八年级数学第六单元专训2 活用“三线合一”巧解题
- 格式:doc
- 大小:94.00 KB
- 文档页数:5
专题训练(六)__“三线合一”好解题►类型之一证明线段相等1.已知:如图6-ZT-1所示,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.图6-ZT-1[解析] 欲证BD=DE,只需证∠DBE=∠E.根据等腰三角形的“三线合一”和等边三角形的性质可得∠DBE=1∠ABC=30°.再根据三角形的外角性质和等边三角形的性质可得∠E2=30°.由此可得结论.证明:∵△ABC为等边三角形,BD是AC边上的中线,∴BD⊥AC,BD平分∠ABC,∠ABC=30°.(等腰三角形的“三线合一”)∴∠DBE=12∵CD=CE,∴∠CDE=∠E.∵∠ACB为△CDE的外角,∠ACB=60°,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°.又∵∠DBE=30°,∴BD=DE.(等角对等边)2.如图6-ZT-2所示,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.图6-ZT-2[解析] 本题可通过全等三角形来证线段相等.在△ABD和△ACE中,已知AB=AC,BD=EC且∠B=∠C,由此可证得两三角形全等,即可得出AD=AE的结论.也可根据等腰三角形三线合一来证明.证明:过点A作AF⊥BC于点F.图ZT-6-1∵AB=AC,AF⊥BC,∴BF=CF.(等腰三角形底边上的高是底边上的中线)又∵BD=CE,∴BF-BD=CF-CE,即DF=EF,∴AF是DE的垂直平分线,∴AD=AE.►类型之二证明两线垂直3.如图6-ZT-3所示,在△ABC中,AB=AC,∠ABD=∠ACD,求证:AD⊥BC.图6-ZT-3[解析] 首先证明∠DBC=∠DCB,可得DB=DC,再加上条件AB=AC,公共边AD =AD,可利用SSS证明△ABD≌△ACD,进而得到∠BAD=∠CAD,再根据等腰三角形顶角的平分线与底边上的高线重合可证出AD⊥BC.本题通过证明AD是BC的垂直平分线也可得证,如下面的证法.证明:延长AD交BC于点M,∵AB=AC,∴∠ABC=∠ACB.又∵∠ABD=∠ACD,∴∠ABC-∠ABD=∠ACB-∠ACD,即∠DBC=∠DCB,∴DB=DC.∵AB=AC,DB=DC,∴AD是线段BC的垂直平分线,∴AD⊥BC.图ZT -6-24.如图6-ZT -4,在△ABC 中,AB =AC ,D 为AC 上一点,∠DBC =12∠BAC.求证:AC ⊥BD.图6-ZT -4[解析] 首先过点A 作AE ⊥BC 交BC 于点E ,交BD 于点F.由AB =AC ,根据等腰三角形“三线合一”的性质,可得∠CAE =12∠BAC ,又由∠DBC =12∠BAC ,在△ADF 与△BEF中,易证得∠ADF =∠BEF =90°,即可得AC ⊥BD.证明:如图ZT -6-3,过点A 作AE ⊥BC 于点E ,交BD 于点F.图ZT -6-3∵AB =AC ,AE ⊥BC ,∴∠CAE =12∠BAC.(等腰三角形的“三线合一”)又∵∠DBC =12∠BAC ,∴∠CAE =∠DBC.∵∠1=∠2,∠ADF =180°-∠2-∠CAE ,∠BEF =180°-∠1-∠DBC , ∴∠ADF =∠BEF.∵AE ⊥BC ,∴∠BEF =90°. ∴∠ADF =90°.∴BD ⊥AC.► 类型之三 证明角的倍分关系5.已知:如图6-ZT -5所示,AF 平分∠BAC ,BC ⊥AF ,垂足为E ,AE =ED ,PB 分别与线段CF ,AF 相交于点P ,M ,∠F =∠MCD.求证:∠BAC =2∠MPC.图6-ZT -5[解析] 先由AF 平分∠BAC 证明∠BAE =12∠BAC ,再根据等腰三角形“三线合一”和线段垂直平分线的性质证明∠CDE =∠BAE.从而∠CDE =12∠BAC.然后在△MDC 和△MPF中证明∠MDC =∠MPF.进而得∠MPF =∠MDC ,∠MPC =∠CDE =12∠BAC 即可.证明:∵AF 平分∠BAC ,BC ⊥AF , ∴∠BAE =∠CAE =12∠BAC ,CE =BE.∵CE ⊥AE ,AE =ED , ∴AC =CD.∴∠CDE =∠CAE =12∠BAC.∵BC ⊥AF ,CE =BE , ∴CM =BM. ∴∠CMA =∠BMA. 又∵∠BMA =∠PMF , ∴∠CMD =∠PMF.又∵∠F =∠MCD ,∠MPF =180°-(∠F +∠PMF),∠MDC =180°-(∠MCD +∠CMD),∴∠MPF =∠MDC.∴∠MPC =∠CDE =∠CAE =12∠BAC.∴∠BAC =2∠MPC.► 类型之四 证明线段的倍分关系6.如图6-ZT -6,在△ABC 中,AB =AC ,点E 为BC 上一点,ED ⊥BC 于点E ,交CA的延长线于点F,求证:AD=AF.图6-ZT-6[解析] 方法一:由AB=AC,根据等边对等角的性质,可得∠B=∠C.又由DE⊥BC,根据等角的余角相等和对顶角相等,可得∠F=∠ADF,又由等角对等边,可证得AD=AF.图ZT-6-4方法二:过点A作AG⊥BC,由等腰三角形的“三线合一”可得∠BAG=∠CAG.再由平行线的性质证明∠F=∠CAG,∠ADF=∠BAG.进而可得结论.证明:(方法一)∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠C+∠F=90°,∠B+∠BDE=90°.∴∠F=∠BDE.∵∠ADF=∠BDE,∴∠F=∠ADF.∴AD=AF.(方法二)如图ZT-6-4,过点A作AG⊥BC于点G,∵AB=AC,∴∠BAG=∠CAG.(等腰三角形“三线合一”)∵AG⊥BC,ED⊥BC,∴AG∥EF.∴∠F =∠CAG ,∠ADF =∠BAG . ∴∠F =∠ADF. ∴AD =AF.7.[2013·五河期末改编] 如图6-ZT -7所示,过等边三角形ABC 的边AB 上一点P , 作PE ⊥AC 于点E.Q 为BC 延长线上一点,且PA =CQ ,连接PQ 交AC 边于点D. 求证:(1)PD =DQ ; (2)DE =12AC.图6-ZT -7[解析] (1)过点P 作BC 的平行线交AC 于点F ,通过证明△PDF 和△QDC 全等,可推出PD =DQ ;(2)由△APF 是等边三角形和PE ⊥AC ,可推出AE =EF =12AF.由△PDF 和△QDC 全等,可得出FD =CD =12FC ,进而可得DE 的长.证明:(1)过点P 作PF ∥BC ,交AC 于点F.图ZT -6-5∵△ABC 是等边三角形,∴∠B =∠ACB =60°. 又∵PF ∥BC ,∴∠APF =∠AFP =∠B =∠ACB =60°. ∴△APF 是等边三角形.∴PA =AF =PF. 又∵PA =CQ ,∴PF =CQ. ∵PF ∥BC ,∴∠FPD =∠Q. 在△PFD 和△QCD 中, ∵⎩⎪⎨⎪⎧∠FPD =∠Q ,∠PDF =∠QDC ,PF =QC ,∴△PDF ≌△QDC.(AAS) ∴PD =QD.(2)由(1)知PA =AF ,又∵PE ⊥AC ,∴AE =EF =12AF.(等腰三角形的三线合一)由(1)知△PDF ≌△QDC ,∴FD =CD =12FC.∴DE =EF +FD =12AF +12FC =12(AF +FC)=12AC.。
北师大版初二数学下册《活用“三线合一” 巧解题》讲义【名师点睛】等腰三角形〝顶角均分线、底边上的高、底边上的中线〞只需知道此中〝一线〞,就能够说明是其余〝两线〞。
运用等腰三角形〝三线合一〞的性质证明角相等、线段相等或垂直关系,能够减少证明全等的次数,简化解题过程。
[ 技巧 1]利用〝三线合一〞求角1.如图 ,房子的顶角∠ BAC=100°,过屋顶 A 的立柱 AD ⊥BC,屋椽 A B=AC ,求顶架上∠ B、∠ C、∠ BAD 、∠ CAD 的度数。
解答:∵△ ABC 中,AB=AC, ∠BAC=100°∴∠ B=∠C= 1°∠BAC)=1(180°°°2(180 -2- 100 )=40∵A B=AC,AD ⊥BC,∠BAC=100°∴AD 均分∠ BAC∴∠ BAD= ∠CAD=50.[ 技巧 2]利用〝三线合一〞求线段2.如图,在△ ABC 中,AB=AC ,AD=DB=BC ,DE⊥AB 于点 E,假定CD=4,且△ BDC 的周长为 24,求 AE 的长。
解答:∵A D=DB=BC ,CD=4,且△ BDC 的周长为 24∴A D=DB=BC=10∴A C=14∵A B=AC∴A B=14∵A D=DB ,DE⊥AB∴A E=BE= 1AB=7. 2[ 技巧 3]利用〝三线合一〞证全等3.:三角形 ABC 中,∠A=90°,AB=AC ,D 为 BC 的中点,如图, E, F 分别是 AB ,AC 上的点,且 BE=AF ,求证:△ DEF 为等腰直角三角形。
解答:证明:连结 AD∵A B=AC, ∠ A=90°,D 为 BC 中点∴AD=BC2=BD=CD且 AD 均分∠ BAC∴∠ BAD= ∠CAD=45 °在△ BDE 和△ ADF 中, BD=AD ,∠ B=∠DAF=45 °,BE=AF ∴△ BDE≌△ ADF∴D E=DF ,∠ BDE=∠ADF∵∠ BDE+ ∠ADE=90 °∴∠ ADF+ ∠ADE=90 °即:∠ EDF=90°∴△ EDF 为等腰直角三角形。
专训2活用“三线合一”巧解题名师点金:等腰三角形“顶角平分线、底边上的高、底边上的中线”只要知道其中“一线”,就可以说明是其他“两线”.运用等腰三角形“三线合一”的性质证明角相等、线段相等或垂直关系,可减少证全等的次数,简化解题过程.利用“三线合一”求角的度数1.如图,房屋顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋檐AB与AC相等.求顶架上的∠B,∠C,∠BAD,∠CAD的度数.(第1题)利用“三线合一”求线段的长2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E,若BC=10,且△BDC 的周长为24,求AE的长.(第2题)利用“三线合一”证线段(角)相等3.在△ABC中,∠BAC=90°,AB=AC,D为BC的中点.(1)如图①,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由.(2)如图②,若E,F分别为AB,CA的延长线上的点,仍有BE=AF.请判断△DEF是否仍有(1)中的形状,不用说明理由.(第3题)利用“三线合一”证垂直4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB.(第4题)利用“三线合一”证线段的倍数关系(构造三线法)5.如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD 交BF的延长线于点D.试说明:BF=2CD.(第5题)利用“三线合一”证线段的和差关系(构造三线法)6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C.试说明:CD=AB+BD.(第6题)答案1.解:因为AB =AC ,∠BAC =100°,AD ⊥BC ,所以∠B =∠C =40°,∠BAD =∠CAD =50°.2.解:∵△BDC 的周长=BD +BC +CD =24,BC =10,∴BD +CD =14. 又∵AD =BD ,∴AD +DC =14.∴AB =AC =AD +DC =14.∵AD =DB ,DE ⊥AB ,∴AE =EB =12AB =7. 3.解:(1)△DEF 为等腰直角三角形.理由:连接AD ,易证△BDE ≌△ADF , ∴DE =DF ,∠BDE =∠ADF ,又∵∠BAC =90°,AB =AC ,D 为BC 的中点,∴AD ⊥BC.∴∠ADB =90°.∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠ADB =90°.∴△DEF 为等腰直角三角形.(2)△DEF 仍是等腰直角三角形.点拨:本题两种情况都是要证明△BDE ≌△ADF ,进而得到DE =DF ,∠BDE =∠ADF.再运用角的转化得到∠EDF =90°,故可判断△EDF 为等腰直角三角形.4.证明:如图,过点E 作EF ⊥AC 于F.∵EA =EC ,∴AF =12AC. 又∵AB =12AC ,∴AF =AB. ∵AD 平分∠BAC ,∴∠FAE =∠BAE.又∵AE =AE ,∴△AEF ≌△AEB(SAS ).∴∠ABE =∠AFE =90°,即EB ⊥AB.(第4题)5.解:如图,延长BA ,CD 交于点E.(第5题)∵BF 平分∠ABC ,∴∠CBD =∠EBD ,∵CD ⊥BD ,∴∠BDC =∠BDE =90°.又∵BD=BD,∴△BDC≌△BDE.∴BC=BE.又∵BD⊥CE,∴CE=2CD.∵∠BAC=90°,∠BDC=90°,∠AFB=∠DFC,∴∠ABF=∠DCF.又∵AB=AC,∠BAF=∠CAE=90°,∴△ABF≌△ACE(ASA).∴BF=CE.故BF=2CD.6.解:如图,以A为圆心,AB长为半径画弧交CD于点E,连接AE,则AE=AB,所以∠AEB=∠ABC.(第6题)因为AD⊥BC,所以AD是△ABE的BE边上的中线,即DE=DB.又因为∠ABC=2∠C,所以∠AEB=2∠C.而∠AEB=180°-∠AEC=∠CAE+∠C,所以∠CAE=∠C.所以CE=AE=AB,所以CD=CE+DE=AB+BD.。
解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC中,∠A=90°,AB=AC,D为BC的中点,过D作直线DE交直线AB与E,过D作直线DF⊥DE,并交直线AC与F.(1)若E点在线段AB上(非端点),则线段DE与DF的数量关系是;(2)若E点在线段AB的延长线上,请你作图(用黑色水笔),此时线段DE与DF的数量关系是,请说明理由.【变式训练】1如图,在等腰直角三角形ABC中,∠C=90°,AC=a,点E为边AC上任意一点,点D为AB的中点,过点D作DF⊥DE交BC于点F.求证:CE+CF为定值.2如图1,在Rt△ABC中,∠C=90°,AC=BC,点P是斜边AB的中点,点D,E分别在边AC,BC上,连接PD,PE,若PD⊥PE.(1)求证:PD=PE;(2)若点D,E分别在边AC,CB的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE是否能成为等腰三角形?若能,请直接写出∠PEB的度数(不用说理);若不能,请说明理由.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【变式训练】1如图,△ADB与△BCA均为等腰三角形,AD=AB=CB,且∠ABC=90°,E为DB延长线上一点,∠DAB=2∠EAC.(1)若∠EAC=20°,求∠CBE的度数;(2)求证:AE⊥EC;(3)若BE=a,AE=b,CE=c,求△ABC的面积(用含a,b,c的式子表示).2已知OP平分∠MON,如图1所示,点B在射线OP上,过点B作BA⊥OM于点A,在射线ON上取一点C,使得BC=BO.(1)若线段OA=3cm,求线段OC的长;(2)如图2,点D是线段OA上一点,作∠DBE,使得∠DBE=∠ABO,∠DBE的另一边交ON于点E,连接DE.①∠OBC=2∠DBE是否成立,请说明理由;②请判断三条线段CE,OD,DE的数量关系,并说明理由.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC中,AD平分∠BAC,E是BC的中点,过点E作FG⊥AD交AD的延长线于H,交AB 于F,交AC的延长线于G.求证:(1)AF=AG;(2)BF=CG.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC 的长.2如图,AD 为△ABC 的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F .(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.。
初中数学巧用“三线合一”定理解几何题学法指导杨玲等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,这是等腰三角形的性质定理,也称为“三线合一”定理。
它在几何计算和论证过程中有着很重要的应用,若能巧妙地利用这个性质解题,将起到事半功倍的效果。
例1 等腰三角形顶角为α,一腰上的高与底边所夹的角是β,则β与α的关系式为β=_________。
图1分析与解;如图1,AB=AC ,BD ⊥AC 于D ,作底边BC 上的高AE ,E 为垂足,则可知∠EAC=∠EAB=α21,又∠EAC=︒90C ∠-,∠β=C 90∠-︒,所以∠EAC=β,αβ21=。
例2 已知:如图2,AB ∥CD ,M 为AD 的中点,并且AB+CD=BC ,求证:CM 平分∠BCD ,CM ⊥BM 。
图2分析:要证待证的结论,需延长BM 与CD 的延长线交于点E ,构造△CBE 由“三线合一”定理,只需证CE CB =,BM=EM 。
易证DEM ABM △△≅,可得BM=EM ,AB=DE ,又BC=AB+CD=DE+CD=CE ,从而本题得证。
证明:请同学们自己写出。
例3 如图3,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点。
图3(1)求证:AF ⊥CD ;(2)在你连结BE 后,还能得出什么新的结论,请至少写出三个(不要求证明)(1)证明:连结AC 、AD ,∵AB=AE ,∠ABC=∠AED ,BC=ED ,∴△ABC AED △≅。
∴AC=AD 。
又CF=DF ,∴AF ⊥CD 。
(2)例如:①BE ∥CD ,②AF ⊥BE ,③△ACF ADF △≅,④∠BCF=∠EDF ,⑤五边形ABCDE 是以直线AF 为对称轴的轴对称图形等。
例4 已知:如图4,在Rt △ABC 中,∠ACB=︒90,AC=BC ,D 为BC 的中点,CE ⊥AD ,垂足为点E ,BF ∥AC 交CE 的延长线于点F 。
专题6 妙用三线合一巧解题知识解读三线合一:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
三线合一的几种应用:如图2-6-1,在△ABC 中,①若AB =AC ,∠BAD =∠CAD ,则AD ⊥BC ,BD =CD ; ②若AB =AC ,AD ⊥BC ,则∠BAD =∠CAD ,BD =CD ;③若AB =AC ,BD =CD ,则∠BAD =∠CAD ,AD ⊥BC ;④若∠BAD =∠CAD ,AD ⊥BC ,则AB =AC ,BD =CD ; ⑤若∠BAD =∠CAD ,BD =CD ,则AD ⊥BC ,AB =AC ; ⑥若AD ⊥AC ,BD =CD ,则AB =AC ,∠BAD =∠CAD 。
即“AB =AC ,∠BAD =∠CAD ,AD ⊥BC ,BD =CD ”中已知其中两个结论,总能推出其他两个结论是成立的.等腰三角形三线合一的应用非常广泛,它包含了多层意义.可以用来证明角相等、线段相等、垂直关系等. 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
培优学案典例示范一、利用三线合一证明角度之间的倍分关系例1如图2-6-2,在△ABC 中,AB =AC ,CD ⊥AB 于点D .求证:∠BAC =2∠DCB .【提示】欲证角之间的倍半关系,结合题意,观察图形,∠BAC 是等腰三角形的顶角,于是想到构造它的一半,再证与∠DCB 的关系 【解答】D B CA图2-6-2【技巧点评】要证明一个角等于等腰三角形顶角的一半,常考虑构造等腰三角形三线合一的那根线.由这道题目,我们还可以得出这样一个常用的结论,等腰三角形一腰上的高与底边的夹角等于顶角的一半.跟踪训练1.如图2-6-3①,点P 是BC 的中点,如图2-6-3②,点P 与点C 重合,如图2-6-3③,点P 在BC 的延DBC A 图2-6-1长线上,△ABC都是等腰三角形,BC为底边,PD⊥AB,∠A与∠BPD之间都存在一个相同的数量关系,请猜想这个数量关系,并就图③进行验证。
专题08解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】 (1)【类型一等腰三角形中底边有中点时,连中线】 (1)【类型二等腰三角形中底边无中点时,作高线】 (11)【类型三巧用“角平分线+垂线合一”构造等腰三角形】 (17)【典型例题】【类型一等腰三角形中底边有中点时,连中线】例题:已知,在ABC 中,90ACB ∠=︒,AC BC =,点M 是AB 的中点,作90DME ∠=︒,使得射线MD 与射线ME 分别交射线AC ,CB 于点D ,E .(1)如图1,当点D 在线段AC 上时,线段MD 与线段ME 的数量关系是___________;(2)如图2,当点D 在线段AC 的延长线上时,用等式表示线段CD ,CE 和BC 之间的数量关系并加以证明.【答案】(1)MD ME =;(2)CE CD BC =+,理由见解析.【分析】(1)连接CM ,由等腰直角三角形的性质可得CM MB =,ACM B ∠=∠,根据90DME ∠=︒可推导CMD BME ∠=∠,进而证明CMD BME △≌△,即可得到线段MD 与线段ME 的数量关系;(2)连接CM ,利用(1)中的证明思路,再次证明CMD BME △≌△,证得CD BE =,即可利用等量代换得到CE CD BC =+.【详解】(1)解:连接CM ,∵90ACB ∠=︒,AC BC =,点M 是AB 的中点∴CM AM MB ==,且CM AB ⊥,CM 平分ACB ∠,45A B ∠=∠=︒∴45ACM BCM B ∠=∠=︒=∠,90CMB ∠=︒,又∵90DME ∠=︒∴CMB CME DME CME∠-∠=∠-∠∴CMD BME∠=∠∴CMD BME △≌△(ASA )∴MD ME =.(2)CE CD BC =+,理由如下:连接CM ,由(1)可知:CM BM =,45ACM ABC ∠=∠=︒,CMD BME∠=∠∴135DCM EBM ∠=∠=︒在CMD △和BME 中,CMD BME CM BM DCM EBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴CMD BME △≌△(ASA )∴CD BE=∵CE BC BE=+∴CE CD BC =+.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,熟练掌握等腰直角三角形的性质是解决问题的关键.【变式训练】1.在ABC 中,90A ∠=︒,AB AC =,点D 是边BC 的中点.(1)如图,若点E ,F 分别在边AB ,AC 上,DE DF ⊥,求证:BE AF =,并说明理由;(2)在(1)的条件下,AB AC a ==,求AE AF +的值.【答案】(1)证明见解析;(2)a .【分析】(1)连接AD ,证明()BDE ADF ASA ≌即可得到BE AF =;(2)由(1)可得:BE AF =,进一步得到:AE BE AE AF AB a +=+==.【详解】(1)证明:连接AD ,∵90A ∠=︒,AB AC =,∴45B C ∠==︒∠,∵点D 是边BC 的中点,∴45B BAD DAC C ∠=∠=∠=∠=︒,AD BC ⊥,AD BD =,∵DE DF ⊥,∴90EDA ADF Ð+Ð=°,∵90BDE EDA ∠+∠=︒,∴ADF BDE ∠=∠,在BDE △和ADF △中,BDE ADF BD AD B DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BDE ADF ASA ≌,∴BE AF =.(2)解:由(1)可知:()BDE ADF ASA ≌,∴BE AF =,∵AB AC a ==,∴AE AF AE BE AB a +=+==.【点睛】本题考查全等三角形的判定及性质,等腰直角三角形的性质,解题的关键是掌握全等三角形的判定及性质.2.如图1,在Rt ABC △中,90C ∠=︒,AC BC =,点P 是斜边AB 的中点,点D ,E 分别在边,AC BC 上,连接,PD PE ,若PD PE ⊥.(1)求证:PD PE =;(2)若点D ,E 分别在边,AC CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,PBE △是否能成为等腰三角形?若能,请直接写出PEB ∠的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时PEB ∠的度数为22.5︒或67.5︒或90︒或45︒【分析】(1)连接PC ,根据等腰直角三角形的性质可得45DCP B ∠=︒=∠,从而得到CP BP =,再由PD PE ⊥,可得DPC EPB ∠=∠,可证得DPC EPB △△≌,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得45ECP ABC A ACP ∠=︒=∠=∠=∠,从而得到CP AP =,再由∵,PD PE CP AB ⊥⊥,可得APD CPE ∠=∠,可证得APD CPE △≌△,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC ,∵90,ACB AC BC ∠=︒=,∴45A B ∠=∠=︒,∵P 为斜边AB 的中点,∴CP AB ⊥,∴45DCP B ∠=︒=∠,∴CP BP =,∵PD PE ⊥,∴90DPC CPE CPE EPB ∠+∠=∠+∠=︒,∴DPC EPB ∠=∠,在DPC △和EPB △中,DCP B PC PB DPC EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA DPC EPB △△≌,∴PD PE =;(2)解:PD PE =仍成立,理由如下:连接CP ,∵90,C AC BC ∠=︒=,∴45A ABC ∠=∠=︒,②当BE BP =,点E ③当EP EB =时,则∴180PEB B ∠=︒-∠-④当EP PB =,点∴PEB B ∠=∠=综上所述,PBE △【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3.在ABC 中,E(1)如图1,若点(2)如图2,BF 为腰(3)如图3,当点【答案】(1)见解析(2)PD PE BF +=,理由见解析(3)143【分析】(1)根据ABP S S =△APC ,即可得证;∵AB AC =,点P ∴ABP S S =△△APC即1122AB DP AC ⋅=∴PD PE =,∵AB AC =,PD ∴=ABP APC ABCS S S + ∴1122AB DP AC ⋅+∴PD PE BF +=,∵AB AC =,PD AB ⊥∴=ABC ABP APCS S S - ∴11=22AC BF AB PD ⋅⋅(1)若90EOF ∠=︒,两边分别交,AC BC 于E ,F 两点.==同理可证:AO CO BO∵AC BC =,90ACB ∠=︒,点O 为AB 的中点,∴0,90,45AO CO B AOC FOH BAC BCO ︒︒==∠=∠=∠=∠=,∴.,135COF AOH OCF OAH ︒∠=∠∠=∠=,∴(ASA)COF AOH ≌,∴3,CF AH OF OH ===,∵45,90EOF FOH ︒︒∠=∠=,∴45EOF EOH ︒∠=∠=,又∵,OF OH EO EO ==,∴(SAS)EOF EOH ≌,∴5EF EH ==,∴.2AE EH AH =-=.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】例题:如图,已知点D 、E 在△ABC 的边BC 上,AB =AC ,AD =AE .(1)求证:BD =CE ;(2)若AD =BD =DE =CE ,求∠BAE 的度数.【答案】(1)见解析;(2)90°.【分析】(1)作AF ⊥BC 于点F ,利用等腰三角形三线合一的性质得到BF =CF ,DF =EF ,相减后即可得到正确的结论.(2)根据等边三角形的判定得到△ADE 是等边三角形,根据等边三角形的性质、等腰三角形的性质以及角的和差关系即可求解.【详解】(1)证明:如图,过点A 作AF ⊥BC 于F .【变式训练】(1)若20∠=︒EAC ,求CBE ∠(2)求证:AE EC ⊥;(3)若BE a =,AE b =,CE =【答案】(1)20°(2)见解析(3)21122a bc +∴AFB ABC CGB ∠=∠=∠又∵AD AB CB ==,∴45BAC ACB ∠=∠=︒,∵FAB FBA FBA ∠+∠=∠∴FAB CBG CAE ∠=∠=∠∴在BAF △和CBG 中,(1)如图1,若ACD ∠与BAC ∠互余,则DCB ∠=__________()如图,过A点作AE BC⊥于E点,)②如图,作BG AC ⊥于G ,作DN 垂直于AC 的延长线于N .则90BGA DNC ∠=∠=︒.∵AB AC =,AC CD =,∴AB CD =,∵ABC 与ACD 的面积相等,∴BG DN =.∴ABG ≌CDN △.∴BAG DCN ∠=∠.180ACD DCN ∠+∠=︒,∴180ACD BAC ∠+∠=︒,综上,ACD ∠与BAC ∠相等或互补.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,同底等高的两个三角形面积相等,综合能力较强,有一定难度.熟练掌握以上知识是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】例题:如图,在ABC 中,AD 平分BAC ∠,E 是BC 的中点,过点E 作FG AD ⊥交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF AG =;(2)BF CG =.【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明AHF AHG ≌ ,即可得出AF AG =;(2)过点C 作CM AB ∥交FG 于点M ,由AHF AHG ≌ 可得AFH G ∠=∠,根据平行线的性质得出CMG AFH ∠=∠,可得CMG G ∠=∠,进而得出CM CG =,再根据据ASA 证明BEF CEM ≌ ,得出BF CM =,等量代换即可得到BF CG =.【详解】(1)证明:∵AD 平分BAC ∠,∴FAH GAH ∠=∠,∵FG AH ⊥,∴90AHF AHG ∠=∠=︒,在AHF △和AHG 中,FAH GAH AH AH AHF AHG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AHF AHG ≌ ,∴AF AG =;(2)证明:过点C 作CM AB ∥交FG 于点M ,∵AHF AHG ≌ ,∴AFH G ∠=∠,∵CM AB ∥,∴CMG AFH ∠=∠,∴CMG G ∠=∠,∴CM CG =,∴BE CE =,∵CM AB ∥,∴B ECM ∠=∠,在BEF △和CEM 中,B ECM BE CE BEF CEM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BEF CEM ≌ ,∴BF CM =,∴BF CG =.【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP 平分MON ∠.点AC OP ⊥,垂足为C ,延长AC 交ON 于点B ,可根据证明AOC ≌△△【答案】[问题情境]ASA ,全等三角形对应边相等;[问题探究]见解析;[拓展延伸【分析】[问题情境]利用全等三角形的性质证明即可;[问题探究]延长BE 交CA 延长线于F ,证明CEF ∆≌CEB ASA ∆(),推出FE =ACD ∆≌ABF ASA ∆(),可得结论;[拓展延伸]结论:12BE DF =.过点D 作DG AC ∥,交BE 的延长线于点G ,与DG AC ∥,交BE 的延长线于点G ,与AE 相交于H ,证明方法类似.CD 平分ACB ∠,FCE BCE ∴∠=∠,在CEF ∆和CEB ∆中,90FCE BCE CE CE CEF CEB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,CEF ∴∆≌CEB ASA ∆(),DG AC ,GDB C BHD ∴∠=∠∠,12EDB C ∠=∠ ,12EDB EDC ∴∠=∠=∠BE ED ⊥ ,90BED ∴∠=︒,。
专训2活用“三线合一”巧解题
名师点金:等腰三角形“顶角平分线、底边上的高、底边上的中线”只要知道其中“一线”,就可以说明是其他“两线”.运用等腰三角形“三线合一”的性质证明角相等、线段相等或垂直关系,可减少证全等的次数,简化解题过程.
利用“三线合一”求角的度数
1.如图,房屋顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋檐AB与AC相等.求顶架上的∠B,∠C,∠BAD,∠CAD的度数.
(第1题)
利用“三线合一”求线段的长
2.如图,在△ABC中,AB=AC,AD=DB,DE⊥AB于点E,若BC=10,且△BDC 的周长为24,求AE的长.
(第2题)
利用“三线合一”证线段(角)相等
3.在△ABC中,∠BAC=90°,AB=AC,D为BC的中点.
(1)如图①,E,F分别是AB,AC上的点,且BE=AF,试判断△DEF的形状,并说明理由.
(2)如图②,若E,F分别为AB,CA的延长线上的点,仍有BE=AF.请判断△DEF是否仍有(1)中的形状,不用说明理由.
(第3题)
利用“三线合一”证垂直
4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB.
(第4题)
利用“三线合一”证线段的倍数关系(构造三线法)
5.如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD 交BF的延长线于点D.试说明:BF=2CD.
(第5题)
利用“三线合一”证线段的和差关系(构造三线法)
6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C.试说明:CD=AB+BD.
(第6题)
答案
1.解:因为AB =AC ,∠BAC =100°,AD ⊥BC ,所以∠B =∠C =40°,∠BAD =∠CAD =50°.
2.解:∵△BDC 的周长=BD +BC +CD =24,BC =10,∴BD +CD =14.
又∵AD =BD ,
∴AD +DC =14.
∴AB =AC =AD +DC =14.
∵AD =DB ,DE ⊥AB ,∴AE =EB =12
AB =7. 3.解:(1)△DEF 为等腰直角三角形.理由:连接AD ,易证△BDE ≌△ADF , ∴DE =DF ,∠BDE =∠ADF ,
又∵∠BAC =90°,AB =AC ,
D 为BC 的中点,
∴AD ⊥BC.∴∠ADB =90°.
∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠ADB =90°.
∴△DEF 为等腰直角三角形.
(2)△DEF 仍是等腰直角三角形.
点拨:本题两种情况都是要证明△BDE ≌△ADF ,进而得到DE =DF ,∠BDE =∠ADF.再运用角的转化得到∠EDF =90°,故可判断△EDF 为等腰直角三角形.
4.证明:如图,过点E 作EF ⊥AC 于F.
∵EA =EC ,∴AF =12
AC. 又∵AB =12
AC ,∴AF =AB. ∵AD 平分∠BAC ,
∴∠FAE =∠BAE.又∵AE =AE ,
∴△AEF ≌△AEB(SAS ).∴∠ABE =∠AFE =90°,即EB ⊥AB.
(第4题)
5.解:如图,延长BA ,CD 交于点E.
(第5题)
∵BF 平分∠ABC ,∴∠CBD =∠EBD ,
∵CD ⊥BD ,∴∠BDC =∠BDE =90°.
又∵BD=BD,
∴△BDC≌△BDE.
∴BC=BE.
又∵BD⊥CE,∴CE=2CD.
∵∠BAC=90°,∠BDC=90°,∠AFB=∠DFC,∴∠ABF=∠DCF.
又∵AB=AC,∠BAF=∠CAE=90°,
∴△ABF≌△ACE(ASA).∴BF=CE.
故BF=2CD.
6.解:如图,以A为圆心,AB长为半径画弧交CD于点E,连接AE,则AE=AB,所以∠AEB=∠ABC.
(第6题)
因为AD⊥BC,所以AD是△ABE的BE边上的中线,即DE=DB.
又因为∠ABC=2∠C,所以∠AEB=2∠C.
而∠AEB=180°-∠AEC=∠CAE+∠C,所以∠CAE=∠C.所以CE=AE=AB,所以CD=CE+DE=AB+BD.。