gpa.绘制梁的内力图.2.1 拉(压)杆件的变形计算与Matlab仿真(1)计算方法拉压杆件的变形计算主要以轴向变形与横向变形为主,其主要计算思路可概括如下:①确定荷载,用截面法确定杆件的轴力.②由于材料力学范围内主要讨论线弹性范围内变形,故广义胡克定律成立,可用下述公式来计算出轴线方向的变形.③由所求的轴向变形根据泊松比即可计算出杆件在拉压时的横向变形.(2)举例与Matlab仿真计算例题7:图7所示结构中AB为水平放置的刚性杆,杆1、2、3材料相同,其弹性模量为E= 210Gpa,已知l=1m,A1=A2=A3=100mm2,F=20kN.求C点的水平位移与铅垂位移.解题思路:设图示中各杆件受拉为正,C点因各杆变形而引起X方向位移,Y方向位移.①由胡克定律,得杆件变形表达式为:②节点的变形几何关系为:式中,ls表示水平位移,lv表示竖直位移,由于3杆为刚性杆,故不发生形变.③由于以上计算均为线性方程,可利用Matlab矩阵左除命令求解.2.2 等直圆杆的扭转变形计算与Matlab仿真(1)计算方法等直圆杆扭转时的变形为一端固定不动,另一端相对固定端扭转角来表现.主要计算思路如下:①确定扭矩,运用截面法通过已知的外力偶确定杆件内部的扭矩.②根据已知杆件尺寸确定杆件极惯性矩IP.③圆轴扭转的变形(扭转角)可根据下列公式确定.对于扭转问题来说,通常极惯性矩的计算是在扭转变形计算中是非常繁琐且耗费大量时间,而在Matlab中只需根据不同类型的杆件来选择相应的计算方法,之后便是矩阵形式的线性方程组的运用,大大的简化了复杂的计算过程.(2)举例与Matlab仿真计算例题8:已知Ma=5.4kN.m,Mb=1.8kN.m,Mc=3.6kN.m,G=80×103pa,D=125mm,d=100mm,计算扭转角Φ.解题思路:首先,通过外力偶计算杆件扭矩T.其次,由于是空心圆杆,故采用下列公式来计算其极惯性矩.最后,将求得的极惯性矩以及扭矩代入扭矩下述公式,即可计算出杆件的转角. 2.3 静定梁的变形计算与Matlab仿真(1)计算方法静定梁变形的主要指标是:挠度和转角.其主要的计算思路如下:①确定荷载,确定杆件上作用的剪力及弯矩.②写出杆件的弯矩方程.③对弯矩方程一次积分得到转角方程且含有未知常数C,再次积分得到杆件的挠度方程且含有未知常数C和D.④利用杆件特殊位置的挠度与转角的边界条件,求出未知数C,D.⑤将所求位置点代入挠度转角方程,即可得到所求的挠度与转角方程.在静定梁的变形计算中最为繁琐之处在于采用积分方法确定挠度与转角的方程,积分会耗费大量的时间且容易出错,运用Matlab强大的计算能力,可以用计算机来计算积分,从而得到变形方程,节省大量时间.(2)举例与Matlab仿真计算例题9:如图8所示,一悬臂梁在端部受集中力F=10kN作用,其梁的截面尺寸为b=250mm,h= 500mm,梁的跨度为l=3m,弹性模量E=210Gpa.求梁的转角和挠度并绘制变形曲线.通过上面分析可以看出,《材料力学》课程中引入Matlab编程功能,进行杆件或杆系结构内力与变形计算将对课程的教学与学生学习、创新能力的培养有着积极的作用,具体为:(1)使学生从力学类课程繁杂的数学手算中解脱出来,将课程学习的主要精力集中到力学建模与力学分析思路的养成上,把繁杂的计算任务交给计算机去完成. (2)通过Matlab科学计算平台,引导学生建立数值求解的思想和方法,提高学生的工程素养与工程意识.(3)Matlab软件在课程教学中的引进,有利于提高教学效率,加强学生对基本概念和原理的理解,为学生创新思维的发挥拓展了广阔的空间,给学生自主学习和研究性学习提供了一个良好的平台,为相关力学类课程教学与学习提供一些参考.【相关文献】[1]罗义银.机械类专业理论力学教学改革的发展与思考[J].力学与实践,2000,22(3):56-57.[2]邓旭辉,张平,肖攀.Matlab在理论力学教学中应用[J].力学与践,2006,28(5):82-83.[3]胡超,程建钢.《理论力学》多媒体仿真教学实验[J].力学与实践,2003,25(1):67-70.[4]李校兵,扬芳,王军.Matlab在理论力学教学中的应用[C].2009力学课程报告论坛论文集,2009:63-65.[5]李银山.Maplel理论力学[M].北京:机械工业出版社,2006.[6]李银山.Maplel材料力学[M].北京:机械工业出版社,2009.[7]王玉山,王锐.Matlab在材料力学超静定问题求解及梁变形可视化中的应用[J].石河子大学学报,2007,25(1):109-111.[8]张宁,田杰,陈奇.基于simmechanics的曲柄压力机机构仿真分析[J].宜春学院学报,2013,35(3):35-36.[9]敖文刚.基于Matlab的可视化理论力学虚拟实验[J].重庆工商大学学报:自然科学版,2012,29(9):101-105.[10]孙训方,方孝淑,关来泰.材料力学(Ⅰ)[M].北京:高等教育出版社,2013.。
第6章拉压杆件的应力变形分析与强度设计工程力学学习指导第6章拉压杆件的应力变形分析与强度设计6.1 学习要求与学习目标1. 知道并且能够记住杆件拉伸或压缩时:1) 横截面上的轴力与轴力图;2) 横截面上的正应力;3) 斜截面上的应力;4) 伸长与缩短变形。
2. 掌握并能正确应用拉伸和压缩时杆件横截面上正应力的计算公式。
3. 掌握并能正确应用拉伸和压缩时杆件的变形计算公式。
4. 正确理解并掌握拉伸和压缩时,杆件的强度设计准则,正确应用强度设计准则解决三类强度设计问题。
5. 正确理解拉伸与压缩超静定问题的概念,会应用平衡、变形协调和物性关系求解简单的超静定问题。
6.2理 论 要 点6.2.1拉伸与压缩杆件的应力与变形1. 应力计算当外力沿着杆件的轴线作用时,其横截面上只有轴力一个内力分量——轴力F N。
与轴力相对应,杆件横截面上将只有正应力。
在很多情形下,杆件在轴力作用下产生均匀的伸长或缩短变形,因此,根据材料均匀性的假定,杆件横截面上的应力为均匀分布,如图6-3所示。
这时横截面上的正应力为AF N =σ 式中,F N 为横截面上的轴力,由截面法求得;A 为横截面面积。
2. 变形计算(1) 绝对变形 弹性模量设一长度为l 、横截面面积为A 的等截面直杆,承受轴向载荷后,其长度变为l 十Δl ,其中Δl 为杆的伸长量(图6-1a)。
试验结果表明:如果所施加的载荷使杆件的变形处于弹性范围内,杆的伸长量Δl 与杆所承受的轴向载荷成正比,如图6-1b 所示。
写成关系式为EAl F l N Δ±= 这是描述弹性范围内杆件承受轴向载荷时力与变形的胡克定律。
其中,F N 为杆横截面上的轴力,当杆件只在两端承受轴向载荷F P 作用时,F N =F P ;E 为杆材料的弹性模量,它与正应力具有相同的单位;EA 称为杆件的拉伸(或压缩)刚度;式中“+”号表示伸长变形;“-”号表示缩短变形。
当拉、压杆有两个以上的外力作用时,需要先画出轴力图,然后按上式分段计算各段的变形,各段变形的代数和即为杆的总伸长量(或缩短量),即()∑=i ii i EA l F l N Δ (2) 相对变形 正应变对于杆件沿长度方向均匀变形的情形,其相对伸长量 Δl/l 表示轴向变形的程度,是这种情形下杆件的正应变,即El EA lF l l x x σε==N Δ= 需要指出的是,上述关于正应变的表达式只适用于杆件各处均匀变形的情形。
材料力学科目研究生考试大纲一、考试性质《材料力学》是工程力学、固体力学、结构工程、岩土工程硕士(MPAcc)专业学位研究生入学统一考试的科目之一。
《材料力学》考试要力求反映上述专业学位的特点,科学、公平、准确、规范地测评考生的基本素质和综合能力,以利用选拔具有发展潜力的优秀人才入学,为国家的经济建设培养具有良好职业道德、具有较强分析与解决实际问题能力的高层次、应用型、复合型的会计专业人才。
-中国在职研究生招生网官网二、考试要求测试考生对于与材料力学相关的基本概念、基础知识的掌握情况以及分析问题和解决问题的能力。
三、考试内容(一)杆件的内力1.杆件内力的一般描述截面法1)轴力、剪力、扭矩和弯矩的概念2)截面法求杆的内力2.轴力与轴力图1)杆件轴向拉伸与压缩的概念2)截面法求杆的轴力3)轴力图画法3.扭矩与扭矩图1)扭转的概念2)外力偶矩与输出功率、传动轴的转速间的关系3)截面法求轴的扭矩4)扭矩图的画法4.弯曲内力与弯矩图1)平面弯曲的概念2)弯曲内力的概念3)截面法求杆件的剪力与弯矩4)剪力方程与弯矩方程5)剪力图与弯矩图的画法6)载荷集度、剪力与弯矩之间的关系7)简易法求剪力图和弯矩图5.平面刚架与平面曲杆的弯曲内力1)平面刚架的内力2)平面曲杆的内力(二)杆件的应力与强度计算-中国在职研究生招生网官网1.拉压杆的应力与强度1)拉压杆的应力计算2)拉压杆的强度校核、截面选择和许可载荷的计算。
2.圆轴扭转时的切应力及强度计算1)圆轴扭转切应力计算;①圆轴扭转切应力公式推导②切应力在横截面上分布规律③空心轴与实心轴的极惯性矩和扭转截面系数。
2)圆轴扭转时的强度校核、截面选择和许可载荷的计算3.梁的弯曲正应力及强度计算1)梁弯曲正应力公式计算①梁的弯曲应力公式推导②正应力在横截面上分布规律;中性轴的概念③矩形截面和圆截面对中性轴的惯性矩及弯曲截面系数。
④梁弯曲时的强度校核、截面选择和许可载荷的计算;4.梁的弯曲切应力及强度计算1)梁弯曲切应力公式计算①梁弯曲时横截面上切应力计算公式应用②矩形截面梁曲切应力及最大切应力表达式③圆截面梁最大切应力表达式2)梁弯曲切应力的强度校核5.连接件的强度计算1)剪切的实用计算与强度校核2)挤压的实用计算与强度校核(三)杆件的变形和简单超静定问题1.轴向拉伸与压缩时的变形1)轴向变形的计算2)横向变形与轴向变形之间的关系2.圆轴扭转变形与刚度条件1)圆轴扭转变形计算2)圆轴扭转的刚度条件与应用3.梁的弯曲变形1)梁挠曲线近似微分方程概念2)积分法求弯曲变形3)叠加法求弯曲变形(注:弯曲变形亦可用第七章中的卡氏定理或莫尔定理求解,考试中不作特殊规定,考生可自由选择自认为方便的方法。
第三章 应力与强度计算一.内容提要本章介绍了杆件发生基本变形时的应力计算,材料的力学性能,以及基本变形的强度计算。
1.拉伸与压缩变形1.1 拉(压)杆的应力1.1.1拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 NF Aσ=(3-1) 式中为该横N F 截面的轴力,A 为横截面面积。
正负号规定 拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角时020α≤,可应用式(3-1)计算,所得结果的误差约为3%。
1.1.2拉(压)杆斜截面上的应力(如图3-1)图3-1 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2)正应力2cos ασσα=(3-3)切应力1sin 22ατα=(3-4) 式中为横截σ面上的应力。
正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
ασ 拉应力为正,压应力为负。
ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。
两点结论:(1)当00α=时,即横截面上,ασ达到最大值,即()m ax ασσ=。
当α=090时,即纵截面上,ασ=090=0。
(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即m a x ()2αατ=。
1.2 拉(压)杆的应变和胡克定律 (1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 1l l l ∆=- 轴向线应变 llε∆=横向变形 1b b b ∆=- 横向线应变 bbε∆'=正负号规定 伸长为正,缩短为负。