(完整版)高中不等式所有知识及典型例题(超全)
- 格式:doc
- 大小:752.82 KB
- 文档页数:10
高中不等式经典例题例1解不等式:(1)2x ³-x ²-15x>0;(2)(x+4)(x+5)²(2-x)³<0.分析:如果多项式 f(x)可分解为 n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)把方程x(2x+5)(x-3)=0的三个根说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正:②对于偶次或奇次重根可转化为不含重根的不等式, 也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如图.典型例题二例2解下列分式不等式: (1)3x−2≤1−2x+2; (2)x 2−4x+13x 2−7x+2<1分析:当分式不等式化为 f (x )g (x )<0(或≤0)时,要注意它的等价变形(1) 解:原不等式等价于3x−2≤x x+23x−2−x x+2≤03(x+2)−x (x−2)(x−2)(x+2)≤0−x 2+5x+6(x−2)(x+2)≤0可用“穿根法”求解,但要注意处理好有重根的情况。
解:(1) 原不等式可化为x(2x+5)(x-3)>0x 1=0,x 2=−52,x 3=3顺次标上数轴, 然后从右上开始画线顺次经过三个根, 其解集如下图的阴影部分,∴原不等式解集为(2) 原不等式等价于(x+4)(x+5)³(x -2)³>0x>2 ∴原不等式解集为 或-5<x<-4或x>2}f (x )g (x )<0f (x )⋅g (x )<0;(x−6)(x+1)(x−2)(x+2)≥0{(x −6)(x +1)(x −2)(x +2)≥0(x +2)(x −2)≠0(2) 解法一:原不等式等价于2x 2−3x+13x 2−7x+2>0 (2x 2−3x +1)(3x 2−7x +2)>0{2x 2−3x +1>03x 2−7x +2>0或 {2x 2−3x +1<03x 2−7x +2<0x <13或 12<x <1或x>2,∴原不等式解集为 (−∞,13)∪(12,1)∪(2,+∞). 解法二:原不等式等价于典型例题三例3解不等式|x ²-4|<x+2 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义 |a|={a (a ≥0)−a(a <0)二是根据绝对值的性质: |x|<a −a <x <a,|x|ax >a 或x<-a, 因此本题有如下两种解法。
必修 5第3章不等式知识汇总一、常用的不等式的基本性质:( 1 )a b b a (反对称性)( 2 )a b,b c a c (传递性)( 3 )a b a c b c (可加性,也叫移项法则)( 4 )a b,c0ac bc (不等式两边乘同一个正数,不等号方向不变!)a b, c0ac bc (不等式两边乘同一个负数,不等号方向改变!)a ba cb d (同向不等式相加,不等号方向不变!)( 5 )cda b0ac bd0 (正数同向不等式相乘,不等号方向不变!)( 6 )cd0( 7 )a b0, n N , n1a n b n0 (正数乘方法则)( 8 )a b0, n N , n1n a n b0 (正数开方法则)二、一元二次不等式及其解法1 、三个“二次”间的关系(以下a> 0)△= b 2 - 4ac△> 0△=0△< 0二次函数y y yy=ax 2+bx+cx0x的图象x1x20x 一元二次方程有两个不等实根x1, x2有两个相等实根b无实根ax2+bx+c= 0的根x1< x2x1= x 2=2a一元二次不等式b{x|x < x1或x> x2 }R{x|x≠}2aax2+bx+c >0的解集一元二次不等式{x|x1< x < x2 }ΦΦax2+bx+c <0的解集2 、一元二次不等式的一般解法:一看二次项的系数,二算△,三画图并据图写解集;3、含参数不等式的解法:分类讨论;4 、不等式恒成立问题的解决:即不等式解集为R;5 、高次不等式的解法:数轴标根法(也叫穿针引线法)用曲线自右往左、自上往下依次穿过,遇偶次重根穿而不过,遇奇次重根一次穿过。
三、基本不等式1 、对于任意两个正数a bab 。
a, b ,它们的算术平均数是,几何平均数是22 、基本不等式:对于任意 a 0, b 0 ,都有a b2 ab )其中等号成立的条件是 a b 。
精品文档:一.不等式的性质:二.不等式大小比较的常用方法.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;1 .分子(或分母)有理化;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.图象法。
其中比较法(作差、作商)是最基86.利用函数的单调性;7.寻找中间量或放缩法;本的方法。
三.重要不等式22b?a22=”),则 (2)若(当且仅当时取“1.(1)若,则ab2b?a?Ra,b?R?a,b ba??ab2b?a**aba?b?2 (2)若(当且仅当2. (1)若,则,则时取“=”)Rba,?aR,?b ba?ab?22b?a??*”时取“,则若=) (当且仅当(3)Rb?a,b?a?ab??2??1”,则=); (当且仅当时取“3.若2??x1?x?0x x1”时取“) (当且仅当若,则=2?x??0?x1x??x111) (若当且仅当时取“,则=”0x?b?a-2x?2或?x???2即x?xxxba时取“ (当且仅当=若,则”)b?ab?0a2??ab bbaaba”时取“,则=)若 (当且仅当b?ab?a0-2??22即??或??aabbab22b?ba?a)(当且仅当时取“=”,则4.若Rb,?a ba?2?() 22)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求1注:(.它们的积的最小值,正所谓“积定和最小,和定积最大”)求最值的条件“一正,二定,三取等”(2均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛(3) 的应用.c+a+b+3333abc c时取等号);=(当且仅当a+c3abc≥(a,b,c ? Rb), 5.a=+b≥31+ =a取等号;,当且仅当a=a=+a) ≥(a? R…,i=1,2,…,n)+6. (a+a……aaa n n2n211i n n21cb++ba+a+32222+)(a,b,c ? R) ; abc≤( 变式:a+b)+c ≥ab+bc+ca; ab≤( ) R (a,b?3222b+b2aba+a≤≤b.(0<a≤b) ≤a ≤ab ≤2+b2ab-nbb+m 7.浓度不等式:< < ,a>b>n>0,m>0; maa+a-n应用一:求最值11 2+(2)y3=):求下列函数的值域(例11yx=x+2x2x精品文档.精品文档解题技巧:51:已知1 例,求函数技巧一:凑项的最大值。
不等式总结一、不等式的主要性质:(举例子验证)(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>(同加c ); d b c a d c b a +>+⇒>>,(大+大>小+小) (4)乘法法则(变不变号):bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a cbx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x x x<<∅∅注意:一般常用求根公式法求解一元二次不等式顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式1.均值不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba n nn a a a n a a a 2121≥+++2、使用均值不等式的条件:一正、二定、“三相等(非常重要)”3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即2112a b a b++(当a = b 时取等)4、柯西不等式:))(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++推论:)()(22221221n n a a a n a a a +++≤+++四、含有绝对值的不等式1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 ,例如 |4||2|-+-x x 的最小值为___________(答案:2) 2、分类讨论思想则不等式:如果,0>aa x a x a x -≤≥<=>≥或||(公式)a x a a x <<-<=><||(公式)如果0≤a ,则不等式:<=>≥a x ||R <=><ax ||Φ3. 当0c >时, ||ax b c ax b c +>⇔+>或ax b c +<-, ||ax b c c ax b c +<⇔-<+<;当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. 当0=c 时,<=>>+c b ax || <=><+c b ax ||4、解含有绝对值不等式的主要方法:公式法 步1:是否需对a 分类讨论步2:套用公式 || (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.练习1:4332+<+x x 832≥+x 练习2:a x <+32 a x ≥-32五、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ ②无理不等式:转化为有理不等式求解(利用x y =的单调性)()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f ③指数不等式:转化为代数不等式(利用x a y =的单调性)()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>④对数不等式:转化为代数不等式(利用x y a log =的单调性)()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩六、三角不等式: |b ||a ||b a ||b |-|a |+≤+≤七、不等式证明的几种常用方法比较法(做差法、做商法)、综合法(由已知推结论)、分析法(由结论到已知)、换元法、反证法、放缩法。
ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
完整版)高一不等式及其解法习题及答案教学目标】1.能够熟练解一元二次不等式、高次不等式和分式不等式2.理解分类讨论的数学思想并能够应用于解含参不等式教学重难点】分类讨论的数学思想教学过程】题型一:解一元二次不等式例1:解下列不等式1)2x²-3x-2>0;(2)-6x²-x+2≥0;(3)2x²-4x+70方法总结:对于一元二次不等式ax²+bx+c>0或ax²+bx+c<0,可以通过求出其判别式Δ=b²-4ac的值,来判断其解的情况。
1.当Δ>0时,方程有两个不相等的实数根,解集为x根2;2.当Δ=0时,方程有两个相等的实数根,解集为x=根1=根2;3.当Δ<0时,方程无实数根,解集为空集。
变式练】1-1.已知不等式ax²+bx+c的解集为(2,3),求不等式cx²+bx+a的解集。
题型二:解高次不等式例2:求不等式(x-4)(x-6)≤0的解集。
方法总结:对于高次不等式,可以通过将其化为一元二次不等式的形式,再利用一元二次不等式的解法来求解。
变式练】2-1.解不等式x(x-1)(x+1)(x+2)≥0.题型三:解分式不等式例3-1:解下列不等式1) 23/(x²-4x+1) < 1;(2) 23/(x²-4x+1) ≤ 2;(3) 23x-7/(x²-2x+1)。
方法总结:对于分式不等式,可以通过将其化为分子分母同号的形式,再利用一元二次不等式的解法来求解。
题型四:解含参数的一元二次不等式例4-1:解关于x的不等式2x+ax+2>(a∈R)。
方法总结:对于含参不等式,可以通过分类讨论的思想来解决。
首先讨论a的值,然后根据a的取值再讨论不等式的解集。
变式练】1.已知a∈R,解关于x的不等式ax-(a+1)x+1<2.2.解不等式a(x-1)/(x-2)。
一.不等式的性 :二.不等式大小比 的常用方法 : 1.作差:作差后通 分解因式、配方等手段判断差的符号得出 果; 2.作商(常用于分数指数 的代数式) ; 3.分析法; 4.平方法; 5.分子(或分母)有理化;6.利用函数的 性; 7. 找中 量或放 法 ;8. 象法。
其中比 法(作差、作商)是最基本的方法。
三.重要不等式2 21. ( 1)若 a,bR , a 2b 22ab (2) 若 a, bR , abab (当且 当 ab 取“ =”)22. (1) 若a, b* ,a b ab(2)若a, b R *, ab2 ab (当且 当a b取“ ”)R2=a 2*, abb( 当且 当 ab 取“ =”)(3) 若 a, b R23. 若 x0 ,x1 2 (当且 当x1 取“ ”) ;x=1若 x0 ,x2 (当且 当x1 取“ ”)x=若 x11 1-2(当且 当 ab 取“ =”)0, x2即 x2或 xxxx若 ab0 ,ab 2( 当且 当 ab 取“ =”)ba若 ab0 ,ab 2即ab 2或 ab -2(当且 当a b 取“ ”)bababa=224. 若 a,bR , (ab 2ab(当且 当 ab 取“ =”))22注:(1)当两个正数的 定植 ,可以求它 的和的最小 ,当两个正数的和 定植 ,可以求它 的 的最小 ,正所 “ 定和最小,和定 最大” .( 2)求最 的条件“一正,二定,三取等”(3)均 定理在求最 、比 大小、求 量的取 范 、 明不等式、解决 方面有广泛的 用.5.a 3+b 3+c 3≥3abc ( a,b,cR +) ,a+b+c≥ 3 abc (当且 当 a=b=c 取等号);31na 1a 2 L a n (a+12 ni1 2n222≥ab+bc+ca; ab ≤( a+b 2+≤ a+b+c 3 +式: a +b +c) (a,b) (a,b,c R )2 R ) ; abc (32aba+b a 2+b 2 a ≤a+b≤ ab ≤2 ≤2≤b.(0<a ≤ b)b -n b b+m7. 度不等式: a -n < a < a+m ,a>b>n>0,m>0;用一:求最例 1:求下列函数的 域(1)y =3x 2+ 12( ) = +12x2 yxx技巧一:凑项例 1:已知 x5,求函数 y 4 x 21的最大值。
完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。
A。
最大值为 5,最小值为 1B。
最大值为 5,最小值为 $\frac{11}{2}$C。
最大值为 1,最小值为 $\frac{11}{2}$D。
最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。
A。
3B。
$\frac{7}{2}$C。
4D。
$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。
A。
$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。
$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。
$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。
$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。
A。
$(-1,+\infty)$B。
$(-\infty,-1)\cup (1,+\infty)$C。
$(-\infty,-1)\cup (1,+\infty)$D。
$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。
A。
2B。
$\frac{2}{3}$C。
4D。
$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。
A。
18B。
高中数学基本不等式知识点及练习题1.基本不等式:对于任意正实数a和b,有ab≤(a+b)/2.2.几个重要的不等式:1) 平方差公式:对于任意实数a和b,有(a-b)^2≥0,即a^2+b^2≥2ab.2) 两个同号数的平方和大于它们的积:对于任意正实数a 和b,有a^2+b^2≥2ab.3) 两个异号数的平方和小于它们的积:对于任意实数a和b,如果ab<0,则a^2+b^2<2ab.4) 平均值不等式:对于任意正实数a和b,有(a+b)/2≥√(ab).3.算术平均数与几何平均数:对于任意正实数a和b,它们的算术平均数为(a+b)/2,几何平均数为√(ab)。
基本不等式可以叙述为两个正数的算术平均数大于或等于它们的几何平均数.4.利用基本不等式求最值问题:1) 如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2p.2) 如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是p^2/4.一个技巧:在运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a^2+b^2≥2ab逆用就是ab≤(a^2+b^2)/(a+b)^2;还要注意“添、拆项”等技巧和公式等号成立的条件等.两个变形:1) a^2+b^2≥(a+b)^2/2≥ab(a>0,b>0,当且仅当a=b时取等号).2) a^2+b^2≥2ab(a,b∈R,当且仅当a=b时取等号).三个注意:1) 使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视。
要利用基本不等式求最值,这三个条件缺一不可.2) 在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3) 连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.应用一:求最值:例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.解题技巧:技巧一:凑项.例1:已知x<5,求函数y=4x-2+1/(2x+1)的最大值.技巧二:凑系数.例1.当x^2+7x+10/(x+1)的值域.技巧三:分离.例3.求y=x(8-2x)的最大值,当y<4时。
一.不等式的性质:二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。
其中比较法(作差、作商)是最基本的方法。
三.重要不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”); 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 a =b =c 时取等号);6. 1n (a 1+a 2+……+a n )(a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号;变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3)3(a,b,c ∈ R +)a ≤ 2ab a +b ≤ab ≤ a +b 2 ≤ a 2+b 22 ≤b.(0<a ≤b) 7.浓度不等式:b -n a -n< b a < b +ma +m ,a>b>n>0,m>0; 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解题技巧:技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
技巧三: 分离 例3. 求2710(1)1x x y x x ++=>-+的值域。
技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯=(当t =2即x =1时取“=”号)。
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。
例:求函数224y x =+的值域。
24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+因10,1t t t >⋅=,但1t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。
因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。
所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。
2.已知01x <<,求函数(1)y x x =-.;3.203x <<,求函数(23)y x x =-. 条件求最值1.若实数满足2=+b a ,则b a 33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且b a 33⋅定值,因此考虑利用均值定理求最小值, 解: b a 33和都是正数,b a 33+≥632332==⋅+b a b a当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
2:已知0,0x y >>,且191x y+=,求x y +的最小值。
技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22 。
同时还应化简1+y 2中y 2前面的系数为 12 , x 1+y 2 =x2·1+y 22 = 2 x ·12 +y 22下面将x ,12 +y 22 分别看成两个因式:x ·12 +y 22 ≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34 即x 1+y 2= 2 ·x12 +y 22 ≤ 342技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1 由a >0得,0<b <15令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t ≥2t ·16t =8∴ ab ≤18 ∴ y ≥ 118当且仅当t =4,即b =3,a =6时,等号成立。
法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab 令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.解法一:若利用算术平均与平方平均之间的不等关系,a +b 2 ≤a 2+b 22 ,本题很简单3x +2y ≤ 2(3x )2+(2y )2 = 23x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20∴ W ≤20 =2 5应用二:利用基本不等式证明不等式1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2221)正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc例6:已知a 、b 、c R +∈,且1a b c ++=。
求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又111a b c a a a -+-==≥,可由此变形入手。
解:Q a 、b 、c R +∈,1a b c ++=。
∴111a b c a a a a -+-==≥。
同理11b -≥11c -≥上述三个不等式两边均为正,分别相乘,得1111118a b c a b c ⎛⎫⎛⎫⎛⎫---≥= ⎪⎪⎪⎝⎭⎝⎭⎝⎭g g 。
当且仅当13a b c ===时取等号。
应用三:基本不等式与恒成立问题例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围。
解:令,0,0,x y k x y +=>>191x y +=,99 1.x y x y kx ky ++∴+=1091y x k kx ky∴++= 10312k k∴-≥⋅ 。
16k ∴≥ ,(],16m ∈-∞ 应用四:均值定理在比较大小中的应用:例:若)2lg(),lg (lg 21,lg lg ,1ba Rb a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是 .分析:∵1>>b a ∴0lg ,0lg >>b a 21=Q (p b a b a =⋅>+lg lg )lg lgQ ab ab b a R ==>+=lg 21lg )2lg( ∴R >Q四.不等式的解法.1.一元一次不等式的解法。
2.一元二次不等式的解法3.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
如(1)解不等式2(1)(2)0x x -+≥。
(答:{|1x x ≥或2}x =-);(2)不等式(0x -≥的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x >g 的解集为______(答:(,1)[2,)-∞+∞U );(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8)4.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。