一线两圆法做等腰三角形
- 格式:doc
- 大小:66.00 KB
- 文档页数:3
坐标的应用(两圆一线)(人教版)一、单选题(共7道,每道14分)1.如图,已知坐标平面内一点A(2,-1),O为原点,P是x轴上一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的点P的个数为( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形2.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在坐标轴上,若以A,B,C为顶点的三角形是等腰三角形,则符合条件的点C的坐标为( )A.(0,10),(0,-2)B.(0,10),(0,-2),C. D.答案:C解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形3.如图,A点坐标为(-1,0),B点坐标为(0,1).请在y轴上找一点P,使△APB为等腰三角形,则点P的坐标为( )A.,,B.,,,C.,D.,,,答案:D解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形4.如图,在平面直角坐标系中,已知,在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的坐标为( )A.,B.,,,C.,,D.,,,答案:D解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形5.在平面直角坐标系中,已知点A(3,1),点B(3,3),则线段AB的中点M的坐标是( )A.(2,3)B.(3,2)C.(6,2)D.(6,4)答案:B解题思路:试题难度:三颗星知识点:中点坐标公式6.已知点A的坐标为,点B的坐标为,则点A关于点B的对称点的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:中点坐标公式7.如图,在平面直角坐标系中,点A的坐标为(-3,-6),且△AOB的面积为15,则AB的中点E的坐标为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:中点坐标公式。
(完整版)两圆一线和两线一圆编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)两圆一线和两线一圆)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)两圆一线和两线一圆的全部内容。
(完整版)两圆一线和两线一圆编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)两圆一线和两线一圆这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)两圆一线和两线一圆> 这篇文档的全部内容.关于等腰三角形和直角三角形的存在性问题一、关联知识:1、已知M )(11y x ,、N )(22y x ,;则① MN 的中点坐标为)22(2121y y x x ++,;② MN 的距离为221221)()(y y x x -+-二、方法与技巧:(一)关于等腰三角形存在性的问题(两圆一线):已知A (1,0),B (0,2),请在下面的平面直角坐标系坐标轴上找一点C,使△ABC 是等腰三角形;(二)关于直角三角形存在性的问题(两线一圆):已知A (—2,0),B (1,3),请在平面直角坐标系中坐标轴上找一点C ,使△ABC 是直角三角形;三、例题精讲:例题一:如图,抛物线c bx ax y ++=2经过A (﹣1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴;(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由。
_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式〔1〕、【一般式】抛物线上任意三点时,通常设解析式为,然后解三元方程组求解; 〔2〕、【顶点式】抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解;2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进展判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况 △ > 0与x 轴交点 方程有的实数根△ < 0 与x 轴交点 实数根 △ = 0与x 轴交点方程有的实数根3、抛物线上有两个点为A 〔x 1,y 〕,B 〔x 2,y 〕 (1)对称轴是直线2x 21x x +=(2)两点之间距离公式: 两点()()2211y ,x Q ,y ,x P , 那么由勾股定理可得:221221)()(y y x x PQ -+-=练一练:A 〔0,5〕和B 〔-2,3〕,那么AB =。
4、 常见考察形式1〕A 〔1,0〕,B 〔0,2〕,请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中一条线段,构造等腰三角形,用的是“两圆一线〞:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2〕A 〔-2,0〕,B 〔1,3〕,请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中一条线段,构造直角三角形,用的是“两线一圆〞:分别过线段的两个端点作线段的垂线,再以线段为直径作圆; 5、求三角形的面积:〔1〕直接用面积公式计算;〔2〕割补法;〔3〕铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽〞〔a 〕,中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高〞〔h 〕. 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。
等腰三角形和直角三角形的存在性例题一:如图,抛物线c bx ax y ++=2经过A (﹣1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴;(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由。
例题二:如图,抛物线c bx ax y ++=2经过点A (-3,0),B (1,0),C (0,-3):(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.四、随堂练习:1、如图,四边形OABC 是一张放在平面直角坐标系中的正方形纸片.点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,OC=4,点E 为BC 的中点,点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M .现将纸片折叠,使顶点C 落在MN 上,并与MN 上的点G 重合,折痕为EF ,点F 为折痕与y 轴的交点.(1)求点G 的坐标; (2)求折痕EF 所在直线的解析式;(3)设点P 为直线EF 上的点,是否存在这样的点P ,使得以P ,F ,G 为顶点的三角形为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2、如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.五、课堂总结1、平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2、平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆;六、课后作业如图,已知抛物线32++=bx ax y (0≠a )与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE 、CE ,求△BCE 面积的最大值,并求此时E 点的坐标;(3)在抛物线上是否存在点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个符合条件的点P (简要说明理由)并写出其中一个点的坐标;若不存在这样的点P ,请简要说明理由。
等腰直角三角形存在性问题一、复习回顾二次函数存在性问题中等腰三角形的存在性、直角三角形存在性问题,等腰三角形的存在性问题有两种思路:①两圆一线确定点的位置,结合图形特点解决问题;②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解;直角三角形的存在性问题有两种思路:①两线一圆构图,“改斜归正”转化横平竖直线段长,②不考虑点的位置,利用两点间距离公式表示线段长构建方程求解。
二、特殊三角形之等腰直角三角形存在性问题如图,抛物线y=x2-2x-3与x轴交于A、B两点,(点A在点B的左侧),与y轴交于点C,点P是抛物线上一动点,点Q在直线x=-3上,是否存在以点P为顶点的等腰直角三角形△PBQ,若存在,求出点P的横坐标,若不存在说明理由。
解法分析:通过读题,不难求得A、B、C三点坐标,点P、Q是两个动点,位置不确定,如何确定它们的位置是解决问题的一个难点。
此时不妨通过草图分析,大体分两种情况:①直角顶点在BQ下方,②直角点P在BQ上方,结合上辑课讲到的直角三角形存在性问题的处理思路,容易考虑使用“改斜归正”的处理办法结合等腰直角三角形的特点构造一线三等角全等模型,从而顺利转化线段长建立等量。
三、练习1.(本小题25分)如图,抛物线y=x2-4x+3交x轴于A,C两点(点A在点C的右侧),交y 轴于点B.点D的坐标为(-1,0),若在直线AB上存在点P,使得以A,D,P为顶点的三角形是等腰直角三角形,则点P的坐标为()A.(-1,4) 或(1/2,5/2)B. (-1,3)或(1,2)C. (-1,4)或(1,2)D. (-1,4),(1,2)或(5,-2)2.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.P是线段AC上的一个动点(不与点A,C重合),过点P作平行于x轴的直线l,交BC于点Q,若在x轴上存在点R,使得△PQR是等腰直角三角形,则点R的坐标为() A.(1,4/3)或(3/2,1) B.(-1/3,4/3)或(-1/2,1) C.(1,0)或(-1/3,0)或(1/2,0) D.(1,0)或(-1/3,0)或(4/3,0)3.如图,二次函数的图象与x轴交于A,B两点(点A在点B的左侧),以AB为边在x轴上方作正方形ABCD,P是x轴上的一动点(不与点A重合),连接DP,过点P作PE⊥DP交y轴于点E.当△PED是等腰直角三角形时,点P的横坐标为()A. -4B. -3C. -3或-4D. -4或44.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A,B,D为线段AB上一动点,过点D作x轴的垂线,垂足为点C,CD的延长线交抛物线y=-x2-3x+4于点E,连接BE.若△DBE为等腰直角三角形,则点D的坐标为()A. (-2,2)B. (-2,6)C. (-3,4)或(-2,6)D. (-3,1)或(-2,2)5.如图,抛物线y=-x2+4x经过A(4,0),B(1,3)两点,点C与点B关于抛物线的对称轴对称,过点B作直线BH△x轴于点H,点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形时,若存在,求出点M坐标,若不存在说明理由。
学生做题前请先回答以下问题问题1:已知两点确定第三点的等腰三角形存在性问题:第一步:确定点的位置,利用________________;第二步:计算点的坐标,利用________________.问题2:已知点,点,则线段AB的中点M的坐标为____________.坐标的应用(两圆一线)(北师版)一、单选题(共7道,每道14分)1.如图,已知坐标平面内一点A(2,-1),O为原点,P是x轴上一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的点P的个数为( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形2.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在坐标轴上,若以A,B,C 为顶点的三角形是等腰三角形,则符合条件的点C的坐标为( )A. B.,C. D.答案:C解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形3.如图,A点坐标为(-1,0),B点坐标为(0,1).请在y轴上找一点P,使△APB为等腰三角形,则点P的坐标为( )A.,,B.,,,C.,D.,,,答案:D解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形4.如图,在平面直角坐标系中,已知A,在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的坐标为( )A.(4,0),(-4,0)B.(4,0),(-4,0),,C.(0,4),(0,-4),D.(0,4),(0,-4),,答案:D解题思路:试题难度:三颗星知识点:两圆一线构造等腰三角形5.在平面直角坐标系中,已知点A(3,1),点B(3,3),则线段AB的中点M的坐标是( )A.(2,3)B.(3,2)C.(6,2)D.(6,4)答案:B解题思路:试题难度:三颗星知识点:中点坐标公式6.已知点A的坐标为(,),点B的坐标为(,),则点A关于点B的对称点的坐标为( )A.(,)B.(,)C.(,)D.(,)答案:B解题思路:试题难度:三颗星知识点:中点坐标公式7.如图,在平面直角坐标系中,点A的坐标为(-3,-6),且△AOB的面积为15,则AB的中点E的坐标为( )A.(-4,-3)B.(-5,0)C. D.(1,-3)答案:A解题思路:试题难度:三颗星知识点:中点坐标公式学生做题后建议通过以下问题总结反思问题1:完成本套试题之后,同学们应该对下面几个问题的答案更加清晰明了:①已知两点确定第三点的等腰三角形存在性问题的分类标准是什么?②求解点坐标的依据是什么?问题2:在做本套试题的过程中哪些是有困难的题目?问题3:结合对上面问题的思考,分析一下出错原因吧?①计算坐标求错,不清楚如何求解点坐标;②找点不全;③不清楚为什么两圆一线来操作找点;④对中点坐标公式不够敏感.。
关于等腰三角形和直角三角形的存在性问题一、关联知识:1、已知M )(11y x ,、N )(22y x ,;则① MN 的中点坐标为)22(2121y y x x ++,;② MN 的距离为221221)()(y y x x -+-二、方法与技巧:(一)关于等腰三角形存在性的问题(两圆一线):已知A (1,0),B (0,2),请在下面的平面直角坐标系坐标轴上找一点C ,使△ABC 是等腰三角形;(二)关于直角三角形存在性的问题(两线一圆):已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴上找一点C ,使△ABC 是直角三角形;三、例题精讲:例题一:如图,抛物线c bx ax y ++=2经过A (﹣1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴;(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由。
例题二:如图,抛物线c bx ax y ++=2经过点A (-3,0),B (1,0),C (0,-3):(1)求抛物线的解析式;(2)若点P 为第三象限内抛物线上的一点,设△PAC 的面积为S ,求S 的最大值并求出此时点P 的坐标;(3)设抛物线的顶点为D ,DE ⊥x 轴于点E ,在y 轴上是否存在点M ,使得△ADM 是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.1、如图,四边形OABC 是一张放在平面直角坐标系中的正方形纸片.点O 与坐标原点重合,点A 在x 轴上,点C 在y 轴上,OC=4,点E 为BC 的中点,点N 的坐标为(3,0),过点N 且平行于y 轴的直线MN 与EB 交于点M .现将纸片折叠,使顶点C 落在MN 上,并与MN 上的点G 重合,折痕为EF ,点F 为折痕与y 轴的交点.(1)求点G 的坐标;(2)求折痕EF 所在直线的解析式;(3)设点P 为直线EF 上的点,是否存在这样的点P ,使得以P ,F ,G 为顶点的三角形为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2、如图,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.1、平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2、平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆;六、课后作业:如图,已知抛物线32++=bx ax y (0≠a )与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)若点E 为第二象限抛物线上一动点,连接BE 、CE ,求△BCE 面积的最大值,并求此时E 点的坐标;(3)在抛物线上是否存在点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个符合条件的点P (简要说明理由)并写出其中一个点的坐标;若不存在这样的点P ,请简要说明理由。
每日一题 079一次函数与等腰三角形武穴市百汇学校徐国纲解题技巧如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.如图,已知线段AB作等腰三角形,则符合要求的点都在以A、B为圆心,AB长为半径的圆和AB的垂直平分线上,这就是传说中的“两圆一线”.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.代数法一般也分三步:表示三边长,分类列方程,解方程并检验.例题解析例❶ 如图1-1,在平面直角坐标系xOy中,已知点D的坐标为(3, 4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.图1-1【解析】分三种情况讨论等腰三角形△DOP:①DO=DP,②OD=OP,③PO=PD.①当DO=DP时,以D为圆心、DO为半径画圆,与x轴的正半轴交于点P,此时点D 在OP的垂直平分线上,所以点P的坐标为(6, 0)(如图1-2).②当OD=OP=5时,以O为圆心、OD为半径画圆,与x轴的正半轴交于点P(5, 0) (如图1-3).③当PO=PD时,画OD的垂直平分线与x轴的正半轴交于点P,设垂足为E(如图1-4).可求325:48PEl y x=-+,∴25(,0)6P.图1-2 图1-3 图1-4上面是几何法的解题过程,我们可以看到,画图可以帮助我们快速找到目标P ,其中①和②画好图就知道答案了,只需要对③进行计算.代数法先设点P 的坐标为(x , 0),其中x >0,然后表达△DOP 的三边长(的平方). DO 2=52,OP 2=x 2,PD 2=(x -3)2+42.①当DO =DP 时,52=(x -3)2+42.解得x =6,或x =0.当x =0时既不符合点P 在x 轴的正半轴上,也不存在△DOP .②当OD =OP 时,52=x 2.解得x =±5.当x =-5时等腰三角形DOP 是存在的,但是点P 此时不在x 轴的正半轴上(如图1-5).③当PO =PD 时,x 2=(x -3)2+42.这是一个一元一次方程,有唯一解,它的几何意义是两条直线(x 轴和OD 的垂直平分线)有且只有一个交点.代数法不需要画三种情况的示意图,但是计算量比较大,而且要进行检验.图1-5例❷ 如图2-1,直线3y x =+与y 、x 轴相交于点A 、C ,动点P 以1个单位/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1个单位/秒的速度从点C 出发,沿CO 向点O 移动,当P 、Q 两点中其中一点到达终点时则停止运动.在P 、Q 两点移动的过程中,当△PCQ 为等腰三角形时,求t 的值.图2-1【解析】在P 、Q 两点移动的过程中,△PCQ 的6个元素(3个角和3条边)中,唯一不变的就是∠PCQ 的大小,夹∠PCQ 的两条边CQ =t ,CP =6-t .因此△PQC 符合“边角边”的解题条件,我们只需要在∠PCQ 的边上取点P 或Q 画圆.图2-2 图2-3 图2-4①如图2-2,当CP =CQ 时,t =6-t ,解得3t =(秒).②如图2-3,当QP =QC 时,过点Q 作QM ⊥AC 于M ,则CM 1622t PC -==. 在Rt △QMC 中,∵30PCQ =︒∠,∴2CQ =,62tt -=,解得3t =-(秒). ③如图2-4,当PQ =PC 时,过点P 作PN ⊥BC 于N ,则1122CN CQ t ==. 在Rt △PNC 中,∵30PCQ =︒∠,∴2CP =,62tt -=,解得9t =-秒).例❸ 如图3-1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P(0, m)是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .当△APD 是等腰三角形时,求m 的值.图3-1【解析】点P(0, m)在运动的过程中,△APD 的三个角都在变化,因此不符合几何法“边角边”的解题条件,我们用代数法来解.因为PC//DB ,M 是BC 的中点,所以BD =CP =2-m .所以D(2, 4-m).于是我们可以表达出△APD 的三边长(的平方):22(4)AD m =-,224AP m =+,2222(42)PD m =+-.①当AP =AD 时,22(4)4m m -=+.解得32m =(如图3-2). ②当P A =PD 时,22242(42)m m +=+-. 解得43m =(如图3-3)或4m =(不合题意,舍去). ③当DA =DP 时,222(4)2(42)m m -=+-.解得23m=(如图3-4)或2m=(不合题意,舍去).综上所述,当△APD为等腰三角形时,m的值为32,43或23.图3-2 图3-3 图3-4其实①、②两种情况,可以用几何说理的方法,计算更简单:①如图3-2,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以12PC MBCM BA==.因此12PC=,32m=.②如图3-3,当P A=PD时,P在AD的垂直平分线上.所以DA=2PO.因此42m m-=.解得43m=.小结:1、等腰三角形的存在性问题,又可以细分为两个定点一个动点,或一个定点一个定角,或只有一个定点,甚至三个点都是动点等几种类型;2、当条件中有定线段时,可以利用“两圆一线”来画图,再计算;在有定角时,可以借助特殊三角形三边比的特征或相似来建立方程;对于既无定线又无定角的问题,可以用代数法来解,即先表达三边,再分类列方程求解,要注意根据题目条件进行检验.对于不同类型的等腰三角形,我们可以灵活选用几何法或代数法,有时候将两种方法结合起来使用,可以使得解题又快又好;3、在进行有关等腰三角形的计算时,常用到勾股定理、三线合一、特殊角的三角函数、相似、一元二次方程等知识;在这个过程中,贯穿了分类讨论、数形结合、方程等数学思想方法.。
等边三角形是七年级数学下学期第三章第三节的内容,本讲主要讲解等边三角形的性质和判定定理;重点是理清性质和判定之间的区别和联系,难点是灵活运用等边三角形的性质解决综合题目,综合性更强.1、等边三角形的性质等边三角形的每个内角都等于60°.2、等边三角形的判定(1)三个内角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.等边三角形内容分析知识结构模块一:等边三角形性质与判定知识精讲2 / 24【例1】 下列说法中错误的是( )A .等边三角形是等腰三角形B .等边三角形是锐角三角形C .等边三角形的高、中线、角平分线共有3条D .含有60°角的三角形是等边三角形 【答案】D【解析】含有60°角的三角形不一定是等边三角形. 【总结】本题主要考查了等边三角形的定义和性质.【例2】 (1)等腰三角形的一个外角等于120°,则它是 三角形; (2)等边三角形是轴对称图形,它有______条对称轴,分别是_______________. 【答案】(1)等边三角形;(2)三,三边的垂直平分线.【解析】(1)当一个外角等于120︒时,与这个外角相邻的内角为60︒,因为是等腰三角形, 所以另外两个角也为60︒,则这个三角形为等边三角形;(2)等边三角形是轴对称图形,它有三条对称轴,分别是三边的垂直平分线. 【总结】本题主要考查了等边三角形的性质.【例3】 (1)已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE =_____________;(2)△ABC 是等边三角形,AD ∥BC ,CD ⊥AD ,则∠ACD = . 【答案】(1)60︒;(2)30︒. 【解析】(1)ABC ∆是等边三角形, 601303BAC AD BC CAD BAC ︒︒∴∠=∴∠=∠=,是边上的高,,90BE AC BE AC AEF ︒∴⊥∴∠=是边上的中线,,,903060AFE AEF CAD ︒︒︒∴∠=∠-∠=-=;ACDBFE 例题解析(2)ABC ∆是等边三角形,60ACB ︒∴∠=. //90AD BC CD AD BCD ︒⊥∴∠=,,,906030ACD ︒︒︒∴∠=-=.【总结】本题主要考查了等边三角形的性质.【例4】 已知三角形的一个外角等于与它不相邻的一个内角的2倍,且有一个内角为60°则这个三角形是( ) A .等边三角形 B .直角三角形 C .等腰直角三角形 D .等腰三角形【答案】A【解析】因为三角形一个外角等于与它不相邻的一个内角的2倍,且同时等于与它不相邻的 两个内角之和,所以与它不相邻的两个内角相等,因为有一个内角为60︒,所以三个内 角均为60︒,所以为等边三角形.【总结】本题主要考查三角形外角的性质及三角形内角和定理.【例5】 已知△ABC 是等边三角形,点D 在AC 上,点E 在AB 上,BD 与CE 相交于点F ,且BF=CF ,说明△ADE 是等边三角形.【解析】BF CF =,FBC FCB ∴∠=∠.60()ABC AB AC ABC ACB A ABD ACE ABD ACE ASA ︒∆∴=∠=∠∠=∴∠=∠∴∆≅∆为等边三角形,,,,AE AD ADE ∴=∴∆,是等边三角形. 【总结】本题主要考查了等边三角形的性质和判定及全等三角形的判定.A B CDEFDCBA4 / 24【例6】 如图所示,在△ABC 中,AB =AC ,△ADB 和△ACE 都是等边三角形,且∠DAE =∠DBC ,求∠BAC 的度数. 【答案】20°. 【解析】AB AC =,ABC ∴∆是等腰三角形.60ADB ACE ABD BAD CAE ︒∆∆∴∠=∠=∠=和是等边三角形,.606060DAE DBC ABC BAC ︒︒︒∠=∠∴∠+=∠++,,60ABC BAC ︒∠=∠+即.2180ABC ABC BAC ︒∆∠+∠=在中,,)260180BAC BAC ︒︒∴∠++∠=(,即2120180BAC BAC ︒︒∠++∠=,36020BAC BAC ︒︒∴∠=∴∠=,. 【总结】本题主要考查等边三角形的性质及三角形内角和定理的综合运用.【例7】 如图,ABC ∆是等边三角形,90CBD BD BC ∠==,,则1∠的度数是________. 【答案】75︒.【解析】ABC ∆是等边三角形,60ABC AB BC ︒∴∠==,.906090150CBD ABD ︒︒︒︒∠=∴∠=+=,,23BD BC BD AB =∴=∴∠=∠,,,18015021516015752︒︒︒︒︒︒-∴∠==∴∠=+=,.【总结】本题主要考查的是等边三角形的性质及等腰三角形的性质的综合运用.【例8】 如图,在等边三角形ABC 中,点D 、E 、F 分别是边AB 、BC 、CA 上的动点,且AD =BE =CF ,说明△DEF 是等边三角形的理由.【解析】60ABC A B C AB BC AC ∆∴∠=∠=∠=︒==是等边三角形,,.AD BE CF BD CE AF ==∴==,.A BCDEFAB CDE321ABCDADF BED ∆∆在和中,()AD BE A B ADF BED SAS AF BD ⎧⎪∠∠∴∆≅∆⎨⎪⎩==,= DF DE DE EF ∴==,同理可证:,DE DF EF DEF ∴==∴∆,是等边三角形.【总结】本题主要考查等边三角形的性质和判定的综合运用.【例9】 如图,在等边三角形ABC 的边BC 上任取一点D ,以CD 为边向外作等边三角形CDE ,连接AD ,BE ,试说明BE =AD 的理由.【解析】ABC ∆是等边三角形,60AC BC ACD ︒∴=∠=,.60CDE CD CE BCE ︒∆∴=∠=是等边三角形,,ACD BCE ∆∆在和中,AC BC ACD BCE ACD BCESAS CD CE =⎧⎪∠=∠∴∆≅∆⎨⎪=⎩,() BE AD ∴=.【总结】本题主要考查了等边三角形的性质和全等三角形的判定.【例10】 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M .求证:M 是BE 的中点.【解析】BD 连接601160302230ABC ACB ABC D AC DBC ABC CE CD CDE EACB CDE E E DBC E BD ED ︒︒︒︒∆∴∠=∠=∴∠=∠=⨯==∴∠=∠∠=∠+∠∴∠=∴∠=∠∴=为等边三角形,是边的中点,,,,,DM BC M BE ⊥∴,是的中点.【总结】本题主要考查了等边三角形性质和等腰三角形性质的运用.ABCDEABCDEM6 / 24【例11】 (1)如图所示,已知:△ABC 是等边三角形,M 、N 分别是边BC 、AC 的中点,AM 、BN 相交于点P ,求∠BPM 的大小;(2)如果点M 、N 分别在BC 、AC 的延长线上,且BM =CN .∠BPM 的大小会发生变 化吗?【答案】(1)60︒;(2)不会.【解析】(1)ABC ∆为等边三角形,60ABC ︒∴∠=. 90M BC AM BC PMB ︒∴⊥∴∠=是的中点,,N AC BN ABC ∴∠是的中点,平分,30MBP ︒∴∠=,180180903060BPM PMB MBP ︒︒︒︒︒∴∠=-∠-∠=--=.(2)ABC ∆是等边三角形,60BAC ACB AC BC AB ︒∴∠=∠===,, 120BAN ACM ︒∴∠=∠=,BM CN AN CM =∴=,,()ABN CAM SAS ∴∆≅∆, N M ∴∠=∠.60BPM N PAN M CAM ACB ︒∴∠=∠+∠=∠+∠=∠=,故∠BPM 的大小会不会发生变化.【总结】本题主要考查等边三角形的性质,全等三角形的判定定理和性质定理的综合运用.【例12】 如图,已知:在等边△ABC 中,D 在BC 边上,E 在△ABC 外,∠BAD =15°,∠DAE =70°,AD =AE ,求∠CAE ,∠EDC ,∠EFC 的度数.【答案】255080CAE EDC EFC ︒︒︒∠=∠=∠=;;. 【解析】ABC ∆是等边三角形,60BAC B ︒∴∠=∠=.1570BAD DAE ︒︒∠=∠=,,15706025CAE BAE BAC ︒︒︒︒∴∠=∠-∠=+-=.AD AE =,118070552ADE E ︒︒︒∴∠=∠=-=(), 255580EFC CAE E ︒︒︒∴∠=∠+∠=+=. 156075ADC BAD B ︒︒︒∠=∠+∠=+=, 755520EDC ADC ADE ︒︒︒∴∠=∠-∠=-=.【总结】本题主要考查了等边三角形的性质及三角形内角和定理的综合运用.ABCNPMABCPMN ABCDEF【例13】下列说法中正确的个数有()①有一个外角为120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有三个外角都相等的三角形是等边三角形;④有一边上的高也是这边上的中线的三角形是等边三角形;⑤△ABC中三边为a、b、c,满足()()()0a b b c c a---=,则这个三角形是等边三角形.A.1个B.2个C.3个D.4个【答案】B【解析】有一个外角为120°的等腰三角形是等边三角形,所以①正确;有两个外角相等的等腰三角形是不一定是等边三角形,所以②不正确;有三个外角都相等的三角形三个内角是相等的,是等边三角形,所以③是正确;有一边上的高也是这边上的中线的三角形是等腰三角形但不一定是等边三角形,所以④不正确;△ABC中三边为a、b、c,满足()()()0a b b c c a---=,则这个三角形是等腰三角形但不一定是等边三角形,所以⑤不正确.故选B.【总结】本题主要考查了等边三角形的判定与性质的综合运用.【例14】等边△ABC中,AD=BE=CF,D、E、F不是各边的中点,AE、BF、CD分别交于点P、M、N在每一组全等三角形中有三个三角形两两全等,那么在图中全等的三角形的组数是()A.2 B.3 C.4 D.5【答案】D【解析】CFB BEA ADC∆≅∆≅∆;CAE BCD ABF∆≅∆≅∆;CMB BPA ANC∆≅∆≅∆;CFM BEP ADN∆≅∆≅∆;CNE BMD APF∆≅∆≅∆,共5组.【总结】本题主要考查了等边三角形的判定和性质.A BCDEFMN P8 / 24【例15】 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,且BD AE =,AD 与CE交于点F .(1)求证:AD CE =; (2)求DFC ∠的度数. 【答案】(1)见解析;(2)60︒. 【解析】(1)ABC ∆是等边三角形, 60BAC B AB AC ∴∠=∠=︒=,,()AE BD AEC BDA SAS =∴∆≅,,AD CE ∴=;(2)AEC BDA ∆≅∆,ACE BAD ∴∠=∠,60DFC FAC ACF FAC BAD BAC ∴∠=∠+∠=∠+∠=∠=︒.【总结】本题主要考查了等边三角形的性质和三角形外角的性质的综合运用.【例16】 已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1,h 2,h 3, △ABC 的高为h .“若点P 在一边BC 上[如图(1)],此时h 3=0.可得结论: h 1+h 2+h 3=h .”请直接应用上述信息解决下列问题:当点P 在△ABC 内[如图(2)],以及点P 在△ABC 外[如图(3)]这两种情况时,上述结论是否成立?若成立,请予以证明;若不成立,h 1,h 2,h 3与h 之间又有怎样的关系,请写出你的猜想,不需要证明.【解析】(1)P ABC ∆当在内部时,结论仍成立. PA PB PC 连接、、, ABC AB PC APC B P S S S S ∆∆∆∆=++, 12311112222BC h AB h AC h BC h ∴=++.ABC ∆是等边三角形,AB BC AC ∴==,123h h h h ∴=++.(2)P ABC ∆当在外部时,不成立,123.h h h h +-=此时 【总结】本题主要考查了等边三角形的性质和三角形面积的综合应用.DA EFBCAB C DM FP ABCD E F AB CDEM P M F P图1 图2 图3【例17】 如图,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =1200的等腰三角形,以D 为顶点作一个600角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形.求证:△AMN 的周长等于2.【解析】AC P CP BM DP =延长到点,使,连接.1203060909090()60BDC BD CD BDC DBC DCB ABC ABC ACB MBD ABC DBC NCD PCD MBD PCDBM CP BDM CDP SAS MD PD MDB PDC MDN MDB NDC PDC NDC BDC MD ∆∴=∠=︒∴∠=∠=︒∆∴∠=∠=︒∴∠=∠+∠=︒∠=︒∴∠=︒∴∠=∠=∴∆≅∆∴=∠=∠∠=︒∴∠+∠=∠+∠=∠-∠是等腰三角形,,等边三角形,,,同理可得;,,,,,60,60112AMN N MDN PDN NMD NPD SAS MN PN NC CP NC BM C AM AN MN AM AN NC BM AB AC ∆=︒∴∠=∠=︒∴∆≅∆∴==+=+∴=++=+++=+=+=的周长,(),,2AMN ∴∆的周长为.【总结】本题主要考查了等边三角形的判定和性质的综合运用,注意辅助线的添加.【例18】 如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 的度数. 【答案】30︒.【解析】AC ABC ACE DE ∆∆以为一边在外侧作正三角形,连接2080608080()8020,40AB AC A ABC ACE AC AE CE EAC EAD AB AC AC AE CE AB AEAB AE ABC EAD ABC EAD ABC EAD SAS BC AD ACB EDA BAC AED ED AC DEC DE EC EDC =∠=︒∴∠=︒∆∴==∠=︒∴∠=︒===∴==⎧⎪∆∆∠=∠=︒∴∆≅∆⎨⎪=⎩∴∠=∠=︒∠=∠=︒=∴∠=︒=∴∠=∠,,是等边三角形,,,,,在和中,,,,,,70180180807030ECD BDC ADE EDC =︒∴∠=︒-∠-∠=︒-︒-︒=︒【总结】本题考查了等腰三角形、全等三角形和等边三角形性质的综合运用,综合性较强.BCA DEPBAC DN M10 / 24将等边三角形的性质作为一直条件,运用到解题中.【例19】 如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.【解析】ABC CDE ∆∆和是等边三角形60()(ACB ECD AC BC CD CE ACB BCD ECD BCD ACD BCE AC BCACD BCE ACD BCECD CE ACD BCE SAS AD BE CAD CBE M AD N BE AM BN AC BC AMC BNC CAD CBEAM BN AMC BNC S ∴∠=∠=︒==∴∠+∠=∠+∠∴∠=∠=⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴=∠=∠∴==⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆,,,在和中,,,是线段的中点,是线段的中点,在和中,)60AS CM CN ACM BCN NCM BCN BCM ACB ACM BCM NCM ACB CMN ∴=∠=∠∠=∠-∠∠=∠-∠∴∠=∠=︒∴∆,,,,是等边三角形.【总结】本题主要考查了等边三角形的判定与性质及全等三角形的判定与性质的综合运用.模块二:等边三角形综合知识精讲例题解析 AC ENMBD【例20】 如图,已知D 是等边三角形ABC 的边AB 边延长线上一点,BD 的垂直平分线HE交AC 延长线于点E ,那么CE 与AD 相等吗?试说明理由. 【答案】相等,见解析.【解析】//H HG BC AE G 过点作,交于点.60//6060,903018030,22ABC A ABC AB AC HG BC AHG ABC AHG A AHG HG AG AHHE BD AHE BH DHGHE AHE AHG GEH AHE A GHE GEH EG HG AG AHCE AE AC AG AC AH ∆∴∠=∠==∴∠=∠=︒∴∠=∠=︒∴∆∴==∴∠=︒=∴∠=∠-∠=︒∠=︒-∠-∠=︒∴∠=∠∴===∴=-=-=-是等边三角形,,,,为等边三角形,为的垂直平分线,,,,222.AC AB BH ACAB BH AB BH DH AD =+-=+=++=【总结】本题主要考查了等边三角形的判定和性质,注意辅助线的添加.【例21】 如图,已知:等边三角形ABC ,在AB 上取点D ,在AC 上取一点E ,使AD =AE ,作等边三角形PCD 、QAE 和RAB ,则P 、Q 、R 为顶点的三角形是等边三角形,请说明理由.【解析】BP 连接60()ABC PCD AC BC DC PC ACB BAC ABC DCP ACD BCP AC BCADC BPC DC PC ADC BPC SAS ACD BCP ∆∆∴==∠=∠=∠=∠=︒∴∠=∠=⎧⎪∆∆=∴∆≅∆⎨⎪∠=∠⎩和为等边三角形在和中,,,,,,6060606060180606060180.60AD BP DAC PBC RAB QAE RAB RBA R QAE RA RB AQ AERAB BAC QAE R A Q RBA ABC PBC R B P AQ AE AD BP RQ RA AQ RB BP RP R P ∴=∠=∠=︒∆∆∴∠=∠=∠=∠=︒==∠+∠+∠=︒+︒+︒=︒∴∠+∠+∠=︒+︒+︒=︒∴===∴=+=+=∠=︒∴,和为等边三角形、、三点共线、、三点共线,,,,,以,、Q R 、为顶点的三角形是等边三角形.【总结】本题主要考查了等边三角形的判定与性质的综合性运用,难度较大.GA B C DEHABCD ERP Q12 / 24【例22】 如图,已知:在等边三角形ABC 中,D 、E 分别是AB 、AC 边上的点,且BD =AE ,EB 与CD 相交于点O .EF 与CD 垂直于点F ,试说明OE =2OF .【解析】60F OFG OE G ∠=︒过点作,交于点60(..)60609030ABC A ABC AB BC AB BCABE BCD A ABC AE BD ABE BCD S A S ABE BCDADO ABC BCD ADO BOD ABE BOD ABC EOF OFG OG OF GFEF CD OFE OEF ∆∴∠=∠=︒==⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴∠=∠∠=∠+∠∠=∠+∠∴∠=∠=︒∴∠=︒∴∆∴==⊥∴∠=︒∴∠=︒∠是等边三角形,,在与中,,,又为等,,,,边三,角,形,,302.GFE OEF GFE GE GF OF OE OG GE OF =︒∴∠=∠∴==∴=+=,,,【总结】本题主要考查了等边三角形的判定与性质的综合运用,注意对方法的选择.【例23】 如图,点O 是等边△ABC 内的一点,∠AOB =110°,∠BOC =135°,试问:(1) 以OA 、OB 、OC 为边,能否构成一个三角形,若能,求出该三角形各角的度数; 若不能,说明理由;(2) 如果∠AOB 的大小保持不变,那么当∠BOC 等于多少度时,以OA 、OB 、OC 为边的三角形是一个直角三角形.【解析】(1)OC OCD AD ∆以为边作等边,连, 60OCD OC CD ∠=︒=则,.60 60 (..) 110135 115 1156055 135 1356075 ABC ACB AC BCBCO ACO ACD BCO ACD S A S OB AD ADC BOC OAD OA OB OC AOB BOC AOC AOD ADC ADO O ∆∴∠=︒=∴∠=︒-∠=∠∴∆≅∆∴=∠=∠∴∆∠=︒∠=︒∴∠=︒∴∠=︒-︒=︒∠=︒∴∠=︒-︒=︒∴∠是等边三角形,,,,,是以线段、、为边构成的三角形,,,,,180557550.505575.AD OA OB OC =︒-︒-︒=︒∴︒︒︒以线段、、为边构成的三角形的各角是、、(2)AOB AOC BOC ∠+∠+∠AOB AOC ADC =∠+∠+∠ ()()AOB AOD DOC ADO CDO =∠+∠+∠+∠+∠G ABCD EFO DABCO()()1106060 360AOD ADO =∠︒+∠+︒+∠+︒=︒,130AOD ADO ∴∠+∠=︒, 50OAD ∴∠=︒.AOD ∠当是直角时,90AOD ∴∠=︒,9060150AOC ∴∠=︒+︒=︒, 100BOC ∴∠=︒; ADO ∠当是直角时,90ADO ∴∠=︒,9060150ADC ∴∠=︒+︒=︒,150BOC ∴∠=︒,综上,当∠BOC 等于100°或150°时,以OA 、OB 、OC 为边的三角形是一个直角三角形.【总结】本题主要考查了等边三角形的判定与性质,注意利用旋转的思想去解题.【例24】 △CAB 与△CDE 是有公共顶点C 的两个等边三角形,△CDE 绕点C 顺时针旋转至以下各位置:(1) 当E 在BC 下方时,说明AD =BE ;(2) 当E 在BC 边上如图2、当E 在△ABC 内如图3、当E 在AC 边上如图4, 当 CE ∥AB 时,如图5,AD =BE 还成立吗?请一一说明理由.【解析】(1)ABC ∆是等边三角形, 60AC BC ACB ∴=∠=︒,.6060().CDE CD CE DCE BCE BCD ACD BCE ACD SAS AD BE ∆∴=∠=︒∴∠=︒-∠=∠∴∆≅∆∴=是等边三角形,,,,(2)成立.方法同(1),可证ACD BCE ∆≅∆,所以AD BE =.【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质的综合运用. 【例25】 已知A 、B 、C 三点共线,分别AC 、BC 为边,在直线AB 同侧作等边△CAN 和等边△BCM ,易得AM =BN .(1)将△CAN 绕点C 旋转一定的度数,得到图(2),试问:AM =BN 吗?ABCDE 图1ABCDE图2CDA B C DE BAECEABD图3图4 图514 / 24(2)将(1)中等边△CAN 再绕点C 旋转一定角度,得到图(3),上述AM =CN 还成 立吗?请说明理由;(3)在旋转过程中,直线AM 和直线BN 所夹的锐角的大小随着旋转角的改变而改变 吗?说说你的理由.【解析】(1)CAN ∆为等边三角形,60CA CN ACN ∴=∠=︒,.6060(..).BCM CM CB BCM ACM NCM NCBACM NCB S A S AM BN ∆∴=∠=︒∴∠=︒+∠=∠∴∆≅∆∴=为等边三角形,,,(2)成立.方法同(1).(3)不变.AM BN αβ令直线和直线所夹锐角为,所夹钝角为,606012060.ACM NCB AMC NBCNBM AMB NBM AMC BMCNBM NBC BMC CBM BMC βα∆≅∆∴∠=∠∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒+︒=︒∴∠=︒, 【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质的综合运用.A BC 图1N M ABC 图2MNABCN 图3MABCDA ′B ′C ′【例26】如图,△ABC 中,已知∠C =600,AC >BC ,又△ABC ′、△A ′BC 、△AB ′C 都是 △ABC 外的等边三角形,而点D 在AC 上,且BC =DC .(1)说明△C ′BD ≌△B ′DC 的理由; (2)说明△AC ′D ≌△DB ′A 的理由;(3)对△ABC 、△ABC ′、△A ′BC 、△AB ′C ,从面积大小关系上,你能得出什么结论? 直接写出来.【解析】(1)60ACB BC CD ∠=︒=,60'''6060'().BCD CBD ABC AB BC ABC ABC ABD C BD C BD ABC SAS C D ACBCA DCB DB BA C BD B DC ∴∆∴∠=︒∆∴=∠=︒∴∠=︒+∠=∴∆'≅∆∴'=∆≅∆'∴'=∴∆'≅∆'是等边三角形,是等边三角形,,,同理可证:,, (2)C D B C AB B D BC AC '='=''='='由(1)的结论知:,,().AC D DB A SAS ∴∆'≅∆' (3).AB C ABC ABC A BC S S S S ∆'∆'∆∆'>>>【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质,注意总结等边三角 形的面积与边长的关系.【习题1】 三个内角都相等的三角形是_________三角形,每个内角都等于______. 【答案】等边;60︒. 【解析】略.【总结】本题主要考查了等边三角形的定义和性质.随堂检测16 / 24【习题2】 在等腰三角形中,已知两底角之和等于顶角的2倍,则这个三角形是( )A .直角三角形B .钝角三角形C .等边三角形D .锐角三角形但不等边 【答案】C【解析】2αα设等腰三角形的顶角为,则底角和为, 218060ααα∴+=︒∴=︒,.有一个角是60°的等腰三角形是等边三角形,故选C .【总结】本题主要考查了等边三角形的判定及三角形内角和定理的运用.【习题3】 如图,△ABC 中,AB =AC ,∠A =60°,BD ⊥AC 于点D ,DG ∥AB 交BC 于点G ,E 在BC 的延长线上,CE =CD .(1)∠E =________;(2)∠BDE =_______;(3)图中的等腰三角形有________个;(4)图中的等边三角形有_______个. 【答案】(1)30︒;(2)120︒;(3)5;(4)2. 【解析】(1)60AB AC A =∠=︒,60309030120.ABC ACB BD AC ABD BDC CD CE E CDE BDE ∴∆∴∠=︒⊥∴∠=︒∠=︒=∴∠=∠=︒∴∠=︒是等边三角形,,,,,(3)等腰三角形有:ABC CDG CDE BGD BDE ∆∆∆∆∆,,,,; (4)等边三角形有:ABC CDG ∆∆,.【总结】本题主要考查了等腰三角形的性质和判定及等边三角形的性质和判定.【习题4】 下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A . ①②③ B .①②④C .①③D .①②③④【答案】D【解析】①、②正确,是等边三角形的判定定理,③三个外角相等则三个内角必相等,则一 定是等边三角形,故正确;④利用等腰三角形的三线合一,可知,该三角形也是等边三 角形,正确,故选D .【总结】本题主要考查了等边三角形的判定.AB CDEG【习题5】 如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD =BE =CF ,则△DEF 的形状是( )A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形 【答案】A【解析】ABC ∆为等边三角形,60A B AB AC ∴∠=∠=︒=,.(..)..AD CF AF BD ADF BED S A S DF ED DF FE DF ED FE DEF =∴=∴∆≅∆∴==∴==∴∆,,,同理可证:,是一个等边三角形【总结】本题主要考查了等边三角形的性质和判定的综合运用.【习题6】 已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB是等腰三角形,则符合条件的P 点有( ) A . 2个 B .4个 C .6个 D .8个【答案】C【解析】1AC AB AC P PA PB =第个点在上,作线段的垂直平分线,交于点,则有; 2A AB AP AB AC P =第个点是以为圆心,以长为半径截取,交延长线上于点;34566A AB AP AB CA P B BA BP BA AC P B BA BP BA BC P A AB AP AB BC P P ====第个点是以为圆心,以长为半径截取,在上边于延长线上交于点;第个点是以为圆心,以长为半径截取,与的延长线交于点;第个点是以为圆心,以长为半径截取,与在左边交于点;第个点是以为圆心,以长为半径截取,与在右边交于点;故符合条件的点有个点.【总结】本题主要考查了等腰三角形的性质和判定,注意利用 “两圆一线”的方法确定等腰三角形.A BCDEF18 / 24【习题7】 如图,等边△ABC 中,AD =CE ,CD 于BE 相交于点P ,求∠BPC 的度数. 【答案】120︒【解析】ABC ∆是等边三角形,60(..)6060120.AC CB A ACB AD CE ACD CBE S A S ACD CBE ACD BCD ABC CBE BCD BPC ∴=∠=∠=︒=∴∆≅∆∴∠=∠∠+∠=∠=︒∴∠+∠=︒∴∠=︒,,,,,,【总结】本题主要考查等边三角形的性质和全等三角形的判定和性质.【习题8】 如图,△ABC 和△DBE 都是等边三角形,说明AB ∥CE 的理由.【解析】ABC DBE ∆∆和是等边三角形6060(..)6060//.AB BC BD BE A ABC DBE ABD CBE DBCABD CBE S A S BCE A ABC BCE AB CE ∴==∠=∠=∠=︒∴∠=∠=︒-∠∴∆≅∆∴∠=∠=︒∴∠=∠=︒∴,,,,,【总结】本题主要考查等边三角形的性质和全等三角形的判定和性质的运用.【习题9】 如图,△ABC 为等边三角形,E 是BC 延长线上一点,CD 平分∠ACE ,CD =BE ,试说明△ADE 为等边三角形的理由.【解析】ABC ∆为等边三角形,6012060(..)6060B ACB AB AC ACE CD ACE ACD B ACD AB ACABE ACD B ACDBE CD ABE ACD S A S AD AE BAE CAD BAC DAE ADE ∴∠=∠=︒=∴∠=︒∠∴∠=︒∴∠=∠=∆∆∠=∠=∴∆≅∆∴=∠=∠∠⎧⎪=︒∴∠=︒∆⎨⎪⎩∴,,平分,,在和中,,,,,为等边三角形.【总结】本题主要考查等边三角形的判定和性质及全等三角形的判定和性质的综合运用.A BC EDPABCDEAB C DE【习题10】 如图,△ABC 中,BA =BC =a ,∠B =60°,在BC 的延长线上取一点D ,使CD =b ,在BA 延长线上取一点E ,使AE =a +b ,试判断△ECD 是什么三角形,并说明理由. 【答案】等腰三角形. 【解析】//DF AC BE F 作交于60//60(..).ABC BAC B BA BC DF AC EFD CAE BFD BAC BDF DF BD BF a b AF BF BA BD BC CD bAE a b FE a AC AE BD FD EFD CAE S A S ED EC ECD ∆∴∠=∠=︒=∴∠=∠∠=∠=︒∴∆∴===+∴=-=-===+∴====∴∆≅∆∴=∴∆是等边三角形,,,,是等边三角形,,,,,,是等腰三角形【总结】本题主要考查等边三角形的性质及全等三角形的判定和性质的综合运用,注意平行 线的添加,将问题进行转化.【作业1】 已知一个三角形的任意一个角的平分线都垂直于这个角的对边,则这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形.【答案】D【解析】只有在等边三角形中任意一个角的平分线是垂线并且是中线. 【总结】本题主要考查全等三角形的判定.课后作业ABCDEF20 / 24【作业2】 等边△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( )A . 60°B .90°C .120°D .150°【答案】C【解析】ABC ∆是等边三角形,60ABC ACB ∴∠=∠=︒.113030221803030120.BI ABC CI ACB IBC ABC ICB ACB BIC ∠∠∴∠=∠=︒∠=∠=︒∴∠=︒-︒-︒=︒平分,平分,,,【总结】本题主要考查了等边三角形的性质和角平分线的性质的综合运用.【作业3】 如图,E 是等边△ABC 中AC 边上的点,∠ABE =∠ACD ,BE =CD ,则△ADE 的形状是( )A . 等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 【答案】B【解析】ABC ∆为等边三角形,AB AC ∴=.(..)60ABE ACD BE CD ABE ACD S A S AE AD BAE CAD ADE ∠=∠=∴∆≅∆∴=∠=∠=︒∴∆,,,,是等边三角形.【总结】本题主要考查了等边三角形的性质和判定.【作业4】 如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( ) A .3个B .4个C . 5个D .6个【答案】D【解析】 AB AC =, ABC ∴∆是等腰三角形, 36C B ∴∠=∠=︒,180 180 36 36 108BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒.2 36 ADE BAD B BAD ABD ∠=∠∴∠=∠=︒∴∆,,是等腰三角形.ACE ∆同理可得是等腰三角形.ADE AED ADE ∠=∠∴∆,是等腰三角形.A BCDEAB CD E108 36 72CAD BAC BAD ∠=∠-∠=︒-︒=︒, ADE CAD CAD ∴∠=∠∴∆,是等腰三角形.BAE ∆同理可得是等腰三角形.6 ABC ADE ABD ACE ABE ACD ∴∆∆∆∆∆∆有个等腰三角形,分别为:、、、、、.【总结】本题主要考查了等腰三角形的判定.【作业5】 如图,已知△ABC 和△BDE 都是等边三角形,求证:BD +DC =AD .【解析】ABC ∆是等边三角形,60BA BC ABC ∴=∠=︒,.6060(),.BDE BE BD DE DBE ABE CBD CBE ABE CBD SAS AE CD BD DC DE AE AD ∆∴==∠=︒∴∠=∠=︒-∠∴∆≅∆∴=∴+=+=是等边三角形,,,,,【总结】本题主要考查了等边三角形的性质和全等三角形的判定.【作业6】 如图,已知△ABC 、△ADE 是等边三角形,点E 恰在CB 的延长线上,说明∠ABD =∠AED 的理由.【解析】ABC ADE ∆∆、为等边三角形,60AD AE AB AC DAE AED BAC C ∴==∠=∠=∠=∠=︒,,.60DAB EAC BAE ∴∠=∠=︒+∠, DAB EAC ∴∆≅∆,60ABD C AED ∴∠=∠=︒=∠.【总结】本题主要考查了等边三角形的性质和全等三角形的判定.ABCDEABCDE22 / 24【作业7】 试说明等边三角形内任意一点到三边的距离之和等于这个三角形一边上的高.【解析】a 如图,设等边三角形的边长为, 11••22ABC S BC AH a AH ∆∴==,111•••222111•••2221)2ABCSAB PD BC PE AC PF a PD a PE a PFa PD PE PF =++=++=++( PD PE PF AH ∴++=, 即得证.【总结】本题主要考查了三角形面积公式的应用及等边三角形的性质的综合运用.【作业8】 如图,D 是等边△ABC 内一点,DA =BD ,PB =AC ,且∠DBP =∠DBC ,则∠BPD的度数是 . 【答案】30︒. 【解析】CD 连接.60(..)1302,(..)30.ABC AB BC AC ACB DB DA DC DC ACD BCD S S S BCD ACD ACB PB AC PB BC DBP DBC BD BD BPD BCD S A S BPD BCD ∆∴==∠=︒==∴∆≅∆∴∠=∠=∠=︒=∴=∠=∠=∴∆≅∆∴∠=∠=︒是等边三角形,,,,,,,,,【总结】本题主要考查了等边三角形的性质及全等三角形的判定和性质的运用.【作业9】 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C按顺时针方向旋转60得ADC △,连接OD .(1)试说明COD △是等边三角形; (2)当150α=时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?ABCDPABCDO110α【解析】(1)60BOC C ADC ∆︒∆将绕点按顺时针方向旋转得60.CO CD OCD COD ∴=∠=︒∴∆,,是等边三角形(2)150AOD α=︒∆当时,是直角三角形,1506090BOC ADC ADC BOC COD ODC ADO ADC ODC AOD ∆≅∆∴∠=∠=︒∆∴∠=︒∴∠=∠-∠=︒∴∆,是等边三角形,,是直角三角形.(3)AO AD =①要使,AOD ADO ∠=∠需. 360110601906019060125AOD ADO αααααα∠=︒-︒-︒-=︒-∠=-︒∴︒-=-︒∴=︒,又,,;OA OD OAD ADO =∠=∠②要使,需,1801801906050OAD AOD ADO αα∠=︒-∠+∠=︒-︒-+-︒=︒()(),6050110αα∴-︒=︒∴=︒,;OD AD OAD AOD =∠=∠③要使,需,19050140αα∴︒-=︒∴=︒,.125110140AOD α︒︒︒∆综上所述:当的度数为或或时,是等腰三角形.【总结】本题综合考查了全等三角形的性质及等腰三角形的判定,注意进行角度的计算,综 合性较强,第(3)问注意要分类讨论.【作业10】 如图,△ABC 是等边三角形,延长BC 至D ,延长BA 至E ,并使AE =BD ,连接CE 、DE ,说明CE =DE 的理由.【解析】BD F DF BC EF =延长至,使,连接.6060(..).AE BD AE CFABC BA BC B BE BF BEF BE EF B F BC DF ECB EDF S A S CE DE =∴=∆∴=∠=︒∴=∴∆∴=∠=∠=︒=∴∆≅∆∴=,为等边三角形,,,为等边三角形,,,【总结】本题主要考查了等边三角形的性质与判定及全等三角形的判定,注意辅助线的添加.A BC D EF【作业11】在等边△ABC所在平面内求一点P,使△P AB、△PBC、△P AC都是等腰三角形,具有这样性质的点P有_________个.【答案】10.【解析】(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的P点,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故具有这种性质的点P共有10个.【总结】本题主要考查了等腰三角形的性质和判定,注意利用“两圆一线”去画等腰三角形.24/ 24。
DyxOCB A一次函数中等腰三角形的存在性若△ABC 是等腰三角形,则分三种情况分类讨论:AB=AC ;BA=BC ;CA=CB ,然后利用等腰三角形的性质或勾股定理计算(或建立方程)解题。
如图①,在直线l 上找一点C ,使得△ABC 为等腰二用形。
图① 图②(1)若AB=AC ,以A 点为圆心,AB 为半径画圆,交直线l 于两点C 1,C 2;(2)若BA=BC ,以B 点为圆心,AB 为半径画圆,交直线l 于两点C 3,C 4;(3)若CA=CB ,作AB 的中垂线交直线l 于点C 5.上述寻找等腰三角形的方法简称“两圆一线(垂直平分线)”。
例:已知直线经过点A (-2,0),B (0,3) (1)求直线的解析式;(2)在x 轴上有一点P ,且△ABP 是等腰三角形,求点P 的坐标。
跟踪练习:1、如图,一次函数y kx b =+的图象与x 轴和y 轴分别交于点A(6,0)和B(0, 23),再将△AOB 沿直线CD 对折,使点A 与点B 重合.直线CD 与x 轴交于点C,与AB 交于点D 、(1)试确定这个一次函数的解析式;(2)求点C 的坐标;(3)在x 轴上是否存在一点P,使△PAB 是等腰三角形,若存在,直接写出点P 的坐标;若不存在请说明理由.2、如图,直线y =4-3x +8与x 轴、y 轴分别交于点A 和点B ,M 是OB 的上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B ′处. (1)求A 、B 两点的坐标; (2)求直线AM 的表达式;(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰三角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.3、如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.4、如图,在平面直角坐标系中,过点 B(6,0)的直线 AB 与直线 OA 相交于点 A(4,2).(1)求直线 BC 的函数表达式;(2)若在 x轴上存在一点 M,使 MA+MC 的值最小,请求出点 M 的坐标;(3)在 y轴上是否存在点 N,使△AON 是等腰三角形?如果存在,直接写出点 N 的坐标;如果不存在,说明理由.。
1
一线两圆法做等腰三角形------摘自北京启栋三
人行教育微博
在数学学科中,常有寻找满足条件的图形的探索题,根据我的教
学实践,在此浅谈初中数学中寻点构等腰三角形的这类问题。
问题:
数学轴对称图形中,学习了等腰三角形之后,解决这
样的题目,如图(1)在正方形ABCD所在的平面上找一点P,使得△
PAB、
△PBC、△PCD、△PAD都是等腰三角形,符合条件的点P有几个?
研究:
已知一条线段AB,寻找一点P使得
△PAB为等腰三角形,这样的点P在哪儿呢?
答:点P在线段AB的垂直平分线上和分别以点A、B为圆心,
AB长为半径的圆上(点P不与线段AB共线),如图(2),图中的
点P1 、P2、P3等都能使△PAB为等腰三角形,点P只能在这样的
一线两圆上。
解决:
如果让学生探讨了上述研究后再解决数学中的一些问
题,学生做题时就能得心应手了。
2
例如:问题中的题目如图(1)在正方形ABCD
所在的平面上找一点P,使得△PAB、△PBC、△PCD、△PAD
都是等腰三角形,符合条件的点P有几个?
分析:大多数甚至是全部学生没有确定的方法去寻找,学生们最
新找到的是对角线的交点,再找其它点就感到困难了,就是能力好的
同学可能会多找几个,但是很难找全,造成这种结果的原因是学生没
有正确的方法寻找,学生们都是凭感觉找的,就像大海里捞针一样困
难。
按照上面研究的方法画出正方形中四条边长的所有一线两圆,如图
(3),共有九个点符合要求,这样做不会漏解,不会错误,而且速
度很快。
应用:
例1:如图(4)在等边△ABC所在的平面上找一点P,使
得△PAB、△PBC、△PAC都是等腰三角形,符合条件的点P有几个?
解:如图(5)很多学生首先找到的是三条边的垂直平分线的交
点,再找就难了,但按照画一线两圆的办法画出等边三角形三边的一
线两圆就可以快速的找到符合条件的点共有七个。
3
例2:如图(6),在平面直角坐标系xoy中,点A的坐标
为(-1,0),点B的坐标为(0, ),坐标轴上是否存在点M使
得△MAB为等腰三角形,若存在请写出点M的坐标,若不存在请说明
理由。
解:如图(7)先在平面直角坐标系中画出一线两圆,观察寻找
一线两圆与坐标轴的交点,这些点即为符合条件的点M,
点M的坐标为M1(0,2 )、
M2(-2,)、M3(-3,0)、
M4(0,-)、M5(0,-2)、
M6(1,0)、M7(0, )。
总之,只要是这种已知一条线段,在一定的图形上寻找一点使
得点和线段构成的三角形是等腰三角形这样的问题,都可以用画一线
两圆的办法来试试,可以快捷的解决问题,在学习中,我们就应该注
重在学习知识的过程中学习解决问题的方法策略,让自己形成较强的
解决问题的能力。