方差分析单因素模板
- 格式:pptx
- 大小:937.11 KB
- 文档页数:62
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。
•水平:因素变化的各种状态或因素变化所分的等级或组别。
•单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。
设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。
样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。
1g2g282.3979319.0735316.65363g313.7519307.702312.87093g+2g+1g342.2044286.8267306.90311g+1g+1g326.451281.5521296.17771g+2g261.4286315.1616290.57412g+1g272.5417298.304296.65931g+2g+3g324.7711276.5006279.6137ck274.7973313.2938287.51982683.5962721.9522684.73600000720169074090227207807000009992424174总差异10318.6水平差异1980.736(处理间)竖直差异105.8326105.8326误差8232.058337.884总自由度268216n(区组)=k(处理)=水平间自由度方差分析表误差e188337.884463.2158总变异2610318.62F检验0.534507无显著差异12.42599处理1g0002g0003g003g+2g+1g01g+1g+1g1g+2g2g+1g1g+2g+3gck 秩次距a,fe=18SSR0.05SSR0.01Sy LSR0.05LSR0.012 2.97 4.0712.4259936.9051950.573783 3.12 4.2512.4259938.7690952.810464 3.21 4.3612.4259939.8874354.177325 3.27 4.4512.4259940.6329955.295666 3.32 4.5112.4259941.2542956.041227 3.36 4.5612.4259941.7513356.662528 3.38 4.612.4259941.9998557.15956假设H 01:处理间无显著差异假设H 02:区组间无显著差异SSR 多重比较:FA大于F临界值,Ho不成立。
单因素方差分析完整实例.doc单因素方差分析是统计学中常用的分析方法之一,用于比较结果在一个分类变量(即因素)的不同组别之间的差异。
下面将通过一个实例来介绍单因素方差分析的具体应用。
实例介绍:某公司招聘了25名新员工,并在这些员工入职一个月后进行了一次工作满意度调查。
调查结果显示,他们对公司的工作满意度总体得分为80分,但是有些员工对公司的工作并不满意。
公司希望了解员工的不满意来源,并查看不同部门、教育程度和薪水水平对工作满意度是否有影响。
公司收集了员工的部门、教育程度和薪水水平等信息,并对这些因素对工作满意度的影响进行了单因素方差分析。
实例步骤:1.数据整理首先,将员工的部门、教育程度和薪水水平等信息整理成表格形式。
随机抽取10名员工的数据如下:| 员工编号 | 部门 | 教育程度 | 薪水水平 | 工作满意度得分 || :------: | :--: | :------: | :------: | :------------: || 1 | A | 大学 | 高薪 | 85 || 2 | B | 高中 | 中薪 | 83 || 3 | C | 硕士 | 中薪 | 78 || 4 | A | 高中 | 低薪 | 77 || 5 | B | 大学 | 高薪 | 93 || 6 | C | 大学 | 中薪 | 80 || 7 | A | 高中 | 中薪 | 72 || 8 | B | 大学 | 中薪 | 85 || 9 | C | 硕士 | 高薪 | 89 || 10 | A | 高中 | 高薪 | 75 |2.数据分析进行单因素方差分析时需要分别计算各组数据的均值和方差。
2.1 计算各组均值首先,按照不同部门计算均值:| 部门 | 员工数 | 工作满意度均值 || :--: | :----: | :------------: || A | 4 | 77.25 || B | 3 | 87.00 || C | 3 | 82.33 || 总计 | 10 | 82.00 |由上述计算结果可得出不同因素组别的均值。
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。
●水平:因素变化的各种状态或因素变化所分的等级或组别。
●单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。
设各总体服从正态分布,且方差相同。
在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题。
单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。
利用这些记号,本例的假设就等价于假设不全为零因此,单因素方差分析的任务就是检验s个总体的均值μj是否相等,也就等价于检验各水平A j的效应δj是否都等于零。
单因素方差分析调查报告问题提出:对学院三个年级进行抽样,调查不同年级的同学的恋爱次数,样本均是独立的,试根据这些数据分析年级的不同对恋爱次数是否有影响?一、样本数据及P-P图由P-P图我们可以看出样本近似认为服从正态分布的。
二、提出假设原假设:H0:μ1=μ2=μ3 ,即年级对恋爱次数影响不显著;备择假设:H0:μ1,μ2,μ3不全等,即年级对恋爱次数有显著影响。
三、SPSS输出结果分析1、单因素方差分析描述恋爱次数上表说明,不同年级的同学的恋爱次数的方差齐性检验值为1.419,概率p值为0.244,p>0.05,无法拒绝原假设,说明各组的方差在a=0.05水平上没有显著性差异,即方差具有齐次性。
由此表可得即单因素方差分析表中F值为3.982,对应的P值为0.020 <0.05,所以应拒绝原假设,可以认为不同的年级对恋爱次数有显著性影响。
该结果虽然说明了三个年级对恋爱次数影响是显著性的,但是不能给出各年级两两之间的差异情况,要进一步了解各年级之间恋爱次数的差异情况,就需要进行多重比较:2、进行多重比较提出假设:H0:μi=μj H0:μi μj观察表中数据显著性可得结论:(1):显著性0.624>0.05,所以接受原假设,即大一与大二的同学恋爱次数没有显著性差异;(2):显著性0.031<0.05,所以拒绝原假设,即大一与大三的同学恋爱次数有显著性差异;(3):显著性0.008<0.05,所以拒绝原假设,即大二与大三的同学恋爱次数有显著性差异。
四、统计决策由结论更进一步说明,大学生随着年级数的增加也是年龄的增加,恋爱次数也随之增加,希望同学们谨慎交友谨慎恋爱,在抓好学习的同时收获美满爱情。
一、
①提出假设:虚无假设:H0: μ1=μ2=μ3
备择假设为至少有一个组的和其它组不同
②已知显著性水平为:а=0.05
③查F临界值表:F0.05(2,19)=3.52 F0.01(2,19)=5.93
④计算样本的F统计量观测值:
N=22 K=3 df组间=2 df组内=19
SS T =3.073 SS B=0.388 SS W=2.685
MS B=0.194 MS W=0.141 F=1.372 P=0.277
⑤统计决断:由于P=0.277>0.05,所以接受H0拒绝H1 ,我认为三组之间不存在显著地差异
二、
①提出假设:虚无假设:H0: μ1=μ2=μ3
备择假设为至少有一个组的和其它组不同
②已知显著性水平为:а=0.05
③查F临界值表:F0.05(3,19)=3.13 F0.01(3,19)=5.01
④计算样本的F统计量观测值:
N=23 K=4 df组间=3 df组内=19
SS T =7636.870 SS B=2850.346 SS W=4786.524
MS B=950.115 MS W=251.922 F=3.771 P=0.028
⑤统计决断:由于P=0.028<0.05,所以拒绝H0接受H1 ,我认为三组之间存在显著地差异
⑤事后检验:
Post Hoc Tests
结论:通过事后检验表可以得到,治疗方案1与治疗方案4对患者的治疗效果是有显著的差异,治疗方案3与治疗方案4对患者的治疗效果是有极其显著的差异。
其余治疗方案之间或没有差异或差异不显著。