2.0
0.7
1.5
0.9
0.9
0.8
1.1
-0.3
-0.2
0.7
1.3
1.4
概率论与数理统计
3
❖ 前言 方差分析的思想
➢ 我们可以计算出各组的均值与方差,但是如何通过这些数据 结果来判断呢?这就需要进行方差分析.
➢ 在实际问题中, 影响一个数值型随机变量的因素一般会有很多, 例如影响农作物产量的因素就有种子品种,肥料、雨水等; 影 响化工产品的产出率的因素可能有原料成分、剂量、催化剂 、反应温度、机器设备和操作水平等;影响儿童识记效果的 因素有教学材料、教学方法等. 为了找出影响结果(效果)最显 著的因素, 并指出它们在什么状态下对结果最有利, 就要先做 试验, 方差分析就是对试验数据进行统计分析, 鉴别各个因素 对对我们要考察的指标(试验指标)影响程度的方法.
概率论与数理统计
7
❖ 1.单因素试验的方差 概念
➢ 推断三种治疗方案是否存在差异的问题,就是要辨别治 疗方案的差异主要是由随机误差造成的,还是由不同方 案造成的,这一问题可归结为三个总体是否有相同分布 的讨论.根据实际问题的情况,可认为血红蛋白的增加 值服从正态分布,且在安排试验时,除所关心的因素( 这里指的是这里方案)外,其它试验条件总是尽可能做 到一致,这就使我们可以近似的认为每个总体的方差相 同,即xi~N(μi,σ2) i = 1,2,3.
概率论与数理统计
❖2. 单因素方差分析的数学模型
➢ 单因素方差分析问题的一般提法为: ➢ 因素A有m个水平A1, A2, …, Am, 在Ai水平下, 总体Xi~N(μi,
σ2), i = 1, 2, …, m.其中μi和σ2均未知, 但方差相等, 希望 对不同水平下总体的均值进行比较. 设xij表示第i个总体的第j个观测值(j = 1, 2, …, ni, i = 1, 2, …, m), 由于Xij~N(μi, σ2), i = 1, 2, …, m.单因素方差分 析模型常可表示为: