当前位置:文档之家› 简单动点问题专题训练(附答案)

简单动点问题专题训练(附答案)

动点问题专题训练

1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.

(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.

①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;

②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?

(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

解:(1)①∵1t =秒,

∴313BP CQ ==⨯=厘米,

∵10AB =厘米,点D 为AB 的中点,

∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米,

∴835PC =-=厘米,

∴PC BD =.

又∵AB AC =,

∴B C ∠=∠, ∴BPD CQP △≌△. ····················· (4分)

②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,

∴点P ,点Q 运动的时间433BP t =

=秒, ∴51544

3

Q CQ v t ===厘米/秒. ················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得

1532104x x =+⨯, 解得803

x =秒. ∴点P 共运动了803803

⨯=厘米. ∵8022824=⨯+,

∴点P 、点Q 在AB 边上相遇,

∴经过80

3

秒点P与点Q第一次在边AB上相遇.·········(12分)

2.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?

(2)当t为何值时,四边形PQCD为等腰梯形?

(3)当t为何值时,四边形PQCD为直角梯形?

分析:

(1)四边形PQCD为平行四边形时PD=CQ.

(2)四边形PQCD为等腰梯形时QC-PD=2CE.

(3)四边形PQCD为直角梯形时QC-PD=EC.

所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.

解答:

解:(1)∵四边形PQCD平行为四边形

∴PD=CQ

∴24-t=3t

解得:t=6

即当t=6时,四边形PQCD平行为四边形.

(2)过D作DE⊥BC于E

则四边形ABED为矩形

∴BE=AD=24cm

∴EC=BC-BE=2cm

∵四边形PQCD为等腰梯形

∴QC-PD=2CE

即3t-(24-t)=4

解得:t=7(s)

即当t=7(s)时,四边形PQCD为等腰梯形.

(3)由题意知:QC-PD=EC时,

四边形PQCD为直角梯形即3t-(24-t)=2

解得:t=6.5(s)

即当t=6.5(s)时,四边形PQCD为直角梯形.

点评:

此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.

3.(09济南)如图,在梯形ABCD

中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.

(1)求BC 的长.

(2)当MN AB ∥时,求t 的值.

(3)试探究:t 为何值时,MNC △为等腰三角形.

解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形 ∴3KH AD ==. ······················ 1分

在Rt ABK △

中,sin 454AK AB =︒== 2cos 454242BK AB =︒==

················ 2分

在Rt CDH △中,由勾股定理得,3HC ==

∴43310BC BK KH HC =++=++= ············· 3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形

∵MN AB ∥

∴MN DG ∥

∴3BG AD ==

∴1037GC =-= ····················· 4分

由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.

∵DG MN ∥

∴NMC DGC =∠∠ 又C C =∠∠

∴MNC GDC △∽△ ∴CN

CM

CD CG = ······················ 5分

即10257t t

-=

解得,50

17t = ······················ 6分

(3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =-

∴10

3t = ························ 7分

(图①) A D C B K

H (图②)

A D

C

B G M N

②当MN NC =时,如图④,过N 作NE MC ⊥于E

解法一:

由等腰三角形三线合一性质得()1

1

102522EC MC t t ==-=-

在Rt CEN △中,5cos EC t

c NC t -==

又在Rt DHC △中,3

cos 5CH c CD ==

∴53

5t

t -=

解得25

8t = ······················· 8分

解法二:

∵90C C DHC NEC =∠=∠=︒∠∠,

∴NEC DHC △∽△

∴NC EC

DC HC =

即553t t

-=

∴25

8t = ························ 8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22FC NC t ==

解法一:(方法同②中解法一)

13

2cos 1025t FC C MC t ===-

解得60

17t = 解法二: ∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MC

HC DC =

即1102235t

t

-=

A D

C B M N

(图③) (图④)

A D

C

B M N

H E

(图⑤)

A D

C

B

H N

M F

60

17 t=

综上所述,当

10

3

t=、

25

8

t=或

60

17

t=时,MNC

△为等腰三角形·9分

4..如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.

(1)试说明EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;

(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.

分析:

(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.

(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.

(3)利用已知条件及正方形的性质解答.

解答:

解:(1)∵CE平分∠ACB,

∴∠ACE=∠BCE,

∵MN∥BC,

∴∠OEC=∠ECB,

∴∠OEC=∠OCE,

∴OE=OC,

同理,OC=OF,

∴OE=OF.

(2)当点O运动到AC中点处时,四边形AECF是矩形.

如图AO=CO,EO=FO,

∴四边形AECF为平行四边形,

∵CE平分∠ACB,

∴∠ACE= ∠ACB,

同理,∠ACF= ∠ACG,

∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,

∴四边形AECF是矩形.

(3)△ABC是直角三角形

∵四边形AECF是正方形,

∴AC⊥EN,故∠AO M=90°,

∵MN∥BC,

∴∠BCA=∠AOM,

∴∠BCA=90°,

∴△ABC是直角三角形.

点评:

本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用

动点问题练习(含答案)

动点问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性 题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD 中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边 以1cm/ 秒的速度移动,点Q 从 C 开始沿CB 向点 B 以 2 cm/ 秒的速度移动,如果P,Q分别从A,C 同 时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD 的边长为4,点M 在边DC上,且DM=1,N 为对角线AC上任 意一点,则DN+MN 的最小值为5 3、如图,在Rt△ABC 中,ACB=90°,B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC 重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE∥AB交直线l于点E,设直线l 的旋转角为. 1)①当=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当= 90°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在 Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. B 图1 B 1 ∴AB=4,AC=2 3. ∴AO= 2 ∴BD=2. ∴BD=BC. 又∵∴四边形EDBC是菱形 4、在△ABC 中,∠ACB=90°,

数学动点问题及练习题附参考答案

数学动点问题及练习题附参考答案 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重 要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件 地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动 点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考 试题举例分析.一、应用勾股定理建立函数解析式。二、应用比例式建立 函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所 以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特 殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点, 近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此 问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。二、解决动态 几何问题的常见方法有: 2.以形为载体,研究数量关系;通过设、表、列获得函数关系式; 研究特殊情况下的函数值。 专题三:双动点问题

点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图 形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.其中以灵活多变而著称的 双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读 者欣赏.1以双动点为载体,探求函数图象问题。2以双动点为载体,探求 结论开放性问题。3以双动点为载体,探求存在性问题。4以双动点为载体,探求函数最值问题。 双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信 息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动 和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运 动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。 专题四:函数中因动点产生的相似三角形问题 专题五:以圆为载体的动点问题 动点问题是初中数学的一个难点,中考经常考察,有一类动点问题, 题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的 有关性质,问题便会迎刃而解;此类问题方法巧妙,耐人寻味。 例1.如图,已知在矩形ABCD中,AD=8,CD=4,点E从点D出发,沿线段DA以每秒1 个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD 方向以每秒2个单位长的速度移动,当B,E,F三点共线时,两点同时停 止运动.设点E移动的时间为t(秒).(1)求当t为何值时,两点同 时停止运动;

动点问题(含答案)

动点问题 1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿 AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中. 2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分 线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 点评: 本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一

问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用. 3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线 段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD 的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒. (1)求NC,MC的长(用t的代数式表示); (2)当t为何值时,四边形PCDQ构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t 的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形. 点评: 此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法. 4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在 矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.

简单动点问题专题训练(附答案)

动点问题专题训练 1、(09包头)如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ····················· (4分) ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t = =秒, ∴51544 3 Q CQ v t ===厘米/秒. ················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得 1532104x x =+⨯, 解得803 x =秒. ∴点P 共运动了803803 ⨯=厘米. ∵8022824=⨯+, ∴点P 、点Q 在AB 边上相遇,

2020中考数学-动点问题专题训练(含答案)

中考专题训练 动点问题 例1. 如图, 在ABC ?中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从 点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H , 当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >. (1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形; (2) 在整个运动过程中, 所形成的PEF ?的面积存在最大值, 当PEF ?的面积最大时, 求线段BP 的长; (3) 是否存在某一时刻t ,使PEF ?为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 . 【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥, EF ∴为AD 的垂直平分线, AE DE ∴=,AF DF =. AB AC =,AD BC ⊥于点D , AD BC ∴⊥,B C ∠=∠. //EF BC ∴, AEF B ∴∠=∠,AFE C ∠=∠, AEF AFE ∴∠=∠, AE AF ∴=, AE AF DE DF ∴===,即四边形AEDF 为菱形 .

(2) 解: 如答图 2 所示, 由 (1) 知//EF BC , AEF ABC ∴??∽, ∴ EF AH BC AD =,即82108EF t -=,解得:5 102 EF t =-. 221155510 (10)210(2)10(0)222223 PEF S EF DH t t t t t t ?= =-=-+=--+<<, ∴当2t =秒时,PEF S ?存在最大值, 最大值为210cm ,此时36BP t cm ==. (3) 解: 存在 . 理由如下: ①若点E 为直角顶点, 如答图 3①所示, 此时//PE AD ,2PE DH t ==,3BP t =. //PE AD ,∴ PE BP AD BD =,即2385 t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示, 此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-. //PF AD ,∴ PF CP AD CD =,即210385t t -=,解得40 17 t =; ③若点P 为直角顶点,如答图③所示 .

(完整版)初中数学动点问题专题复习及答案

初中数学动点问题练习题 1、(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的 边 AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运 动的时间为t 秒. 1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形 MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面 积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 2、如图,在梯形 ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长. (2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形. 3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? 若有最小值,最小值是多少? C P Q B A M N C B

初中数学几何的动点问题专题练习_附答案版

动点问题专题训练 1、如图,ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. 〔1〕如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①假设点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②假设点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等. 〔2〕假设点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在 ABC △的哪条边上相遇. 2、直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发, 同时到达A 点,运动停顿.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. 〔1〕直接写出A B 、两点的坐标; 〔2〕设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; 〔3〕当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. 3如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P 〔0,k 〕是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P . 〔1〕连结PA ,假设PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由;

〔2〕当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形. 4 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为〔-3,4〕, 点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . 〔1〕求直线AC 的解析式; 〔2〕连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S 〔S ≠0〕,点P 的运动时间为t 秒,求S 与t 之间的函数关系式〔要求写出自变量t 的取值围〕; 〔3〕在〔2〕的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值. 5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点 B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -B C -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停顿运动,点P 也随之停顿.设点P 、Q 运动的时间是t 秒〔t >0〕. 〔1〕当t = 2时,AP =,点Q 到AC 的距离是; 〔2〕在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;〔不必写出t 的取值围〕 〔3〕在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形.假设能,求t 的值.假设不能,请说明理由; 〔4〕当DE 经过点C 时,请直接..写出t 的值. 6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是 AC 的中点,过点O 的直线l 从与AC 重合的位置开场,绕点O 作逆A C B P Q E D 图16 O E C B D A α l

数学动点问题及练习题附参考答案

初中数学动点问题与练习题附参考答案 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式. 二、应用比例式建立函数解析式. 三、应用求图形面积的方法建立函数关系式. 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性〔特殊角、特殊图形的性质、图形的特殊位置.〕动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值.下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨. 一、以动态几何为主线的压轴题. 〔一〕点动问题. 〔二〕线动问题. 〔三〕面动问题. 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证. 2、动手实践,操作确认. 3、建立联系,计算说明. 三、专题二总结,本大类习题的共性: 1.代数、几何的高度综合〔数形结合〕;着力于数学本质与核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数. 2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值. 专题三:双动点问题 点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以与分析问题和解决问题的能力. 其中以灵活多变而著称的双动点问题更成为今年中考试题的热点,现采撷几例加以分类浅析,供读者欣赏. 1 以双动点为载体,探求函数图象问题. 2 以双动点为载体,探求结论开放性问题. 3 以双动点为载体,探求存在性问题. 4 以双动点为载体,探求函数最值问题. 双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动. 专题四:函数中因动点产生的相似三角形问题 专题五:以圆为载体的动点问题 动点问题是初中数学的一个难点,中考经常考察,有一类动点问题,题中未说到圆,却与圆有关,只要巧妙地构造圆,以圆为载体,利用圆的有关性质,问题便会

初中数学几何的动点问题专题练习附答案版

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与 CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度 为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度 从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求出S 与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点 O P Q 、、为顶点的平行四边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

动点问题(含答案)

动点问题 1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中. 2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的 外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 点评: 本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.

3. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出 发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q 点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒. (1)求NC,MC的长(用t的代数式表示); (2)当t为何值时,四边形PCDQ构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形. 点评: 此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法. 4. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB, DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.

动点问题练习(含答案)

动点问题之南宫帮珍创作 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速 度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8 2、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 5 3、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α. (1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ; ②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明 O E C D A α l

理由. 解:(1)①30,1;②60,1.5; (2)当∠α=900 时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900 ,∠B =600 ,BC =2, ∴∠A =300 . ∴AB =4,AC ∴AO =12AC 在 Rt △AOD 中,∠A =300 ,∴AD =2. ∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形 4、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E. (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线 MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB ② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE C B A E D 图1 N M A B C D E M N 图2 A C B E D N M 图3

数学动点问题练习(含答案)

动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想数形结合思想转化思想 1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始 沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A,C同时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形 . 8 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点, 则DN+MN的最小值为 5 3、如图,在Rt ABC △中,9060 ACB B ∠=∠= °,°,2 BC=.点O是AC的中点,过 点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作 CE AB ∥交直线l于点E,设直线l的旋转角为α. (1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为; ②当α=度时,四边形EDBC是直角梯形,此时AD的长为; (2)当90 α=°时,判断四边形EDBC是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC ∴AO= 1 2 AC 在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. (备用图) C E D N M C D M C E M

相关主题
文本预览
相关文档 最新文档