OneWayANOVA单因素方差分析.ppt
- 格式:ppt
- 大小:1.08 MB
- 文档页数:31
单因素方差分析(one-wayANOVA)单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⽅)单因素⽅差分析概念是⽅来研究⽅个控制变量的不同⽅平是否对观测变量产⽅了显著影响。
这⽅,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⽅的⽅育率,研究学历对⽅资收⽅的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⽅)单因素⽅差分析步骤第⽅步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⽅⽅育率、⽅资收⽅;控制变量分别为施肥量、地区、学历。
第⽅步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⽅的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽅数学形式表述为:SST=SSA+SSE。
第三步是通过⽅较观测变量总离差平⽅和各部分所占的⽅例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽅例较⽅,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽅例⽅,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽅平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽅差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽅的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽅的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽅平,并作出决策(五)单因素⽅差分析的进⽅步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⽅个重要分析,主要包括⽅差齐性检验、多重⽅较检验。
单因素方差分析1. 引言•单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较两个或多个组之间的均值是否存在显著差异。
•在实际研究中,我们经常需要比较不同组之间某个变量的均值差异,例如不同教育水平对收入的影响,不同药物对疾病的治疗效果等。
•单因素方差分析提供了一种统计方法,可以判断不同组之间均值差异是否由随机因素引起,还是由于真正的因素差异引起。
2. 基本概念•因素(Factor):需要比较不同组之间的变量,也称为自变量或分类因素。
•水平(Level):每个因素具有的不同取值或组别,也称为处理或条件。
•观测值(Observation):每个组内的单个实验结果或数据点。
•总平均(Grand Mean):所有组的观测值的平均值。
•组内平均(Group Mean):每个组的观测值的平均值。
•组间平均(Between-group Mean):所有组的观测值的平均值。
3. 假设检验•零假设(H0):不同组的均值之间没有显著差异。
•备择假设(H1):不同组的均值之间存在显著差异。
4. 单因素方差分析的步骤1.收集数据:按照分类因素进行分组,获得每个组的观测值。
2.计算总平均:计算所有观测值的平均值。
3.计算组内平均:计算每个组的观测值的平均值。
4.计算组间平均:计算所有组的观测值的平均值。
5.构造统计模型:建立协方差矩阵和方差矩阵之间的关系。
6.计算平方和:计算组内平方和和组间平方和。
7.计算均方差:计算组内均方差和组间均方差。
8.计算F值:计算F统计量,用于检验组间均值差异是否显著。
9.假设检验:比较F值与临界值,确定是否拒绝零假设。
5. F分布与p值•在单因素方差分析中,我们使用F分布来进行假设检验。
•F分布是一种连续概率分布,取值范围大于等于0,且分布形状根据自由度的不同而变化。
•在单因素方差分析中,我们计算出的F值可以与F分布表中的临界值进行比较,以确定是否拒绝零假设。
•p值是统计假设检验中的一个重要指标,表示在零假设成立的情况下,观察到的样本数据或更极端结果出现的概率。
SPSS--One-Way ANOVA过程--单因素方差分析One-Way ANOVA过程该命令用于两组及多组独立样本平均数差异显著性的比较,即成组设计的方差分析。
还可进行随后的两两成对比较。
1界面说明【Dependent List框】选入需要分析的变量,可选入多个结果变量(因变量)。
【Factor框】选入需要比较的分组因素,只能选一个。
【Contrast钮】弹出Contrast对话框,用于对精细趋势检验和精确两两比较的选项进行定义,该对话框比较专业,也较少用,这里做简单介绍。
∙Polynomial复选框定义是否在方差分析中进行趋势检验。
∙Degree下拉列表和Polynomial复选框配合使用,可选则从线性趋势一直到最高五次方曲线来进行检验。
∙Coefficients框定义精确两两比较的选项。
按分组变量升序给每组一个系数值,注意最终所有系数值相加应为0。
如果不为0仍可检验,只不过结果是错的。
比如说在下面的例2要对一、三组进行单独比较,则在这里给三组分配系数为1、0、-1,就会在结果中给出相应的检验内容。
【Post Hoc按钮】弹出Post Hoc Multiple Comparisons对话框,用于选择进行各组间两两比较的方法:∙EquaL Variances Assumed复选框:当各组数据方差齐性时的两两比较方法,共14种。
其中最常用的为LSD和S-N-K 法。
∙EquaL Variances Not Assumed复选框:当各组方差不齐性时的两两比较方法,共4种,其中以Dunnetts's C法较常用。
∙Significance Level框定义两两比较时的显著性水平,默认为0.05。
【Options按钮】弹出Options对话框,用于定义相关的选项:∙Statistics复选框:选择一些附加的统计分析项目,有统计描述(Descriptive)和方差齐性检验(Homogeneity-of-variance)。