当前位置:文档之家› 红外吸收光谱法定性测定苯甲酸

红外吸收光谱法定性测定苯甲酸

红外吸收光谱法定性测定苯甲酸
红外吸收光谱法定性测定苯甲酸

实验红外吸收光谱法定性测定苯甲酸

一、目的要求

(1)学习用红外吸收光谱进行化合物的定性分析;

(2)掌握用压片法制作固体试样晶片的方法;

(3)熟悉红外分光光度计的工作原理及使用方法。

二、基本原理

在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称频峰)基本上出现在同一频率区域内,例如,CH3(CH2)CH3,CH3(CH2)4C≡N和CH3(CH2)5CH=CH2等分子中都有-CH3,-CH2-基团,它们的伸缩振动基频峰与图11-1CH3(CH2)6CH3分子的红外线光谱中-CH3,-CH2-基团的伸缩振动基频峰都出现在同一频率区域内,即在<3000cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,

使基频峰频率发生一定移动,例如基团的伸缩振动基频峰频率一般出现在1850~1860cm-1范围内,当它位于酸酐中时,νC=O为1820~1750cm-1、在酯类中时,νC=O为1750~1725cm-1;在醛中时,νC=O为1740~1720cm-1;在酮中时,νC=O为1725~1710cm-1;在与苯环共轭时,如乙酰苯中νC=O为1695~1680cm-1,在酰胺中时,νC=O为1650 cm-1等。因此掌握各种原子基团基频峰的频率基其位移规律,就可应用红外线吸收光谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。

由苯甲酸分子结构可知,分子中各原子基团的基频峰的频率在4000~650cm-1范围内有:

本试验用溴化钾晶体稀释苯甲酸标样和试样,研磨均匀后,分别压制成晶体,以纯溴化钾晶片作参比,在相同的试验条件下,分别测绘标样的红外吸收光谱,然后从获得的两张图谱中,对照上述的各原子基团基频峰的频率及其吸收强度,若两张图谱一致,则可认为该试样是苯甲酸。

三、仪器和试剂

仪器:1、德国BRUKER Tensor27红外分光光度计2、压片机3、玛瑙研钵 4、红外干燥灯; 试剂:1、苯甲酸(优级纯)、溴化钾(光谱纯)。 四、实验步骤

1、苯甲酸晶片和纯溴化钾晶片的制作

取预先在1100

C 下烘干48h 以上,并保存在干燥器内的溴化钾1-2mg 放在玛瑙研钵中磨细,再加入0.1-0.2mg 苯甲酸继续研磨混合均匀。用不锈钢刮刀移取少许混合粉末于压片模具上(图2),依次放好各部件后,把压模置于压片机(图1)位置2处,并旋转压力丝杆手轮1压紧压模,顺时针旋转放油阀4到底,然后一边抽气,一边缓慢上下移动压把3,加压开

始,注视压力表5当压力加到1×105~1.2×105kPa (约100~120kg/cm 2

)时,停止加压,维持3~5min ,反时针旋转放油阀4,加压解除,压力表时针指“0”,旋松压力丝杆手轮1取出压模,即可得到直径为13mm ,厚1~2mm 透明的苯甲酸钾晶片,小心从压模中取出晶片,同时按照上述步骤制作溴化钾晶片。

2、分别将溴化钾晶片和苯甲酸晶片固定在红外分光光度计的测试光路中,进行红外测试。 五、数据及处理 1、记录试验条件。

2、在苯甲酸试样红外吸收光谱上,标出各特征吸收峰的波数,并确定其归属。 六、思考题

1、红外吸收光谱分析,对固体试样的制片有何要求?

2、如何着手进行红外吸收光谱的定性分析?

3、红外光谱试验室为什么对温度和相对湿度要维持一定指标?

七、注意事项

1、制得的晶片,必须无裂痕,局部无发白现象,如同玻璃般完全透明,否则应重新制作。

晶片局部发白,表示压制得晶片厚薄不匀,晶片模糊,表示晶体吸潮,水在光谱图3450cm

-1

和1640cm -1

处出现吸收峰。

2、在相同的试验条件下,测绘苯甲酸试样的红外吸收光谱。

3、控制红外测试室内温度在18~200

C ,相对湿度≤65%。

e 图2-1 DF-4型红外压片机 “图2-2 红外压片模具

分析实验报告 红外光谱测定苯甲酸 - 最终版

华南师范大学实验报告 学生姓名:杨秀琼学号: 129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转 动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所 需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成 红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤] 1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入 KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S;

红外特征吸收分析: .苯环的测定 A、708 cm-1苯环的单取代CH面外弯曲特征吸收峰 B、3071 cm-1苯环环上CH伸缩振动吸收峰 C、在1601cm-1、1583cm-1,1496cm-1、1453cm-1内出现四指峰,由此确定存在单核芳烃C=C骨架,所以存在苯环。 羧基的测定 A、在1689cm-1存在强吸收峰,这是羧酸中羧基的振动产生的。 B、在3400~2500cm-1区域有宽吸收峰,所以有羧酸的O-H键伸缩振动 C、在1292 cm-1存在C-O伸缩的特征吸收峰 D、933 cm-1存在OH的面外弯曲特征吸收峰 E、1423 cm-1存在OH的面内弯曲特征吸收峰 六、思考题 (1)用压片法制样式时,为什么要求将固体样品试样研磨到颗粒粒度在2um 左右为什么要求KBr粉末干燥、避免吸水受潮 答:因为要把样品与KBr粉末的混合物进行压片,如果颗粒太大,则会导致压片内粉末不均衡,压片不成功。而要求KBr粉末干燥,避免吸水受潮是因为KBr 粉末容易吸收空气中的H2O和CO2,... 从而造成假谱图,影响实验结果。(2)利用标准谱图进行化合物鉴定时要注意什么 A、一是所用仪器与标准谱图是否一致,二是测定的条件(样品的物理状态、样品的浓度以及溶剂等——与标准谱图是否一致 B、IR光谱是测定化合物结构的,只有分子在振动的状态下伴随有偶极矩变化者才能有红外吸收,对应异构体具有相同的光谱,不能用IR光谱来鉴别这类异构体某些吸收峰不存在,可以确信某些基团不存在,相反,吸收峰存在并不是该基团存在的确认,应该考虑杂质的干扰 C、在一个光谱图中的所有吸收峰并不能全部指出其归属,因为有些峰是分子作为一个整体的吸收特征,而有些峰时某些峰的倍频或者组频,另外还有些峰是多个集团振动吸收的叠加] D、在3350 cm-1和1640 cm-1 处出现的吸收峰,很可能是样品中的水引起的 E、高聚物的光谱较之形成这些高聚物的单体的光谱吸收峰的数目少,峰较宽钝,峰的强度也较低,但分子量不同的相同聚合物IR光谱无明显差异.如分子量为100000和分子量为15000的聚苯乙烯,在4000-650的一般红外区域找不到光谱上的差异

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

苯甲酸红外吸收光谱的测定

苯甲酸红外吸收光谱的测定 —KBr晶体压片法制样 一 (1)学习用红外吸收光谱进行化合物的定性分析, (2)掌握用压片法制作固体试样晶片的方法; (3)熟悉红外分光光度仪的工作原理及其使用方法。 二、基本原理 在化合物分子中,具有相同化学键的原子基团,其基本振动频率吸收峰(简称基频峰)基本上出现在同一频率区域内,例如,CH3(CH2)5CH3、CH3(CH2)4C≡N和CH3(CH2)5CH=CH2等分子中都有-CH3,-CH2-基团,它们的伸缩振动基频峰与图 1 CH3(CH2)6CH3分子的红外吸收光谱中-CH3,-CH2-基团的伸缩振动基频峰都出现在同一频率区域内,即在<3000cm-1波数附近,但又有所不同,这是因为同一类型原子基团,在不同化合物分子中所处的化学环境有所不同,使基频峰频率发生一定移动,例如-C=O基团的伸缩振动基频峰频率一般出现在1850~1860cm-1范围内,当它位于酸酐中时,νC=O为1820~1750cm-1、在酯类中时,为1750~1725cm-1;在醛中时,为1740~1720cm-1;在酮类中时,为1725~17l0cm-l;在与苯环共轭时,如乙酞苯中νC=O为1695~1680cm-1,在酰胺中时,νC=O为1650cm-1等。因此,掌握各种原子基团基频蜂的频率及其位移规律,就可应用红外吸收光

谱来确定有机化合物分子中存在的原子基团及其在分子结构中的相对位置。苯甲酸分子中各原子基团的基频峰如下图: 晶片,测绘试样的红外吸收光谱。 三、仪器 1.FT 670型双光束红外分光光度计 2.压片机 3.玛瑙研钵 4.红外干燥灯 四、试剂 1.溴化钾光谱纯 2.苯甲酸试样 五、实验条件 压片压力1.2×105kPa,测定波数范围4000-650cm-1(波长2.5-15μm),参比物:空气

红外吸附光谱法

红外吸附光谱法的学习 吸附研究方法多种多样,经典的方法有吸热法,比表面积,吸附等温线等。近代研究方法增加了红外光谱法,表面电压法,紫外光电子能谱等多个新研究方法技术。我主要对红外吸附光谱法进行了学习。 红外吸附法可提供吸附质及吸附剂—固体键的资料。通过吸附质在吸附前后红外吸收光谱地位移,考察表面吸附情况。不同的振动频率代表了吸附分子中不同的原子和表面成键。该方法有助于区别物理吸附和化学吸附。物理吸附靠范德华力,一般只能观察到谱带位移,不产生新谱带;而化学吸附形成新的化学键,能出现新谱带。该方法还能确定化学吸附分子的构型,如采用红外光谱测定CO在Pd上的吸附构型,表明覆盖率增加直线式结构增强。下面将具体介绍利用红外光谱仪测定CO在Pd/ Al 2O3 催化剂及载体上的吸附性能。 实验用催化剂系将一定浓度的含活性组分的混合溶液,浸渍于载体,然后经干燥、还原和活化而成。在红外测定前,将样品充分还原后,研磨成小颗粒,置于可用于吸附态测定的漫反射池中。采用 NaCl 做吸收池窗片。首先在高纯氮气吹扫下以 2 ℃ / mi n 的升温速率升至 180 ℃脱气,跟踪记录样品表面脱附情况 , 直至观测到的红外光谱图基本不变化。降至室温后切换为 CO 吸附气,并开始跟踪记录红外光谱图的变化。为防止催化剂表面吸附的物质对下次实验造成影响,每次实验均更换为新鲜催化剂。 首先是CO在载体Al2O3上吸附的红外光谱。众所周知 ,载体的作用不仅是稀释、支撑、分散金属活性组分 ,而且也具有明显的吸附剂特征。图 1 为 120 ℃时 CO 在载体Al2O3上吸附的红外-光谱图。从图 1 中可以看出 , CO 在Al2O3表面上有 HCOO-的形成 ( 1600 cm-1、 1383 cm-1) ,这是由于在Al2O3表面上存在不同的表面OH-可与-吸附在载体上的 CO 生成羧基等表面吸附态 , 即CO + O H-→ HCOO-。另外 , 在Al2O3上不可避免地会吸附少量的水 , 也可促进 HCOO-的生成。从图1还可发现 , 在Al2O3上有少量吸附态HCO3-的生成( 1465 cm-1,1254 cm-1)。 比较不同温度下 CO 在Al2O3上吸附的红外光谱 , 如图 2 所示 , 在室温时 , 可以发现少量的HCO3-吸收峰 ( 1656 cm-1、 1465 cm-1和1254cm-1 ,随着温度升高 , HCO3-吸收峰强度逐-渐减弱。温度至 100 ℃时 ,在 1600 cm-1处出现了一个新峰 , 且随温度的升高而逐渐增强。同时 ,1383 cm-1峰附近的 1349 cm-1处峰也随温度升-高逐渐增大 , 到100 ℃时强度已明显超出 1383cm-1处峰。 1600 cm-1和 1383 cm-1峰分别对应于HCOO-的不对称和对称伸缩振动 , 这说明HCO3-在升温过程中转变为 HCOO-, 至 120 ℃-时催化剂表面只有少量的HCO3-吸附态。 其次是CO 在催化剂Pd表面上吸附的红外光谱研究。图 3 为反应温度 120 ℃时 CO 在 Pd/ Al2O3催-化剂表面上吸附的红外光谱图。图 3 中的 2176cm-1、 2116 cm-1-处峰为

苯甲酸红外光谱测定及解析

苯甲酸红外光谱测定及解析 —KBr晶体压片法制样 一、目的要求 (1)学习用红外吸收光谱进行化合物的定性分析, (2)掌握用压片法制作固体试样晶片的方法; (3)熟悉红外分光光度仪的工作原理及其使用方法。 二、实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到了较高的振动能级),从而产生红外吸收光谱。如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析: ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~600cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。 三. 实验仪器及试剂 仪器: Tensor 近红外傅利叶红外光谱仪、粉未压片机、玛瑙研钵、 试剂: KBr(A.R.) 苯甲酸(G.R.)

红外吸收光谱分析实验

红外吸收光谱分析实验 概述 红外吸收光谱法是以一定波长的红外光照射物质时,若该红外光的频率,能满足物质分子中某些基团振动能级的跃迁频率条件,则该分子就吸收这一波长红外光的辐射能量,引起偶极距变化,而由基态振动能级跃迁到较高能级的激发态振动能级。检测物质分子对不同波长红外光的吸收强度,就可以得到该物质的红外吸收光谱。 各种化合物分子结构不同,分子振动能级吸收的频率不同,其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构剖析、定性鉴定和定量分析。 绝大多数有机化合物的基团振动频率分布在中红外区(波长400-4000cm-1),研究和应用最多的也是中红外区的红外吸收光谱法,该法具有灵敏度高、分析速度快、试样用量少,而且分析不受试样物态限制,可用于物质的气态、液态和固态的分析,所以应用范围非常广泛。红外吸收光谱法是现代结构化学、有机化学和分析化学等领域中最强有力的测试手段之一。 实验部分聚乙烯和聚苯乙烯膜的红外吸收光谱的测绘—薄膜法制样 目的要求 (1)学习聚乙烯和聚苯乙烯膜的红外吸收光谱的测绘方法; (2)学习对该图谱的解释,掌握红外吸收光谱分析基本原理; (3)学习红外分光光度计的工作原理及其使用方法。 基本原理 在由乙烯聚合成聚乙烯的过程中,乙烯的双键被打开,聚合生成—(CH2-CH2)n长链,因而聚乙烯分子中原子基团是饱和的亚甲基(CH2-CH2),其红外吸收光谱如图所示。由图可知聚乙烯的基本振动形式有: A.νC-H(-CH2-)2926cm-1、2853cm-1; B.δC-H(-CH2-)1468cm-1 C.δC-H(-CH2-)n,n>4时720cm-1, 由于δC-H1306cm-1和δC-H1250cm-1为弱吸收峰,在红外吸收光谱上未出现,因此只能观察到四个吸收峰。 在聚苯乙烯 2 的结构中,除了亚甲基(-CH2-)和次甲基CH 外,还有苯环上不饱和碳氢基团(=CH-)和碳碳骨架(-C=C-),它们构成了聚苯乙烯分子中基团的基本振动形式。图2为聚苯乙烯的红外吸收光谱,由图可知,聚苯乙烯的基本振动形式有: A.ν=C-H(Ar上)3010cm-1;3030cm-1;3060cm-1;3080 cm-1 B.νC-H(-CH2-)2926cm-1;2853cm-1;和νC-H(CH)2955cm-1 C.δC-H1468 cm-1;1360 cm-1;1306 cm-1; D.νC=C(Ar上)1605cm-1;1550cm-1;1450cm-1; E.δC-H(Ar上单取代倍频峰)1944cm-1;1871cm-1;1800cm-1;

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

KBr压片法测定苯甲酸红外光谱及谱图解析

实验KBr 压片法测定苯甲酸红外光谱及谱图解析 I. 实验目的 1、熟悉傅里叶变换红外光谱仪的工作原理及其使用方法。 2、掌握KBr压片法的操作技能。 3、了解红外光谱谱图解析。 II. 实验用品 仪器:红外光谱仪(岛津FTIR-8400S ),压片机,研钵,红外灯。 试剂:溴化钾(光谱纯)、苯甲酸(分析纯)。 III. 实验原理 傅立叶变换红外光谱仪是根据光的相干性原理设计的测量分子吸收光谱的仪器,属于干涉型光谱仪。傅立叶变换红外光谱仪主要由光源、干涉仪(迈克逊)、吸收池(样 品室)、检测器、计算机和记录系统等组成。傅立叶变换红外光谱仪将各种频率的光信号经干涉作用后调制成干涉图,即时间域光谱图,然后用计算机进行快速傅立叶变换,换算成频率域光谱图即红外光谱图。 FT - IR原理椎图 图2 溥里叶变换红外吸收光谱仪工作原理示意图 S ■光谏* M1M』一动鹽* BS分束器:》操蘭器;?一样品】故夭器* A/> ffi数赛换器」D/A数模转换器* S,-?盘卜0—外部设备 Th 计慷机(傅車叶变抑 光 源 1 A/D计尊机

IV.实验步骤 1、压片制样 准备: 1)保持使用压片机的房间湿度较低; 2)将压片机配件,放入干燥器备用; 3)用玛瑙研钵一次研磨适量KBr晶体干燥,放入干燥器备用; 4)为避免手汗对压片的影响,研磨和压片过程中戴手套;压片操作: 1)取200毫克备用KBr粉末于玛瑙研钵中,加入~19干燥的样品,在红外灯下研细混匀; 2)使用乙醇棉清洗模具等; 3)将样品和KBr混合粉末放到模具中,用抹刀铺平;将装配好的压片模具移至压片机下; 4)压片机阀门拧至lock,加压至~60KN停留适当时间使压片透明;脱模, 样品基本透明为合格; 5)将样品装入样品架; 2、测试 1)将样品架放入仪器内,点击测试按钮; 2)测试结束,保存文件。 3)取出样品架,卸下样品。 3、整理 1)清洁模具等制样器具; 2)如有需测试样品则进入下一样品的制备,如无样品则整理物品、清洁台面后离开。 4、注意事项: 1)操作规范,轻举轻放,不要敲击; 2)研钵材质为玛瑙,易摔碎; 3)全过程要求干燥防水; 4)将溴化钾研细(2卩m ; 5)控制溴化钾与样品的比例; 6)注意保持室内清洁、干燥; 7)不要震动光学台 8)取、放样品时,样品盖应轻开轻闭; 9)眼睛不要注视氦-氖激光,以免受到伤害。 V.实验结果 1、对样品纯度、来源、元素分析及其他物理性质、谱学性质等方面的了解。 2、初步分析特征基团频率、特征宽强峰、倍频(泛频)及合频特征峰。 3、初步确定为某类化合物后,与标准谱图核对 W .问题讨论 1、KBr压片法制备红外吸收光谱固体试样的注意事项? 2、红外光谱实验室为什么要求温度和相对湿度维持一定的指标? 3、怎样进行红外吸收光谱的定性分析?

红外光谱测定水杨酸

水杨酸的红外光谱测定 一、目的与要求 1掌握红外光谱分析时固体样品的压片法样品制备技术。 2了解如何根据红外光谱图识别官能团,了解苯甲酸的红外光谱图。 二、方法原理 1将固体样品与卤化碱 通常是KBr,混合研细,并压成透明片状,然后放到红外光 谱仪上进行分析,这种方法就是压片法。压片法所用碱金属的卤化物应尽可能地纯净和干燥试剂纯度一般应达到分析纯,可以用的卤化物有NaCl KCl KBr KI等。由于NaCl的晶格能较大不易压成透明薄片,而KI又不易精制,因此大多采用KBr或KCl作样品载体。 2由于氢键的作用 苯甲酸通常以二分子缔合体的形式存在。只有在测定气态样品或非极性溶剂的稀溶液时才能看到游离态苯甲酵的特征吸收。用固体压片法得到的红外光谱中显示的是苯甲酸二分子缔合体的特征在2400~3000cm-l处是O-H伸展振动峰,峰宽且散,由于受氢键和芳环共轭两方面的影响,苯甲酸缔合体的C O伸缩振动吸收位移到1700~1800 cm-1区,而游离C O伸展振动吸收是在1730~1710cm-1区,苯环上的C=O伸展振动吸收出现在1500~1480 cm-1和1610,1590cm-l区,这两个峰是鉴别有无芳核存在的标志之一,一般后者峰较弱,前者峰较强。

三、仪器与试剂 1仪器:红外光谱仪及附件KBr压片器及附件。 2试剂:水杨酸(分析纯)、KBr〈分析纯〉。玛瑙研钵、烘箱。 四、内容与步骤 1在玛瑙研钵中分别研磨KBr和水杨酸至2μm细粉,然后置于烘箱中烘4-5h, 烘干后的样品置于干燥器中待用。 2分别取12mg的干燥水杨酸和100-200 mg干燥KBr,一并倒入玛瑙研钵中进行混合直至均匀。 3取少许上述混合物粉末倒入压片器中压制成透明薄片。然后放到红外光谱仪上测试。 五、图谱处理

红外光谱法习题参考答案

第十二章 红外吸收光谱法 思考题和习题 8.如何利用红外吸收光谱区别烷烃、烯烃及炔烃? 烷烃主要特征峰为2 3 3 ,,,CH s CH as CH H C δδδν-,其中νC-H 峰位一般接近3000cm -1又低于3000cm -1 。 烯烃主要特征峰为H C C C H C -==-=γνν,,,其中ν=C-H 峰位一般接近3000cm -1又高于3000cm -1 。νC=C 峰位约在1650 cm -1。H C -=γ是烯烃最具特征的峰,其位置约为1000-650 cm -1。 炔烃主要特征峰为H C C C H C -≡≡-≡γνν,,,其中H C -≡ν峰位在3333-3267cm -1 。C C ≡ν峰位在 2260-2100cm -1,是炔烃的高度特征峰。 9.如何在谱图上区别异丙基及叔丁基? 当两个或三个甲基连接在同一个C 上时,则吸收峰s CH 3 δ分裂为双峰。如果是异丙基,双峰分别 位于1385 cm -1和1375 cm -1左右,其峰强基本相等。如果是叔丁基,双峰分别位于1365 cm -1 和1395 cm -1左右,且1365 cm -1峰的强度约为1395 cm -1的两倍。 10.如何利用红外吸收光谱确定芳香烃类化合物? 利用芳香烃类化合物的主要特征峰来确定: 芳氢伸缩振动( =C-H ),3100~3000cm -1 (通常有几个峰) 泛频峰2000~1667cm -1 苯环骨架振动( c=c ),1650-1430 cm -1,~1600cm -1及~1500cm -1 芳氢面内弯曲振动(β=C-H ),1250~1000 cm -1 芳氢面外弯曲振动( =C-H ),910~665cm -1 14.试用红外吸收光谱区别羧酸、酯、酸酐。 羧酸的特征吸收峰为v OH 、v C=O 及OH 峰。v OH (单体)~3550 cm -1 (尖锐),v OH (二聚体)3400~2500(宽而散),v C=O (单体)1760 cm -1 (S),v as C=O (二聚体)1710~1700 cm -1 (S)。羧酸的 OH 峰位在955~915 cm -1 范围内为一宽谱带,其形状较独特。 酯的特征吸收峰为v C=O 、v c-o-c 峰,具体峰位值是:v C=O ~1735cm -1 (S);v c-o-c 1300~1000cm -1 (S)。v as c-o-c

KBr压片法测定苯甲酸红外光谱及谱图解析

实验 KBr压片法测定苯甲酸红外光谱及谱图解析 I.实验目的 1、熟悉傅里叶变换红外光谱仪的工作原理及其使用方法。 2、掌握KBr压片法的操作技能。 3、了解红外光谱谱图解析。 II.实验用品 仪器:红外光谱仪(岛津 FTIR-8400S),压片机,研钵,红外灯。 试剂:溴化钾(光谱纯)、苯甲酸(分析纯)。 III.实验原理 傅立叶变换红外光谱仪是根据光的相干性原理设计的测量分子吸收光谱的仪器,属于干涉型光谱仪。傅立叶变换红外光谱仪主要由光源、干涉仪(迈克逊)、吸收池(样品室)、检测器、计算机和记录系统等组成。傅立叶变换红外光谱仪将各种频率的光信号经干涉作用后调制成干涉图,即时间域光谱图,然后用计算机进行快速傅立叶变换,换算成频率域光谱图即红外光谱图。 1 2

Ⅳ. 实验步骤 1、压片制样 准备: 1)保持使用压片机的房间湿度较低; 2)将压片机配件,放入干燥器备用; 3)用玛瑙研钵一次研磨适量KBr晶体干燥,放入干燥器备用; 4)为避免手汗对压片的影响,研磨和压片过程中戴手套; 压片操作: 1%干燥的样品,在红外灯 1)取200毫克备用KBr粉末于玛瑙研钵中,加入 ~ 下研细混匀; 2)使用乙醇棉清洗模具等; 3)将样品和KBr混合粉末放到模具中,用抹刀铺平;将装配好的压片模具 移至压片机下; 4)压片机阀门拧至lock, 加压至~60KN,停留适当时间使压片透明;脱模, 样品基本透明为合格; 5)将样品装入样品架; 2、测试 1)将样品架放入仪器内,点击测试按钮; 2)测试结束,保存文件。 3)取出样品架,卸下样品。 3、整理 1)清洁模具等制样器具; 2)如有需测试样品则进入下一样品的制备,如无样品则整理物品、清洁台面 后离开。 4、注意事项: 1)操作规范,轻举轻放,不要敲击; 2)研钵材质为玛瑙,易摔碎; 3)全过程要求干燥防水; 4)将溴化钾研细(2μm); 5)控制溴化钾与样品的比例; 6)注意保持室内清洁、干燥; 7)不要震动光学台 8)取、放样品时,样品盖应轻开轻闭; 9)眼睛不要注视氦-氖激光,以免受到伤害。 Ⅴ.实验结果 1、对样品纯度、来源、元素分析及其他物理性质、谱学性质等方面的了解。 2、初步分析特征基团频率、特征宽强峰、倍频(泛频)及合频特征峰。 3、初步确定为某类化合物后,与标准谱图核对 Ⅵ.问题讨论 1、KBr压片法制备红外吸收光谱固体试样的注意事项? 2、红外光谱实验室为什么要求温度和相对湿度维持一定的指标? 3、怎样进行红外吸收光谱的定性分析?

苯甲酸红外光谱测定及谱图解析1小组

苯甲酸红外光谱测定及谱图解析 一.实验目的 1.掌握红外光谱分析时固体样品的压片法样品制备技术; 2.了解傅里叶红外光谱仪的工作原理、构造和使用方法,并熟悉基本操作; 3.了解如何根据红外光谱图识别官能团,了解苯甲酸的红外光谱图。 二.实验原理 当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极矩的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到教高的振动能级),从而产生红外吸收光谱。 如果红外光的振动频率和分子中各基团的振动频率不一致,该部分红外光就不会被吸收。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随有转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个个吸收带。 三.仪器与试剂 仪器:IRAffinity-1傅里叶红外光谱仪、压片机、膜具和干燥器、玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末 四.内容与步骤 1.将所有的膜具擦拭干净,在红外灯下烘烤; 2.在红外灯下研钵中加入KBr进行研磨,至少十分钟; 3.将KBr装入膜具,在压片机上压片,压力上升至35Mpa左右,稳定5分钟; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5.取一定量的样品(样品:KBr=1:4蠟筆)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.在红外光谱仪自带的谱图库中进行检索,检出相关度较大的已知物的标准谱图,对样品的谱图进行解读,参考标准谱图得出鉴定结果。 五.结果与分析

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

红外光谱特征峰解析常识

红外光谱特征峰解析常识 编写李炎平 红外特征光谱峰存在一定特征规律,正确的记录了化学结构和特征,识记特征波谱峰有助于我们解析红外光谱。下面我将一些特征波谱峰简要罗列如下,如有疏漏之处还望批评指出。 , 羟基:特征峰范围(3650~3200)cmˉ1,一般在 3600cmˉ1处有较强峰。 , 羧基:特征峰范围(3500~2500)cmˉ1,一般峰波 数小于羟基。 , 饱和烷烃—C—H :特征峰小于3000cmˉ1,一般在 (2950~2850)cm处,如有峰在(1390~1360)cmˉ1 处,则说明有—CH,如有峰在1450cmˉ1处,则说3 明有——, CH2 , 不抱和烷烃:特征峰大于3000cmˉ1,对于烯烃 _C,C,H在3050 cmˉ1处和(1600~1330)cmˉ1 ,C,C,H处有峰,对于炔烃在(3360~3250)cmˉ1 处有峰,在(700~600)cmˉ1处有枪宽峰。 C,C, 对于:在(1700~1645)cmˉ1处有特征峰,不 过不太明显,只具有指示作用。 ,CHO,,COC,,,COOC,, 对于在(1900~1600)cm处有强峰。 ,C,O,,,C,O,C,,,C,N,,,C,O,C,, 指纹区:等,在 (1330~900)cmˉ1处有中强峰, , 对于:在(900~400)cmˉ1处有中强或弱峰。 (CH)2n

, 对于醛类:特征范围为羰基峰+(2900~2700)cmˉ1。 , 对于:在(1300~900)cmˉ1处有两强峰(可,C,O,C, 能有一个弱峰)。 , 特征区范围(4400~1330)cmˉ1,指纹区范围(1330~400)cmˉ1。 , 通常将中红外光谱区域划分为四个部 分。 1)4000~2500cm-1,为含氢基团的伸 缩振动区,通常称为“氢键区”。 2)2500~2000cm-1叁键和累积双键区。 3)2000~1500cm-1,双键区。 4)小于1500cm-1,单键区。

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

红外吸收光谱法

红外吸收光谱法 第六章红外吸收光谱法 一、选择题 1.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( ) (1) 向高波数方向移动 (2) 向低波数方向移动 (3) 不移动 (4) 稍有振动 2. 红外吸收光谱的产生是由于 ( ) (1) 分子外层电子、振动、转动能级的跃迁 (2) 原子外层电子、振动、转动能级的跃迁 (3) 分子振动-转动能级的跃迁 (4) 分子外层电子的能级跃迁 3. 色散型红外分光光度计检测器多用 ( ) (1) 电子倍增器 (2) 光电倍增管 (3) 高真空热电偶 (4) 无线电线圈 4.一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 -15.一个含氧化合物的红外光谱图在3600,3200cm有吸收峰, 下列化合物最可能 的是 ( ) (1) CH,CHO (2) CH,CO-CH 333 (3) CH,CHOH-CH (4) CH,O-CH-CH 33 323 6. Cl分子在红外光谱图上基频吸收峰的数目为 ( ) 2

(1) 0 (2) 1 (3) 2 (4) 3 7. 下列关于分子振动的红外活性的叙述中正确的是 ( ) (1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的 (2) 极性键的伸缩和变形振动都是红外活性的 (3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动 (4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是 8. 羰基化合物中, C=O伸缩振动频率最高者为 ( ) O RC) R(1 O C) R F(2 O C) R Cl(3 O C) R Br(4 9.用红外吸收光谱法测定有机物结构时, 试样应该是 ( ) (1) 单质 (2) 纯物质 (3) 混合物 (4) 任何试样 10 以下四种气体不吸收红外光的是 ( ) (1)HO (2)CO (3)HCl (4)N 222 11. 红外光谱法, 试样状态可以是 ( ) (1) 气体状态 (2) 固体状态

红外吸收光谱的解析分解

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节 红外吸收光谱的基本原理 一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 1πμ2c K m 1m 2m 1m2+ K μ

《红外光谱法测定苯甲酸》

《红外光谱法测定苯甲酸》 一、实验目的 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、实验原理 红外光谱法是鉴别化合物和确定分子结构的常用手段之一,尤其是对于一些较难分离并在紫外可见区找不到明显特征峰的样品也可以方便、迅速地进行分析,因此广泛地应用于有机化学、高分子化学、无机化学、化工、催化、石油、材料、生物、医药、环境等领域。 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等 信息进行测定。红外光谱法所研究的是分子中原子的相对振动,也可以归纳为化学键的振动。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光。物质吸收不同的红外光,将在不同波长出现吸收峰,红外光谱就是这样形成的。红外谱图的横坐标是红外光的波数(波长的倒数)。纵坐标是透过率,它表示红外光照射样品薄膜上,光能透过的程度。不同的样品状态(固体、液体、气体以及粘稠样品)需要相应的制样方法。制样方法的选择和制样技术的好坏直接影响谱带的频率、数目和强度。 三、仪器与试剂 仪器:傅里叶红外光谱仪(岛津 prestige-21); 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、实验步骤

1.将所有的膜具擦拭干净,在红外灯下烘烤; 2.在红外灯下研钵中加入KBr进行研磨,至少十分钟; 3.将KBr装入膜具,在压片机上压片,压力上升至16-18Mpa左右,稳定10S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:KBr=100:1)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.在红外光谱仪自带的谱图库中进行检索,检出相关度较大的已知物的标准谱图,对样品的谱图进行解读,参考标准谱图得出鉴定结果。 五、结果与分析 (1)官能团区 1.在1600cm-1~1581cm-1,1419cm-1~1454cm-1内出现四指峰,由此确定存在单核芳烃C=C骨架,所以存在苯环。 2.在2000-1700cm-1之间有锯齿状的倍频吸收峰,所以为单取代苯。 3.在1683cm-1存在强吸收峰,这是羧酸中羧基的振动产生的。 4.在3200~2500cm-1区域有宽吸收峰,所以有羧酸的O-H键伸缩振动。 (2)在指纹区 700cm-1左右的705cm-1和667cm-1为单取代苯C—H变形振动的特征吸收峰; 六、实验结果与讨论 1.未进行检索匹配,不知匹配值为何。(这个不会) 2.谱图的有些峰标不出来。例如,3500-4000、2358和2341强吸收峰、指纹区的一些吸收峰等。(那位看出来了希望你能告诉我) 3.我的感受是仪器操作简单,图谱分析难。

相关主题
文本预览
相关文档 最新文档