(1)所有的函数在其定义域上都具有单调性.
(× )
(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为
“存在两个自变量”.
(× )
(3)任何函数都有最大值或最小值.
( × )
(4)函数的最小值一定比最大值小.
( √ )
2.函数 y=f(x)的图象如图所示,其增区间是
A.[-4,4]
B.[-4,-3]∪[1,4]
2.利用函数的单调性解函数值的不等式就是利用函数在某个区间内的
单调性,去掉对应关系“f”,转化为自变量的不等式,此时一定要注意自变
量的限制条件,以防出错.
[跟踪训练五]
1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.
题型二
利用函数的图象求函数的最值
例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的
最值情况,并写出值域.
3-, ≥ 1,
解:y=-|x-1|+2=
函数图象如图所示.
+
+11,
, < 1,
1,
由图象知,函数y=-|x-1|+2的最大值为2,没有最小值.所以其值域
为(-∞,2].
称 M 是函数 y=f(x)
结论
称 M 是函数 y=f(x)的最小值
的最大值
几何 f(x)图象上最 高 点
意义
的纵坐标
f(x)图象上最低 点的纵坐标
[点睛] 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y
=x2(x∈R)的最小值是0,有f(0)=0.
小试身手
1.判断(正确的打“√”,错误的打“×”)