i1 j1i 1源自i1 j1SST = SSA + SSE
▪ 前例的计算结果
4164.608696=1456.608696+2708
构造检验的统计量
(计算均方MS)
1. 各误差平方和的大小与观察值的多少有关,为消除观 察值多少对误差平方和大小的影响,需要将其平均,
这就是均方,也称为方差
2. 由误差平方和除以相应的自由度求得
7
三、方差分析的原理 (一)方差的分解 样本数据的波动,可通过离差平方和来反映,这个离差平方和可分解为组间方差与组
内方差两部分。组间方差反映出因子水平不同的影响;组内方差则是纯随机影响。 (二)检验统计量 检验因子影响是否显著的统计量是一个 F 统计量: 组间均方差 F 组内均方差
F 统计量越大,越说明组间方差是主要方差来源,因子影响是显著的;F 越小,越说明 随机方差是主要的方差来源,因子的影响不显著。
▪ 前例的计算结果
SST = (57-47.869565)2+…+(58-
47.869565)2
=115.9295
构造检验的统计量
(计算组间平方和 SSA)
1. 各组平均值 xi (i 1,2,, k ) 与总平均值 x 的离差平方
和
2. 反映各总体的样本均值之间的差异程度
3. 该平方和既包括随机误差,也包括系统误差
6
方差分析模型常用术语
▪ 协变量(Covariates)
▪ 指对因变量可能有影响,需要在分析时对其作用加以 控制的连续性变量
▪ 实际上,可以简单的把因素和协变量分别理解为分类 自变量和连续性自变量
▪ 交互作用(Interaction)
▪ 如果一个因素的效应大小在另一个因素不同水平下明 显不同,则称为两因素间存在交互作用。当存在交互 作用时,单纯研究某个因素的作用是没有意义的,必 须分另一个因素的不同水平研究该因素的作用大小。