浙教版八年级数学上第2章自我评价试卷含答案
- 格式:doc
- 大小:729.00 KB
- 文档页数:18
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,在中,,,是的两条中线,是上个动点,则下列线段的长度等于最小值的是()A.BCB.CEC.ADD.AC2、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°3、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.D.5或4、如图,把一张矩形纸片ABCD沿对角线BD折叠,BC交AD于O.给出下列结论:①BC平分∠ABD;②△ABO≌△CDO;③∠AOC=120°;④△BOD是等腰三角形.其中正确的结论有()A.①③B.②④C.①②D.③④5、如图,长方形OABC中,OA=12,AB=5,OA边在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.12B.13C.15D.176、下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7、如图所示,已知∠1=∠2,AD=BD=4,CE⊥AD,2CE=AC,那么CD的长是()A.2B.3C.1D.1.58、下列说法正确的是()A.命题:“等腰三角形两腰上的中线相等”是真命题B.假命题没有逆命题C.定理都有逆定理D.不正确的判断不是命题9、下列各组数中,是勾股数的一组为A.3,4,25B.6,8,10C.5,12,17D.8,7,610、在矩形ABCD中,点P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E, F.现有以下结论:①连接DD′,则AP垂直平分DD′;②四边形PMBN是菱形;③AD2=DP⋅PC;④若AD =2DP,则.其中正确的结论的个数是()A.1B.2C.3D.411、下列图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.三角形C.平行四边形D.等腰梯形12、如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5mB.3mC.3.5mD.4m13、下列一组数是勾股数的是()A.6,7,8B.5,12,13C.0.3,0.4,0.5D.10,15,1814、下列说法中,正确的是( )A.直角三角形中,已知两边长为 3 和 4,则第三边长为 5B.若一个三角形是直角三角形,其三边长为 a,b,c,则满足a 2-b 2=c 2C.以三个连续自然数为三边长不可能构成直角三角形D.△ABC 中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC 是直角三角形15、如图,在中,,,.点P是边AC上一动点,过点P作交BC于点Q,D为线段PQ的中点,当BD平分时,AP的长度为()A. B. C. D.二、填空题(共10题,共计30分)16、如果等腰三角形的一个角比另一个角大30° ,那么它的顶角是________度17、如图,矩形ABCD中,AB=12,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是________.18、平面直角坐标系中,已知直线与x轴、y轴分别交于A、B两点,点C(0,a)是y轴上一点,把坐标平面沿直线AC折叠,使点B刚好落在x轴负半轴上,则点C的坐标是________19、在半径为5的中,若弦为,则弦所对的圆周角的度数为________.20、在△ABC中,AB=AC,∠A=40°,则∠B的度数为________°.21、若等腰三角形的两边的边长分别为10cm和5cm,则第三边的长是________ cm.22、如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为________.23、如图,一架5米长的梯子AB,斜靠在一堵竖直的墙AO上,这时梯顶A距地面4米,若梯子沿墙下滑1米,则梯足B外滑________ 米.24、等腰三角形的一个内角为40°,则顶角的度数为________.25、右图中的正五角星有________条对称轴,图中与∠A的2倍互补的角有________个。
浙教版八年级数学上册第2章测试卷一、选择题(每题3分,共30分)1.下列四个图案分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()2.如图,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°3.在直角三角形ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365 B.1225 C.94 D.3344.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC≌Rt△ABD,以下给出的条件合适的是()A.AC=AD B.BC=ADC.∠ABC=∠ABD D.∠BAC=∠BAD5.已知一个等腰三角形的两个内角度数之比为14,则这个等腰三角形顶角的度数为()A.20°B.120°C.20°或120°D.36°6.在△ABC中,AB2=(a+b)2,AC2=(a-b)2,BC2=4ab,且a>b>0,则下列结论中正确的是()A.∠A=90°B.∠B=90°C.∠C=90°D.△ABC不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是() A.5 B.6 C.6.5 D.128.如图,在△ABC中,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S1,S2,S3,S4,则S1+S2+S3+S4等于()A.3 B.4 C.5 D.610.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题;(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,求证:AB=AC.21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪些三角形是等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF;(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.答案一、1.D 2.A3.A 【点拨】利用等积法解答.根据勾股定理求得AB =15,设点C 到AB 的距离是x ,可列方程12×9×12=12×15x ,解之即可. 4.A 5.C6.C 【点拨】由题意可得AB 2=AC 2+BC 2,所以△ABC 为直角三角形,AB 所对的角为直角,所以∠C =90°. 7.C8.B 【点拨】由题意知△ABC 是等腰三角形,因为AD 是其底边上的中线,所以AD 也是底边上的高线,所以∠ACB =90°-∠CAD =70°.又因为CE 是∠ACB 的平分线,所以∠ACE =12∠ACB =35°.9.B 【点拨】本题不能直接求出S 1,S 2,S 3,S 4,但我们可以利用三角形全等和勾股定理求出S 1+S 2+S 3+S 4.根据“AAS ”很容易证明△ABC ≌△CDE ,所以AB =CD .又因为CD 2+DE 2=CE 2,AB 2=S 3,CE 2=3,DE 2=S 4,所以S 3+S 4=3.同理可得S 1+S 2=1,所以S 1+S 2+S 3+S 4=1+3=4.10.D 【点拨】∵△ABD ,△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°. 在△ABE 和△DBC 中,⎩⎨⎧AB =DB ,∠ABE =∠DBC ,BE =BC ,∴△ABE ≌△DBC (SAS ). ∴①正确. ∵△ABE ≌△DBC , ∴∠BAE =∠BDC .∵∠BDC +∠BCD =∠ABD =60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°. ∴②正确.易证△ABP ≌△DBQ (ASA ), ∴BP =BQ .又∵∠PBQ =60°, ∴△BPQ 为等边三角形. ∴③正确.二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形15.3 【点拨】△OPE ≌△OPF ,△OP A ≌△OPB ,△AEP ≌△BFP ,所以共有3对全等三角形.16.3 22 【点拨】在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32.用勾股定理计算出BC 的长为2,因此BC 边上的高为322. 17.318.100° 【点拨】连结OB ,OC . 易得△AOB ≌△AOC (SAS ). ∴∠ACO =∠ABO .又∵OD 垂直平分AB ,∴OB =OA , ∴∠ABO =∠BAO =12∠BAC =25°. ∴∠ACO =25°.在△ABC 中,∵∠BAC =50°,AB =AC , ∴∠ACB =12×(180°-50°)=65°. ∴∠ECO =∠ACB -∠ACO =40°. 由折叠可知,OE =EC . ∴∠EOC =∠ECO =40°. ∴∠OEC =100°.三、19.解:(1)两边上的高相等的三角形是等腰三角形. (2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E , CD ⊥AB 于D ,且CD =BE . 求证:△ABC 是等腰三角形. 证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°. 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC , 即△ABC 是等腰三角形.20.证明:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS ), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF+∠GFE=12(∠BEF+∠DFE)=12×180°=90°,∴△EGF是直角三角形.22.解:(1)△BDF和△CEF是等腰三角形.∵BF平分∠ABC,∴∠ABF=∠FBC,∵DF∥BC,∴∠FBC=∠DFB,∴∠DFB=∠DBF,∴DB=DF,∴△BDF是等腰三角形.同理,△CEF也是等腰三角形.(2)BD=DE+CE.理由:由(1)知△CEF是等腰三角形,且EC=EF,∴BD=DF=DE+EF=DE+CE.【点拨】“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DC=DE.又∵DF=DB,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB.(2)由(1)可知DE=DC,又∵AD=AD,∴Rt△ADC≌Rt△ADE.∴AC=AE.∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点拨】(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离等于点D到AC的距离,即CD=DE,再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用(1)中结论证明Rt△ADC≌Rt△ADE,∴AC=AE,再将线段AB进行转化.24.(1)证明:∵△BCD是等腰直角三角形,且∠BDC=90°,∴BD=CD,∠BDC=∠CDA=90°.在△FBD和△ACD中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS ).(2)证明:∵BE ⊥AC ,∴∠BEA =∠BEC =90°.∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE =BE ,∴△ABE ≌△CBE (ASA ),∴AE =CE .∴CE =12AC .由(1)知△FBD ≌△ACD ,∴BF =AC ,∴CE =12BF .(3)解:BG 2=GE 2+CE 2.证明:连结CG ,∵H 是BC 边的中点,BD =CD ,∴DH 垂直平分BC ,∴BG =CG (线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE ⊥AC ,∴CG 2=GE 2+CE 2,∴BG 2=GE 2+CE 2.【点拨】本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.。
浙教版八年级上册数学第二章测试卷一、选择题(每题3分,共30分)1.下列四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是( )2.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( ) A .18°B .24°C .30°D .36°(第2题) (第4题) (第8题)3.在直角三角形ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A.365B.1225C.94D.3344.如图,已知∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC ≌Rt △ABD ,以下给出的条件合适的是( ) A .AC =ADB .BC =ADC .∠ABC =∠ABD D .∠BAC =∠BAD5.已知一个等腰三角形的两个内角度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20°B .120°C .20°或120°D .36°6.在△ABC 中,AB 2=(a +b )2,AC 2=(a -b )2,BC 2=4ab ,且a >b >0,则下列结论中正确的是( ) A .∠A =90°B .∠B =90°C.∠C=90°D.△ABC不一定是直角三角形7.直角三角形两条直角边长分别是5和12,则第三条边上的中线长是() A.5 B.6 C.6.5 D.128.如图,在△ABC中,AD,CE分别是△ABC的中线和角平分线,若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.如图,在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积从左往右依次是S1,S2,S3,S4,则S1+S2+S3+S4等于()A.3 B.4 C.5 D.6(第9题)(第10题)10.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连结AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连结PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形.其中正确的有()A.0个B.1个C.2个D.3个二、填空题(每题3分,共24分)11.请写出“三个角都相等的三角形是等边三角形”的逆命题:______________________.12.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13.已知实数x,y满足(x-4)2+(y-8)2=0,则以x,y的值为两边长的等腰三角形的周长是________.14.已知a,b,c是△ABC的三边长,且满足关系式(c2-a2-b2)2+|a-b|=0,则△ABC的形状为____________.15.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.(第15题)(第16题)(第17题)(第18题)16.如图,由四个边长为1的小正方形构成一个大正方形,连结小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.17.如图,在正方形网格中,阴影部分是涂黑7个小正方形所形成的图案,再将网格内一个空白小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有________种.18.如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,沿EF折叠后,点C与点O重合,则∠OEC的度数是________.三、解答题(19,20题每题6分,21,22,23题每题8分,24题10分,共46分)19.已知命题“等腰三角形两腰上的高相等”.(1)写出该命题的逆命题.(2)该逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”“求证”,再进行“证明”;如果是假命题,请举反例说明.20.如图,点E,F在△ABC的边BC上.若AE=AF,BE=CF,则AB=AC,并说明理由.(第20题)21.如图,AB∥CD,EG,FG分别是∠BEF和∠DFE的平分线.求证:△EGF 是直角三角形.(第21题)22.如图,∠ABC的平分线BF与△ABC中∠ACB的邻补角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?为什么?(2)BD,DE,CE之间存在着什么数量关系?并说明理由.(第22题)23.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.求证:(1)CF=EB;(2)AB=AF+2EB.(第23题)24.如图,等腰直角三角形DBC中,∠BDC=90°,BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF,连结AC.(1)求证:△FBD≌△ACD;(2)如图,延长BF交AC于点E,且BE⊥AC,求证:CE=12BF.(3)在(2)的条件下,H是BC边的中点,连结DH,与BE相交于点G.试探索CE,GE,BG之间的数量关系,并证明你的结论.(第24题)参考答案一、1.D 2.A 3.A 4.A 5.C 6.C 7.C 8.B 9.B 10.D 二、11.等边三角形的三个角都相等 12.75°或15° 13.20 14.等腰直角三角形 15.3 16.322 17.3 18.100° 三、19.解:(1)两边上的高相等的三角形是等腰三角形.(2)真命题.已知:如图,在△ABC 中,BE ⊥AC 于E , CD ⊥AB 于D ,且CD =BE . 求证:AB =AC .证明:∵BE ⊥AC ,CD ⊥AB , ∴∠BEA =∠CDA =90°, 又∵∠A =∠A ,BE =CD , ∴△ABE ≌△ACD ,∴AB =AC .(第19题)20.解:∵AE =AF ,∴∠AEF =∠AFE .∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE .在△ACE 和△ABF 中,⎩⎨⎧AE =AF ,∠AEC =∠AFB ,CE =BF ,∴△ACE ≌△ABF (SAS), ∴AB =AC .21.证明:∵AB ∥CD ,∴∠BEF +∠DFE =180°(两直线平行,同旁内角互补). ∵EG ,FG 分别是∠BEF 和∠DFE 的平分线, ∴∠GEF =12∠BEF ,∠GFE =12∠DFE ,∴∠GEF +∠GFE =12(∠BEF +∠DFE )=12×180°=90°, ∴△EGF 是直角三角形. 22.解:(1)△BDF 和△CEF .∵BF 平分∠ABC , ∴∠ABF =∠FBC ,∵DF ∥BC ,∴∠FBC =∠DFB , ∴∠DFB =∠DBF ,∴DB =DF , ∴△BDF 是等腰三角形. 同理,△CEF 也是等腰三角形.(2)BD =DE +CE .由(1)知△CEF 是等腰三角形,且EC =EF ,∵BD =DF =DE +EF ,∴BD =DE +CE .点拨:“平行线+角平分线”是等腰三角形中常见的基本图形之一,应注意在其他图形中的发掘与应用.23.证明:(1)∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴DE =DC .又∵BD =DF ,∴Rt △CDF ≌Rt △EDB (HL). ∴CF =EB .(2)由(1)可知DE =DC ,又∵AD =AD , ∴Rt △ADC ≌Rt △ADE .∴AC =AE .∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .点拨:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离等于点D 到AC 的距离,即CD =DE ,再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用(1)中结论证明Rt △ADC ≌R t △ADE ,∴AC =AE ,再将线段AB 进行转化.24.(1)证明:∵△BCD 是等腰直角三角形,且∠BDC =90°,∴BD =CD ,∠BDC =∠CDA =90°. 在△FBD 和△ACD 中,⎩⎨⎧BD =CD ,∠BDF =∠CDA ,DF =DA ,∴△FBD ≌△ACD (SAS). (2)证明:∵BE ⊥AC ,∴∠BEA=∠BEC=90°.∵BF平分∠DBC,∴∠ABE=∠CBE,又∵BE=BE,∴△ABE≌△CBE(ASA),∴AE=CE.∴CE=12AC.由(1)知△FBD≌△ACD,∴BF=AC,∴CE=12BF.(3)解:BG2=GE2+CE2.证明:连结CG,∵H是BC边的中点,BD=CD,∴DH垂直平分BC,∴BG=CG(线段垂直平分线上的点到这条线段两个端点的距离相等).∵BE⊥AC,∴CG2=GE2+CE2,∴BG2=GE2+CE2.点拨:本题综合考查全等三角形的判定与性质,以及通过添加辅助线利用勾股定理解决问题.。
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、在中,斜边AB=2,则的值是()A.6B.8C.10D.122、若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9B.12C.9或12D.103、下面有4个汽车标志图案,其中是轴对称图形的是 ( )①②③④A.②③④B.①②③C.①②④D.①③④4、在下列条件中,不能判定两直角三角形全等的是()A.斜边和一锐角对应相等B.斜边上的中线和一直角边对应相等C.两边分别相等D.直角的平分线和一直角边对应相等5、等腰三角形的一腰长为3a,底角为15°,则另一腰上的高为()A.aB. aC.2aD.3a6、等腰三角形的一个外角是130°,则它的底角等于()A.50°B.65°C.100°D.50°或65°7、如图,△ABC内接于☉O,D为线段AB的中点,延长OD交☉O于点E,连接AE,BE,在以下判断中,不正确的是( )A.AB⊥DEB.AE=BEC.OD=DED. =8、下列定理中逆定理不存在的是()A.全等三角形的对应角相等B.如果在一个三角形中,两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.角平分线上的点到这个角的两边的距离相等9、在平面直角坐标系中,点A(,),B(3,3),动点C在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2B.3C.4D.510、如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连结DM 、 MC 下列结论:①DF=DN;②△ABM≌△BNM;③△CMN是等腰三角形;④AE=CN;其中正确的结论个数是()A.1个B.2个C.3个D.4个11、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12、如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是()A. B. C. D.13、如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.614、如图,某建筑物在一个坡度为的山坡上,建筑物底部点到山脚点的距离米,在距山脚点右侧水平距离为60米的点处测得建筑物顶部点的仰角是24°,建筑物和山坡的剖面的同一平面内,则建筑物的高度约为()(参考数据:,,)A.32.4米B.20.4米C.16.4米D.15.4米15、如图,在矩形ABCD中,AB=5,BC=5 ,点P在线段BC上运动(含B、C两点),连接AP,以点A为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为()A. B. C. D.3二、填空题(共10题,共计30分)16、如图,在边长为4的正方形ABCD中,对角线AC,BD相交于点O,点E是AD边上一点,连接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于点F,CP 交BD于点G,连接PO,若PO∥BC,则四边形OFPG的面积是________.17、在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为________.18、如图,已知点,直线与两坐标轴分别交于A,B两点,D,E分别是AB,OB上的动点,则周长的最小值是________.19、在中,边上的高为4,,,则的周长等于________.20、如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是________.21、如图,在中,为BC上一点,过点D作,垂足为E,连接AD,若,则AB的长为________22、在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为________.23、在△ABC中,∠A=40°,∠C=70°,则△ABC是________三角形.24、已知,点在的内部,与关于对称,与关于对称,________ .25、如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△A’B’C’,连接A’C,则△A’B’C的周长为________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.28、如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC 于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.29、如图,在四边形ABCD中,对角线AC=BD,E,F为AB、CD的中点,连接EF交BD、AC于P、Q,取BC中点G,连EG、FG,求证:OP=OQ.30、已知△ABC中,AC=BC,∠C=100°,AD平分∠BAC交BC于D,点E 为AB上一点,且∠EDB=∠B.求证:AB=AD+CD.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、C5、B6、D7、C9、B10、C11、D12、A13、D14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、。
期末综合自我评价一、选择题(每小题2分,共20分)1.下面四个标志中,是轴对称图形的是(D)2.在平面直角坐标系中,点P(3,-2)关于y轴的对称点在(C)A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.使不等式x-2≥-3与2x+3<5同时成立的x的整数值是(C)A. -2,-1,0B. 0,1C. -1,0D. 不存在4.一个三角形的两边长分别为3 cm和7 cm,则此三角形第三边长可能是(C)A.3 cm B.4 cmC.7 cm D.11 cm5.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元.如果购买金额不超过200元,且要求买的球拍尽可能多,那么小张同学应该买的球拍的个数是(B)A. 5B. 6C. 7D. 86.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P是BD的中点.若AD=6,则CP的长为(A)A. 3B. 3.5C. 4D. 4.5(第6题)(第7题)7.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处.若∠2=40°,则图中∠1的度数为(A)A. 115°B. 120°C. 130°D. 140°【解】由折叠可得∠1=∠EFB′,∠B′=∠B=90°.∵∠2=40°,∴∠CFB′=90°-40°=50°.∵∠1+∠EFB ′-∠CFB ′=180°,∴∠1+∠1-50°=180°,解得∠1=115°.8.在平面直角坐标系中,将直线l 1:y =-2x -2平移后,得到直线l 2:y =-2x +4,则下列平移作法中,正确的是(A )A. 将直线l 1向右平移3个单位B. 将直线l 1向右平移6个单位C. 将直线l 1向上平移2个单位D. 将直线l 1向上平移4个单位【解】 ∵将直线l 1:y =-2x -2平移后,得到直线l 2:y =-2x +4, ∴-2(x +a )-2=-2x +4或-2x -2+b =-2x +4,解得a =-3,b =6. ∴应将直线l 1向右平移3个单位或向上平移6个单位.故选A.9.已知A(x 1,y 1),B(x 2,y 2)为一次函数y =2x +1的图象上的两个不同的点,且x 1x 2≠0.若M =y 1-1x 1,N =y 2-1x 2,则M 与N 的大小关系是(C )A .M >NB .M <NC .M =ND .不确定【解】 将y 1=2x 1+1,y 2=2x 2+1分别代入M ,N ,得M =2x 1+1-1x 1=2,N =2x 2+1-1x 2=2,∴M =N .10.如图,在等边三角形ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 右侧按如图方式作等边三角形DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是(A )A. 8B. 10C. 3πD. 5π 导学号:91354037(第10题)(第10题解)【解】 如解图,连结DE ,过点F 作FH⊥BC 于点H. ∵△ABC 为等边三角形,∴∠B =60°.过点D 作DE′⊥AB,则∠BDE′=30°,∴BE ′=12BD =2,∴点E′与点E 重合,∴∠BDE =30°,DE =BD 2-BE 2=2 3.∵△DPF 为等边三角形,∴∠PDF =60°,DP =DF. ∴∠EDP +∠HDF=90°. ∵∠HDF +∠HFD=90°, ∴∠EDP =∠HFD.在△DPE 和△FDH 中,∵⎩⎨⎧∠PED=∠DHF,∠EDP =∠HFD,DP =FD ,∴△DPE ≌△FDH(AAS),∴FH =DE =23.∴点P 从点E 运动到点A 时,点F 运动的路径为一条线段,此线段到BC 的距离为2 3. 当点P 在点E 处时,作等边三角形DEF 1,∠BDF 1=30°+60°=90°,则DF 1⊥BC.当点P 在点A 处时,作等边三角形DAF 2,过点F 2作F 2Q ⊥BC ,交BC 的延长线于点Q ,易得△DF 2Q ≌△ADE ,∴DQ =AE =10-2=8,∴F 1F 2=DQ =8.∴当点P 从点E 运动到点A 时,点F 运动的路径长是8.二、填空题(每小题3分,共30分)11.已知点A(x ,4-y)与点B(1-y ,2x)关于y 轴对称,则点(x ,y)的坐标为(1,2).12.如果关于x 的不等式(a +1)x>a +1(a≠-1)可以变形为x<1,那么a 的取值范围是a<-1. 13.在△ABC 中,AB =15,AC =13,高AD =12,则BC 的长为14或4. 【解】 如解图①.由勾股定理,得BD =AB 2-AD 2=9,CD =AC 2-AD 2=5,∴BC =BD +CD =14.(第13题解)如解图②,同理可得BD =9,CD =5, ∴BC =BD -CD =4.(第14题)14.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连结BD ,则BD 的长为4_【解】 ∵△ABC 都是边长为4的等边三角形, ∴CB =CD ,∴∠BDC =∠DBC=30°.又∵∠CDE =60°,∴∠BDE =90°. 在Rt△BDE 中,DE =4,BE =8,∴BD =BE 2-DE 2=82-42=4 3.15.有学生若干人,住若干间宿舍.若每间住4人,则有20人无法安排住宿;若每间住8人,则最后有一间宿舍不满也不空,则学生有__44__人.【解】 设共有x 间宿舍,则学生有(4x +20)人. 由题意,得0<4x +20-8(x -1)<8, 解得5<x<7.∵x 为整数,∴x =6,即学生有4x +20=44(人).16.若关于x 的不等式组⎩⎨⎧x -a>3,1-2x>x -2无解,则a 的取值范围是a ≥-2.【解】 解不等式①,得x>3+a 。
浙教版2020八年级数学上册第二章特殊三角形自主学习能力达标测试卷(附答案详解)1.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或152.命题“2的平方等于4”的逆命题的是().A.2-的平方等于4 B.平方等于4的数是2-C.平方等于4的数是2±D.平方等于4的数是23.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=4cm,△ADC 的周长为15cm,则BC的长()A.8cm B.11cm C.13cm D.19cm4.如果等腰三角形的一腰上的高与另一腰的夹角为30°,则该等腰三角形顶角的度数是()A.60°B.120°C.60°或120°D.90°5.下列图形是轴对称图形的是()A.B.C.D.6.如图,点A表示的实数是( )A.2B2C.2D2-17.下列说法中正确的是()A.在△ABC中,AB2+BC2=AC2B.在Rt△ABC中,AB2+BC2=AC2C.在Rt△ABC中,∠C=90°,AB2+BC2=AC2D.AB、BC、AC是△ABC的三边,若AB2+BC2=AC2,则△ABC是直角三角形8.如图,AC=BC,∠ACB=90°,AE平分∠BAC,BF⊥AE,交AC的延长线于F,且垂足为E,则下列结论:①AD=BF;②BF=AF;③AC+CD=AB;④AB=BF;⑤AD =2BE,其中正确的结论有( )个.A .1个B .2个C .3个D .4个9.等腰三角形一边等于4,另一边等于8,则其周长是( )A .16B .20C .16或20D .不能确定 10.下列命题的逆命题正确的是( )A .如果两个角都是45°,那么它们相等B .全等三角形的周长相等C .同位角相等,两直线平行D .若a=b ,则22a b =11.将一张长方形纸片ABCD 按照如图所示的方式折叠,折痕为AE ,若∠CEB′=51°15′,则∠AEB′=______;12.如图,在平面直角坐标系中,点A 、B 的坐标分别为()2,6和()4,0,点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一直线上,当ABC △的周长最小时,点C 的坐标是_________.13.如图,AC =BC ,∠CPB =45°,AC ⊥BC ,若S △APB =32,则PB 的长为_____.14.如图,一副三角板如图所示叠放在一起,AB =10,则阴影部分的面积为_____.15.在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,如果BD=0.5,那么AD=_________.16.如图,已知AB=A1B,A1B1=A1A2, A2B2=A2A3, A3B3=A3A4…,若∠A=70°,则∠A2019A2020B2019的度数为___.17.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于点D,AE∥DC交BC的延长线于点E,已知∠BAC=32°,求∠E的度数为_______.18.已知,如图所示,AB=AC,AD⊥BC 于D,且△ABC 的周长为50cm,△ABD的周长为40cm,则AD=__________cm.19.如图,ABCD是长方形地面,长AB=10m,宽AD=5m,中间竖有一堵砖墙高MN =1m.一只蚂蚱从点A爬到点C,它必须翻过中间那堵墙,则它至少要走______m.20.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.21.如图,在△ABC 中,AC 的垂直平分线MN 分别交AB ,AC 于D ,E .若AE =5,△BCD 的周长17,求△ABC 的周长.22.已知:如图,△ABC ,△ADE 均为等腰直角三角形,点D ,E ,C 在同直线上,连接BD .(1)求证:△ADB ≌△AEC ;(2)求∠BDC 的度数.23.如图,在△ABC 中,点D 为BC 边上一点且AD ⊥BC ,AC =20,AB =15,AD =12.请判断△ABC 的形状,并说明理由.24.如图,等边△ABC 和等边△CDE ,A 、C 、E 三点在一条直线上,点M 为AD 中点,点N 为BE 中点,求证:△CMN 是等边三角形.25.如图,已知在ABC ∆中,点D 平分线段AB ,2AB CD =.求证:90ACB ∠=︒.26.(1)喜欢爬山的同学都知道,很多名山上都有便于游人观光的索道,如图所示,山的高度AC为800 m,从山上A与山下B处各建一索道口,且BC=1 500 m,一游客从山下索道口坐缆车到山顶,知缆车每分钟走50 m,那么大约多长时间后该游客才能到达山顶?说明理由.(2)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高度CD(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).27.如图,在△ABC中,∠ACB=90°,∠A=40°;以C为圆心、CB为半径的圆交AB 于点D,求∠ACD的度数.28.如图,一个长方体形盒子的长、宽、高分别为4cm,4cm,6cm(1)一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,请你帮蚂蚁设计一条最短的路线,蚂蚁要爬行的最短路线是多少?(2)若将一根木棒放进盒子里并能盖上盖子,则能放入该盒子里的木棒的最大长度是多少cm ? (结果可保留根号)参考答案1.C【解析】【分析】由于不知道已知边是底还是腰,进行分类讨论,并判断是否构成三角形,再求周长即可.【详解】解:等腰三角形的一条边长等于6,另一条边长等于3,①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴该等腰三角形的周长是15.故答案为C.【点睛】本题考查了等腰三角形的概念和三角形的三边关系,对等腰三角形的边分类讨论和应用三角形三边关系判断是否构成三角形是解题的关键,也是解题的易错点.2.D【解析】【分析】交换命题的题设和结论后即可进行判断.【详解】解:命题“2的平方等于4”的逆命题的是“平方等于4的数是2”.故选D.【点睛】本题考查了互逆命题的定义,掌握概念,分清原命题的题设和结论是解题的关键.3.B【解析】【分析】利用翻折变换的性质得出AD=BD,进而利用AD+CD=BC得出即可.【详解】∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD.∵AC=4cm,△ADC的周长为15cm,∴AD+CD=BC=15﹣4=11(cm).【点睛】本题考查了翻折变换的性质,根据题意得出AD=BD是解题的关键.4.C【解析】【分析】.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.本题要分情况讨论【详解】解:当高在内部时,顶角=90°-30°=60°;当高在外部时,得到顶角的外角=90°-30°=60°,则顶角=120°.故选:C.【点睛】.其中考查了直角三角形的两个锐角此题考查了等腰三角形的性质,注意此类题的两种情况互余;三角形的一个外角等于和它不相邻的两个内角的和.5.A【解析】【分析】根据轴对称图形的概念求解即可.【详解】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.C【解析】【分析】首先根据勾股定理计算出BC的长,进而得到AC的长,再根据C点表示1,可得A点表示【详解】解:BC=22,11=2则2,∵C点表示1,∴A点表示的数为:-2-1)2,故选C.【点睛】本题考查实数与数轴,勾股定理,正确的识别图形是解题的关键.7.D【解析】【分析】根据勾股定理即可解答【详解】A、在△ABC中,不一定能够得到AB2+BC2=AC2,故选项错误;B、在Rt△ABC中,∠B=90°,AB2+BC2=AC2,故选项错误;C、在Rt△ABC中,∠B=90°,AB2+BC2=AC2,故选项错误;D、AB、BC、AC是△ABC的三边,若AB2+BC2=AC2,则△ABC是直角三角形,故选项正确.故选:D.【点睛】此题考查勾股定理,解题关键在于掌握勾股定理的内容8.C【解析】【分析】根据∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,可推出∠F=∠ADC,证明△BCF≌△ACD,根据全等三角形的性质即可判断①,根据垂线段最短可判断②;由△BCF≌△ACD得CD=CF,则AC+CD=AF,根据全等三角形的判定ASA得出△BEA≌△FEA,可得AB=AF,即可判断③④,根据△BCF≌△ACD得AD=BF,根据三线合一推出BE=EF,即可判断⑤.【详解】解:∵∠ACB=90°,BF⊥AE,∴∠ACB=∠BED=∠BCF=90°,∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,∴∠F=∠BDE,∵∠BDE=∠ADC,∴∠F=∠ADC,∵AC=BC,∴△BCF≌△ACD,∴AD=BF,∴①正确;∵BF⊥AE,∴AF>AE>AD,∵AD=BF,∴AF>BF ,即BF≠AF,②错误;∵△BCF≌△ACD,∴CD=CF,∴AC+CD=AF,∵AE平分∠BAC,BF⊥AE,∴∠BAE=∠FAE,∠BEA=∠FEA=90°,又∵AE=AE,∴△BEA≌△FEA,∴AB=AF,∴AC+CD=AB.∴③正确;∵BF=AD,AF>AE>AD,AF=AB,∴AB>BF,∴④错误;∵AB=AF,AE⊥BF,∴BE=EF,∴BF=2BE,∵△BCF≌△ACD,∴AD=BF=2BE,∴⑤正确;正确的有:①③⑤.故选:C.【点睛】本题考查全等三角形的性质和判定,角平分线的定义,垂线,等腰三角形的性质和判定,综合运用这些性质进行证明是解题的关键.9.B【解析】【分析】由等腰三角形的两边分别为4和8,但没有明确底边和腰,所以有两种情况进行讨论.【详解】当4为底时,其它两边都为8,而4、8、8可以构成三角形,故周长为20;当4为腰时,其它两边为4和8,因为4+4=8,所以不能构成三角形,故舍去.所以三角形的周长为20.故选:B.【点睛】考查了等腰三角形的性质和三角形三边关系,解题关键是抓住等腰三角形的性质,若没有明确哪边是底哪边是腰,则应在符合三角形三边关系的前提下分类讨论.10.C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据三角形的概念、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】A. 逆命题为:如果两个角相等,那么它们都是45°,此逆命题为假命题;B. 逆命题为:周长相等的两三角形全等,此逆命题为假命题;C. 逆命题为:两直线平行,同位角相等,此逆命题为真命题;D. 逆命题为:若a2=b2,则a=b,此逆命题为假命题.故选C.【点睛】本题考查命题与定理,解题的关键是掌握三角形的概念、全等三角形的判定、平行线的性质和平方根的定义.11.64°22′30"【解析】【分析】由折叠的性质及平角的定义即可得出结论.【详解】由折叠的性质可知:∠B′EA=∠BEA.∵∠BEA+∠B′EA+∠CEB′=180°,∴∠AEB′=(180°-51°15′)÷2=64°22′30".故答案为64°22′30".【点睛】本题考查了折叠的性质,找出折叠的过程中相等的角是关键.0,412.()【解析】【分析】首先求得A关于y轴的对称点A',然后求得A'B的解析式,然后求得直线与y轴的交点即可.【详解】A关于y轴的对称点A′是(−2,6),设A′B的解析式是y=kx+b,则26 40k bk b-+=⎧⎨+=⎩,解得:14kb=-⎧⎨=⎩,则一次函数的解析式是y=−x+4,当x=0时,y=4,则C的坐标是(0,4).故答案为:(0,4).【点睛】本题考查的知识点是轴对称-最短路线问题, 坐标与图形性质,解题的关键是熟练的掌握轴对称-最短路线问题, 坐标与图形性质.13.8【解析】【分析】根据∠CPB=45°应构建直角三角形进行求解,如图,过点C作CD⊥CP交PB的延长线于点D,可求证△ACD≌△BCP(SAS),即可证AD=PB,AD为△APB的高,则可求PB的值.【详解】解:如图,过点C作CD⊥CP交PB的延长线于点D,连接AD∵∠CPB=45°,∠DCP=90°∴△DCP 为等腰直角三角形,∴CP =CD∵∠ACB =90°∴∠ACD+∠DCB =∠DCB+∠PCB =90°∴∠ACD =∠PCB又∵△ACB 为等腰直角三角形∴AC =CB∴在△ACD 和△BCP 中PC CD ACD PCB AC CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCP (SAS )∴∠ADC =∠CPB =45°,AD =PB∵∠CDP =∠CPB =45°∴∠ADB =90°∴AD 为△APB 的高∴S △APB =12×AD×PB =12×PB×PB =12PB 2=32 ∴PB 2=64∵PB >0∴PB =8故答案为8【点睛】此题主要考查等腰直角三角形的性质,全等三角形的判定,由于此题出现45°,关键的思路是通过辅助线构建直角三角形,以面积为桥梁求解三角形的边长.14.12.5【解析】【分析】直接利用直角三角形的性质得出AC的长,进而得出CF的长,即可得出答案.【详解】解:如图所示:∵AB=10,∠B=30°,∠ACB=90°,∴AC=5,∵BC∥ED,∴∠AFC=∠D=45°,∴AC=CF=5,∴阴影部分的面积为:15512.5 2⨯⨯=.故答案为:12.5.【点睛】此题主要考查了直角三角形的性质,正确得出AC,CF的长是解题关键.15.1.5【解析】【分析】根据同角的余角相等求出∠BCD=∠A=30°,再根据30°角所对的直角边等于斜边的一半求出BC、AB的长,然后根据AD=AB-BD计算即可得解.【详解】∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=30°,∵BD=0.5,∴BC=2BD=1,AB=2BC=2×1=2,∴AD=AB-BD=2-0.5=1.5.故答案为:1.5.【点睛】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.2019702︒ 【解析】【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B 1A 2A 1,∠B 2A 3A 2及∠B 3A 4A 3的度数,找出规律得出∠A n−1A n B n−1的度数,代入n=2020即可得出答案.【详解】∵在△ABA 1中,∠A=70°,AB=A 1B ,∴∠BA 1A=70°,∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°=702; 同理可得,∠B 2A 3A 2=17.5°=2702,∠B 3A 4A 3=8.75°=3702, ∴∠A n−1A n B n−1=1702-n . ∴∠A 2019A 2020B 2019=2019702 故答案为:2019702. 【点睛】 本题考查角度的规律问题,由三角形外角的性质及等腰三角形的性质得到角度的规律是关键.17.37°【解析】【分析】根据等腰三角形性质,由∠BAC =32°得到∠B=∠ACB=74°,又因为CD 平分∠ACB ,所以得到∠DCB 的度数,之后利用三角形内角和定理得出∠BDC 的度数,之后利用两直线平行,同位角相等求出∠CAE,然后用∠ACB减去∠CAE即可得到∠E的度数。
期末综合自我评价一、选择题(每小题3分,共30分)1.函数y =1x -1的自变量x 的取值范围是(D )A. x >1B. x <-1C. x ≠-1D. x ≠12.一次函数y =kx -3(k >0)的大致图象为(C )3.若正比例函数的图象经过点(-1,2),则这个图象必经过点(D ) A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)4.已知一次函数y =kx +b 的图象经过点(0,-3)与(1,5),则这个一次函数的表达式是(A ) A .y =8x -3 B .y =-8x -3 C .y =8x +3 D .y =-8x +35.若直线l 与已知直线y =2x +1关于y 轴对称,则直线l 的表达式为(B ) A .y =-2x -1 B .y =-2x +1 C .y =2x -1 D .y =-12x +16.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (L)与时间x (min)之间满足某种函数关系,其函数图象大致为(D )7.已知一次函数y =kx +b (k ,b 是常数,且k ≠0),x 与y 的部分对应值如下表所示,x -2 -1 0 1 2 3 y321-1-2那么不等式kx +b <0的解是(D ) A .x <0 B .x >0 C .x <1 D .x >18.如图,已知一次函数y =-12x +2的图象上有两点A ,B ,点A 的横坐标为2,点B 的横坐标为a (0<a <4且a ≠2),过点A ,B 分别作x 轴的垂线,垂足分别为C ,D 两点,△AOC ,△BOD 的面积分别为S 1,S 2,则S 1,S 2的大小关系是(A )(第8题)A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定9.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是(D )(第9题)A.⎩⎪⎨⎪⎧x -y -1=0,x -2y -4=0B.⎩⎪⎨⎪⎧2x -y -4=0,x -2y -4=0C.⎩⎪⎨⎪⎧2x -y -4=0,x +2y -4=0D.⎩⎪⎨⎪⎧x -y -1=0,x +2y -4=0 10.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图②所示,那么当x =9时,点R 应运动到(C ),(第10题))A .点N 处B .点P 处C .点Q 处D .点M 处【解】 点R 从点N 运动到点P 时,y 随x 的增大而增大;当点R 从点P 运动到点Q 时,y 不变;当点R 从点Q 运动到点M 时,y 随x 的增大而减小.故当x =9时,点R 应运动到点Q 处.二、填空题(每小题3分,共30分)11. 在一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是m <3.12.已知自变量为x 的函数y =mx +3-m 是正比例函数,则该函数的表达式为y =3x . 13.若y -1与x -3成正比例,且当x =4时,y =-1,则y 关于x 的函数表达式是y =-2x +7. 14. 若点(1,m ),(3,n )在函数y =-13x +3的图象上,则m ,n 的大小关系是m >n .15.已知关于x ,y 的一次函数y =(m -1)x +m -2的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是1<m <2.16.已知一次函数y =kx +b 的图象经过点(0,1),且y 随x 的增大而增大,请你写出一个符合上述条件的函数表达式:y =2x +1(答案不唯一).17.已知一次函数y =-x +a 和y =x +b 的图象交于点(m ,8),则a +b =__16__.18. 如图是某工程队在“村村通”工程中,修筑的公路长度y (m)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是__504__m.,(第18题)) ,(第19题))19.如图,点Q 在直线y =-x 上运动,点A 的坐标为(1,0),当线段AQ 最短时,点Q 的坐标为⎝⎛⎭⎫12,-12. 20.已知正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按照如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x 轴上,若点B 1(1,1),B 2(3,2),则点B 3的坐标是(7,4).(第20题)【解】 ∵点B 1(1,1),B 2(3,2), ∴点A 1(0,1),A 2(1,2),∴直线y =kx +b(k >0)为y =x +1,∴A 3(3,4).易得B n 的横坐标为A n +1的横坐标,纵坐标为A n 的纵坐标, A n (2n -1-1,2n -1), ∴B n 的坐标为(2n -1,2n -1). ∴B 3的坐标是(23-1,22),即(7,4). 三、解答题(共40分)21.(6分)直线y =2x +2与x 轴,y 轴分别交于点A ,B ,求线段AB 的长. 【解】 令x =0,则y =2,∴点B 的坐标为(0,2). 令y =0,则x =-1,∴点A 的坐标为(-1,0). ∴AB =22+12= 5.(第22题)22.(8分)如图,在直角坐标系中,点A 在第一象限,点B 的坐标为(3,0),OA =2,∠AOB =60°.(1)求点A 的坐标;(2)若直线AB 交y 轴于点C ,求△AOC 的面积. 【解】 (1)过点A 作AM ⊥OB 于点M . ∵∠AOM =60°,∴∠OAM =30°, ∴OM =12OA =12×2=1.∴AM =OA 2-OM 2=22-12= 3.∴点A 的坐标为(1,3).(2)设直线AB 的函数表达式为y =kx +b ,把点A (1,3),B (3,0)的坐标代入y =kx +b ,得⎩⎪⎨⎪⎧k +b =3,3k +b =0,解得⎩⎨⎧k =-32,b =3 32,∴y =-32x +3 32. 当x =0时,y =3 32,∴点C 的坐标为⎝⎛⎭⎫0,3 32.∴S △AOC =12×1×3 32=3 34.23.(8分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.(第23题)根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4 h 时与甲地的距离. 【解】 (1)这辆汽车往、返速度不同.∵往、返路程相等,去时用了2 h ,返回时用了2.5 h , ∴往、返速度不同.(2)设返程中y 与x 之间的表达式是y =kx +b , 把(2.5,120),(5,0)代入,得⎩⎪⎨⎪⎧2.5k +b =120,5k +b =0,解得⎩⎪⎨⎪⎧k =-48,b =240. ∴y = -48x +240(2.5≤x ≤5). (3)当x =4时,y =-48×4+240=48.即这辆汽车从甲地出发4 h 时与甲地的距离为48 km.24.(8分)设关于x 的一次函数y =a 1x +b 1与y =a 2x +b 2,则称函数y =m (a 1x +b 1)+n (a 2x +b 2)(其中m +n =1)为这两个函数的生成函数.(1)当x =1时,求函数y =x +1与y =2x 的生成函数的值;(2)若函数y =a 1x +b 1与y =a 2x +b 2的图象的交点为P ,判断点P 是否在这两个函数的生成函数的图象上,并说明理由.【解】 (1)当x =1时,y =m (1+1)+n ×2=2m +2n =2. (2)点P 在这两个函数的生成函数的图象上.理由如下: 设点P 的坐标为(a ,b ). ∵a 1·a +b 1=b ,a 2·a +b 2=b ,∴当x =a 时,y =m (a 1·a +b 1)+n (a 2·a +b 2)=mb +nb =b (m +n )=b . ∴点P 在这两个函数的生成函数的图象上.25.(10分)阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线.我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①.观察图①可以得出:直线x =1与直线y =2x +1的交点P 的坐标(1,3)就是方程组⎩⎪⎨⎪⎧x =1,2x -y +1=0的解,所以这个方程组的解为⎩⎪⎨⎪⎧x =1,y =3.在平面直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③.(第25题)回答下列问题:(1)在平面直角坐标系中,用作图的方法求出方程组⎩⎪⎨⎪⎧x =-2,y =-2x +2的解;(2)用阴影表示⎩⎪⎨⎪⎧x ≥-2,y ≤-2x +2,y ≥0,并求出阴影部分的面积.【解】 (1)在坐标系中分别作出直线x =-2和直线y =-2x +2,如解图①所示,这两条直线的交点是P(-2,6).∴方程组⎩⎪⎨⎪⎧x =-2,y =-2x +2的解是⎩⎪⎨⎪⎧x =-2,y =6.(第25题解①)(2)如解图②中的阴影所示.(第25题解②)∴S 阴影=12×3×6=9.期末综合自我评价 (这是单页眉,请据需要手工删加)一、选择题(每小题2分,共20分)(第1题)1.将一副直角三角尺按如图所示的方式叠放在一起,则图中∠α的度数是(C ) A .45° B .60° C .75° D .90°2.将不等式组⎩⎪⎨⎪⎧x ≤2,x >-1的解表示在数轴上,正确的是(D )3.下列定理中,没有逆定理的是(B ) A. 两直线平行,内错角相等 B. 全等三角形的对应角相等 C. 在一个三角形中,等边对等角D. 在直角三角形中,两条直角边的平方和等于斜边的平方 4.用尺规作图不能作出唯一直角三角形的是(B ) A. 已知两直角边B. 已知两锐角C. 已知一直角边和一锐角D. 已知斜边和一直角边5.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的(B)A.南偏西50°方向B.南偏西40°方向C.北偏东50°方向D.北偏东40°方向(第6题)6.如图,两条平行的直线AB和CD被直线MN所截,交点分别为E,F,点G为射线FD上的一点,且EG=EF.若∠EFG=45°,则∠BEG等于(B)A.30°B.45°C.60°D.90°7.关于x的不等式2x-a≤-1的解如图所示,则a的值是(D)(第7题)A. 0B. -3C. -2D. -1(第8题)8.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b>0;④当x<3时,y1<y2.其中正确的有(C)A.0个B.1个C.2个D.3个9.直线y=x-1与x轴、y轴分别交于A,B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有(C)A.4个B.5个C.7个D.8个【解】如解图中小实点,共有7个.,(第9题解))10.如图,在一次越野赛跑中,当小明跑了9 km时,小强跑了5 km,此后两人匀速跑的路程s(km)和时间t(h)的关系如图所示,则由图上的信息可知s1的值为(B)(第10题)A.29 km B.21 kmC.18 km D.15 km【解】∵小明开始跑了9 km,∴图象过(0,9).设小明跑的路程s和时间t之间的函数表达式是s=at+9,同理,设小强跑的路程s和时间t之间的函数表达式是s=kt+5.根据图象可知,当t =1时,s 的值相等, ∴a +9=k +5, ∴a =k -4,即小明:s =(k -4)x +9,小强:s =kx +5.根据图象可知,小明跑3 h 时和小强跑2 h 时路程都是s 1, ∴2k +5=3(k -4)+9=s 1, 解得k =8,∴k -4=4, ∴s 1=2k +5=2×8+5=21(km). 二、填空题(每小题3分,共30分)11. 不等式组⎩⎪⎨⎪⎧3x +2≥-x ,x ≤2的解是-12≤x ≤2.12.将点P (-2,y )先向下平移4个单位,再向左平移2个单位后得到点Q (x ,-1),则x +y =-1.13. 若将点A (m ,2)向右平移6个单位,所得的像与点A 关于y 轴对称,则m =__-3__. 14.已知a ,b ,c 是△ABC 的三边长,且满足关系式c 2-a 2-b 2+|a -b |=0,则△ABC 的形状为等腰直角三角形.15.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是1<AD <4.(第16题)16. 如图,已知直线AD ,BC 交于点E ,且AE =BE ,欲证明△AEC ≌△BED ,需添加的条件可以是CE =DE (答案不唯一)(只填一个即可).17.线段MN 平行于x 轴,且MN 的长度为5,若M (2,-2),那么点N 的坐标是(7,-2)或(-3,-2).18.某学校为部分外地学生免费安排住宿,如果每间住5人,那么有12人安排不下;如果每间住8人,那么有1间房还余一些床位.该校住宿的学生有37或42人.【解】 设有x 间房,则0<5x +12-8(x -1)<8,解得4<x <203,∴x =5或6,∴有5×5+12=37(人)或6×5+12=42(人).(第19题)19.如图所示,某警察在点A(-2,4)接到任务,前去阻截在点B(-10,0)的劫包摩托车.劫包摩托车从点B 处沿x 轴向原点方向匀速行驶,警察立即拦下一辆摩托车前去阻截.若两辆摩托车行的驶速度相等,则警察最快截住劫包摩托车时的坐标为(-5,0).【解】 由题意,设在x 轴上点P(x ,0)处截住劫包摩托车,则AP =BP =x -(-10)=x +10,∴(x +10)2=[x -(-2)]2+42,解得x =-5.∴P(-5,0).(第20题)20.如图,在△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到点A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,锐角∠A n 的度数为80°2-.【解】 由∠B =20°,AB =A 1B 得∠BA 1A =180°-20°2=80°.∵A 1A 2=A 1C ,∴∠A 1CA 2=∠A 1A 2C ,∴由∠BA 1A =∠A 1CA 2+∠A 1A 2C ,得∠A 1A 2C =80°2,同理,∠A 2A 3D =80°4,…,∠A n =80°2n -1.三、解答题(共50分)21.(6分)解不等式组⎩⎪⎨⎪⎧2(x -1)≤3x +1,x 3<x +14,并用数轴表示它的解.【解】 ⎩⎪⎨⎪⎧2x -2≤3x +1,4x <3(x +1),解得⎩⎪⎨⎪⎧x ≥-3,x <3.∴不等式组的解为-3≤x <3. 它的解在数轴上表示如下:(第21题解)(第22题)22.(6分)如图,BE ⊥AE ,CF ⊥AE ,垂足分别是E ,F ,ME =MF.求证:AM 是△ABC 的中线. 【解】 ∵BE ⊥AE ,CF ⊥AE , ∴∠E =∠CFM =90°.∵∠BME =∠CMF ,ME =MF , ∴△CFM ≌△BEM (ASA ). ∴BM =CM , ∴M 是BC 的中点. ∴AM 是△ABC 的中线.(第23题)23.(6分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(-2,2).现将△ABC平移,使点A变换为点A′,点B,C的对应点分别是B′,C′.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′,C′的坐标:B′(-4,1),C′(-1,-1);(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是(a-5,b-2).24.(6分)如图是第七届国际数学教育大会的会徽.它的主体图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰直角三角形,且OA1=A1A2=A2A3=A3A4=…=A8A9=1.(第24题)(1)请先把图中的8条线段的长度计算出来,填在下面的表格中:OA2OA3OA4OA5O A6OA7OA8OA92 3 2 5 6 7 2 2 3(2)设△OA 1A 2,△OA 2A 3,△OA 3A 4,…,△OA 8A 9的面积分别为S 1,S 2,S 3,…,S 8,计算S 21+S 22+S 23+…+S 28的值.【解】 (2)S 1=1×12=12,S 2=1×22=22,S 3=1×32=32,…,S 8=1×82=82,∴S 21+S 22+S 23+…+S 28=⎝⎛⎭⎫122+⎝⎛⎭⎫222+⎝⎛⎭⎫322+…+⎝⎛⎭⎫822=14(1+2+3+…+8)=9.(第25题)25.(8分)为了鼓励小王勤做家务,培养他的劳动意识,小王每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小王每月的家务劳动时间为x(h),该月可得(即下月他可获得)的总费用为y 元,y (元)和x (h)之间的函数图象如图所示.(1)根据图象,请你写出小王每月的基本生活费为多少元.父母是如何奖励小王做家务劳动的? (2)写出当0≤x ≤20时,相对应的y 与x 之间的函数表达式;(3)若小王5月份希望有250元费用,则小王4月份需做家务多少时间? 【解】 (1)小王父母给小王的每月基本生活费为150元.如果小王每月家务劳动时间不超过20 h ,每小时获奖励2.5元; 如果小王每月家务劳动时间超过20 h ,那么20 h 按每小时2.5元奖励,超过部分按每小时4元奖励(注:答案不唯一,只要言之有理即可).(2)y =2.5x +150.(3)当x ≥20时,可求得y 与x 之间的函数表达式是y =4x +120. 由题意,得4x +120=250, 解得 x =32.5.答:小王4月份需做家务32.5 h.26.(9分)某电脑公司经销甲种型号电脑,随着科技的进步,电脑价格不断下降,今年3月份的甲种电脑售价比去年同期每台下降1000元.如果卖出相同数量的甲种电脑,去年的销售额为10万元,今年的销售额只有8万元.(1)今年3月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 的值应是多少?此时,哪种方案对公司更有利?【解】 (1)设今年3月份甲种电脑每台售价x 元,则100000x +1000=80000x ,解得x =4000.经检验,x =4000是原方程的根, ∴今年3月份甲种电脑每台售价4000元.(2)设购进甲种电脑x 台,则48000≤3500x +3000(15-x )≤50000,解得6≤x ≤10. ∵x 的正整数解为6,7,8,9,10, ∴共有5种进货方案. (3)设总获利为W 元,则W =(4000-3500)x +(3800-3000-a )(15-x )=(a -300)x +12000-15a .当a =300时,(2)中所有方案获利相同,此时,购买甲种电脑6台,乙种电脑9台对公司更有利. 27.(9分)如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是长方形,点A ,C ,D 的坐标分别为A (9,0),C (0,4),D (5,0),点P 从点O 出发,以每秒1个单位长度的速度沿O →C →B →A 运动,点P 的运动时间为t (s).(第27题)(1)当t =2时,求直线PD 的表达式;(2)当点P 在BC 上,OP +PD 有最小值时,求点P 的坐标;(3)当t 为何值时,△ODP 是腰长为5的等腰三角形(直接写出t 的值)? 【解】 (1)当t =2时,点P 的坐标为(0,2). 设直线PD 的表达式为y =kx +b , 则⎩⎪⎨⎪⎧b =2,5k +b =0, 解得⎩⎪⎨⎪⎧k =-25,b =2. ∴y =-25x +2.(2)作点O 关于直线BC 对称的对称点O′,此时O ′(0,8),连结O′D 交BC 于点P ,此时OP +PD 的值最小.设直线O′D 的表达式为y =mx +n ,则⎩⎪⎨⎪⎧n =8,5m +n =0,解得⎩⎪⎨⎪⎧m =-85,n =8.∴y =-85x +8.令y =4,则x =2.5,∴P (2.5,4). (3)t =6或t =7或t =12或t =14.。
第2章自我评价、选择题(每小题3分,共30分)1.在下列标志中,属于轴对称图形的是(B )2•下列四组线段能构成直角三角形的是 (D ),两直线平行;②全等三角形的周长相等;③直角(B )A . 1个B . .2个C .3个D . 4个4. 如图, A B // CD , A D =CD , Z 1 =70°,则Z 2的度数是(C ) A . 20° B.35 °C . 40° D.70 °5.如图,已知 OP 平分/ AOB , Z AOB = 60° , CP = 2, CP // OA , PD 丄 OA 于点 D , PE 丄OB 于点E .如果M 是OP 的中点,那么DM 的长是(C )B ..2C ..3▽0C. D.C . a = 1, b = 2,a = 2,b = 4,c = 5 D . a = 2, b = 3, a = 3, b = 4, c = 4c = 53. 都相等; 有下列命题:①同位角相等④等边对等角.其中逆命题是真命题的有 A. B.1/(第6题)6•如图,在厶ABC中,Z C = 90° , Z B= 30° ,以点A为圆心,任意长为半径1画弧,分别交AB, AC于点M和N,再分别以点M , N为圆心,大于qMN长为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的个数是(D)①AD是Z BAC的平分线;②Z ADC = 60°;③点D在AB的中垂线上;④ &DAC:S^ABC = 1 : 3 •A • 1 B• 2 C. 3 D. 47•如图,将一把含45°角的三角尺的直角顶点放在一张宽为 3 cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角尺的一边与纸带的一边所在的直线成30°角,则三角尺的最大边长为(D)A • 3 cm B• 6 cmC. 18 cmD. 72 cm【解】如解图,过点C作CD丄AD于点D , 贝V CD = 3 cm.在Rt △ ADC 中,vZ CAD = 30°, /.AC= 2CD = 2X 3= 6(cm).T该三角尺是含45角的三角尺,•••/BAC = 90°, AB= AC = 6 cm ,/•BC= ' AB2+ AC2=_ 62+ 62= 72(cm).8.如图,在厶ABC 中,AB = AC = BD , DA = DC ,则/ B 的度数为(C )A . 22. 5°B . 30°C . 36°D . 45° [解]设/B = x . °.°AB = AC , .^zC = Z B = x .T DA = DC ,「.Z DAC = Z C = x .•••ZADB = Z C +Z DAC = 2x . °.°AB = BD , .°.ZBAD = Z ADB = 2x . 在厶 ABD 中,vZ B = x , ZADB = Z BAD = 2x , •••x + 2x + 2x = 180;解得 x = 36°,即 Z B = 36°. 9.如图,等边三角形ABC 的边长为4, AD 是BC 边上的中线,F 是线段AD 上的 动点,E 是AC 边上一点•若 AE = 2,当EF + CF 取得最小值时,Z ECF 的度数为(C ) 【解] 如解图,过点E 作EM II BC ,交AB 于点M ,则 Z AME = Z B , ZAEM =Z ACB .A . 20°B . 25°目 D 匸(第9题解)ABD C (第8题)C .(第9题)•••必BC是等边三角形,•••/B =Z ACB = 60°AB = AC= BC= 4.•••zAME = Z AEM = 60 ° • AM = AE= 2.•••BM = AB —AM = 2.TAD是BC边上的中线,/-AD丄BC.TEM //BC, /AD丄EM .•••点E和点M关于AD对称.连结CM交AD于点F,连结EF,则此时EF+ CF的值最小.VAC= BC, AM = BM ,1•••左CF = 2/ ACB= 30°.10. 如图,在四边形ABCD中,AC平分Z BAD , CE丄AB于点E, Z ADC +Z ABC=180° ,有下列结论:① CD = CB :② AD + AB = 2AE :③上ACD = Z BCE;④ AB —AD = 2BE.其中正确的是(C)A •② B. ①②③C. ①②④D. ①②③④导学号:91354016F巴舟(第10题解)【解】如解图,在EA上取点F,使EF= BE,连结CF.••CE丄AB , EF= BE,•••CF= CB, •••JCFB =Z B .VzAFC + Z CFB = 180°ZADC + Z ABC = 180°/-ZD =Z AFC .•••AC 平分Z BAD , .//DAC = Z FAC .Z D = / AFC ,在厶ACD 和厶ACF 中,• ZDAC = / FAC ,AC = AC ,•••必CD ^z ACF(AAS).「•AD = AF , CD = CF. •• CD = CB,故①正确.AD + AB = AF + (BE + AE) = AF + EF + AE = AE + AE = 2AE ,故②正确.根据已知条件无法证明 / ACD = / BCE ,故③错误.AB —AD = AB —AF = BF = 2BE,故④正确.综上所述,正确的是①②④.二、填空题(每小题3分,共30分)11. 如图,在厶ABC 中,AB = AC , AD 是中线.若Z B = 60° ,则Z BAD =30°的长12. 如图,在等腰△ ABC中,AB = AC = 10 cm, BC = 12 cm,贝V BC边上的高AD 是__^8__ cm.13. 如图,AB II CD , FE丄DB ,垂足为E.若Z 1 = 50° ,则Z 2的度数为_40,(第11题)),(第1314. 如图,在厶ABC 中,BO , CO 分别是/ ABC , Z ACB 的平分线,且它们相交 于点 O , OE II AB , OF // AC , BC = 10,则厶 OEF 的周长为 __10__.【解】 v OB , OC 分别是Z ABC , ZACB 的平分线, •••ZABO = Z CBO , ZACO = Z BCO . ••OE //AB , OF //AC ,•••ZABO =Z BOE , ZACO = Z COF , •••ZCBO = Z BOE , ZBCO =Z COF , •••BE = OE , OF = FC ,•幻EF 的周长=OE + EF + OF = BE + EF + FC = BC = 10.15. 如图,在厶 ABC 中,D 是 BC 上一点,AC = AD = DB , Z BAC = 102° ,则Z ADC=52°.【解】 v AC = AD = DB , • Z B =Z BAD , ZADC =Z C .a设 Z ADC = a,则 Z B = Z BAD = 2.avZ BAC = 102° , •zDAC =曲冠• Z ADC +Z C +Z DAC = 180° , •••2a+ 102 ° a= 180 ;(第15题)解得a= 52° ,即Z ADC= 52°.16. 如图,已知△ ABC的周长是21, BO , CO分别平分Z ABC和Z ACB , OD丄BC ,垂足为D ,且OD = 3,则厶ABC的面积是__63__.D C,(第16 题)) B b C,(第16题解))【解】如解图,过点0作0E丄AB , OF丄AC ,垂足分别为E, F,连结OA. 由角平分线的性质知0D = 0E= OF,1111--S^ABC = S ZAOB + S ZBOC + S A AOC = qAB - OE + qBC • OD + qAC • OF = 2(AB + BC +1 63AC) -OD= 2X21 X 3= 2 .17. 如图,在厶ABC中,AB = AC = 5, BC = 6.若点P在边AC上移动,贝V BP 的最小值是24.【解】过点A作AD丄BC于点D ,如解图.°.°AB = AC = 5, BC = 6 ,•••BD = ^BC = 3, /AD = AB2—BD2= 4 .易得当BP丄AC时,BP有最小值.1 1此时2AD-BC = 2BP -AC ,e 24得4X 6= 5BP, /.BP=5.18. 如图是两把完全一样的含30°角的三角尺,分别记做厶ABC与厶A B',现将两把三角尺重叠在一起,设较长直角边的中点为M ,绕中点M转动上面的三角尺ABC ,使其直角顶点C恰好落在三角尺A B'的斜边A吐•当/ A = 30° , AC = 10 时,两直角顶点C, C'间的距离是__5__..J1的中点AC = A ' CIO ,1「•CM = A 'M= C 'M= qAC = 5,zA 'CM = Z A '= 30° •••/CMC '=60°.•••△MCC '为等边三角形.•••C ' C CM = 5 .19. 按如图所示的方式作正方形和等腰直角三角形. 若第一个正方形的边长 AB = 1, 第一个正方形与第一个等腰直角三角形的面积和为 S 1,第二个正方形与第二个等腰直角5三角形的面积和为S 2……则第n 个正方形与第n 个等腰直角三角形的面积和 S n = 巧2 +【解】 易得第一个正方形的面积为 1,【解】 如解图,连结C C.(第18题解)(第19题)第一个等腰直角三角形的面积为1第二个正方形的面积为第二个等腰直角三角形的面积为•••第n个正方形的面积为X 1 =2n_ 1,11第n个等腰直角三角形的面积为| 0 'x4=十,•••第n个正方形与第n个等腰直角三角形的面积和S n= 2 "十士 =沽(第20题)20. 如图,正方形ABDE ,正方形CDFI ,正方形EFGH的面积分别为25, 9, 16, △ AEH,△ BDC,△ GFI 的面积分别为S i,S2,S3,则S1 + S2 + S a= 18 .导学号:91354017【解】过点A作AK丄HE,交HE的延长线于点K.2 2 2易得DE2= 25, DE2= 9, EF2= 16,2 2 2•••DE2= DF2+ EF2,•ZDEF是直角三角形,且/ DFE = 90°.易得Z AEK + Z DEK = Z DEK + Z DEF = 90 ;•zAEK =Z DEF .又••• AE = DE, Z K =ZDFE = 90°,AEKDEF (AAS), •••AK = DF .又••• EH = EF,1 1•••S^AHE= 2EH •K = ^EF DF = S ZDEF. 同理, S/BDC = S A GFI = S/DEF , •°S + S2+ S3= 3S/D EF .易得DF = 3 , EF= 4,= 2X3 X 4= 6,「•S ADEF•°S + S2 + S3= 3X 6= 18.三、解答题洪40分)21. (6分)如图,AD = BC, AC = BD .求证:△ EAB是等腰三角形.(第21题)【解】在厶ADB和厶BCA中,AD = BC,•/ BD = AC ,AB = BA ,•••必DB 也A CA(SSS),•/DBA = Z CAB ,•ZEAB是等腰三角形.A22. (6分)如图,△ ABC为等边三角形,DE丄BC, EF丄AC , FD丄AB ,垂足分别为E, F, D,则厶DEF是等边三角形吗?请说明理由.【解】△ DEF是等边三角形.理由如下:VDE丄BC , EF丄AC , FD丄AB , A ABC为等边三角形,•zA = 60 °° ZADF = Z CFE= 90 °°•zAFD = 30° ,•••ZDFE = 180 ° 30 - 90 = 60同理,ZFDE = Z DEF = 60•••ZDEF是等边三角形.1(第23题)23. (8分)如图,在厶ABC中,AB = AC,点E在CA的延长线上,Z E=Z AFE , 请判断EF与BC的位置关系,并说明理由.【解】EF丄BC .理由如下:过点A作AD丄BC于点D,延长EF交BC于点G.VAB = AC , AD 丄BC ,•••/BAC = 2Z CAD .又VZ BAC = Z E+ Z AFE , ZE= Z AFE ,••/BAC = 2Z E,•••ZCAD =Z E, /.AD //EF.又VZ ADC = 90°•••ZEGC= 90°即EF±BC .24. (10分)已知△ ABC和厶ADE是等腰直角三角形,Z ACB =Z ADE = 90° , F 为BE的中点,连结DF, CF.(1)如图①,当点D在AB上,点E在AC上,请直接写出此时线段DF , CF的数量关系和位置关系.⑵如图②,在⑴的条件下将△ ADE绕点A顺时针旋转45°,请你判断此时⑴中的结论是否仍然成立,并证明你的判断.⑶如图③,在(1)的条件下将△ ADE绕点A顺时针旋转90°,若AD = 1, AC = 8, 求此时线段CF的长(直接写出结果).(第24题)【解】(1)T/ ACB = Z ADE = 90° F为BE的中点,1 1•••DF = BF = 2BE, CF = 2BE, :.DF = CF.•••必BC是等腰直角三角形,•/ABC = 45°.TBF = DF , •••/DBF = / BDF .v/DFE = / DBF + / BDF ,.•Z DFE = 2 / DBF .同理,ZCFE= 2/CBF ,.•Z DFE + / CFE= 2/ DBF + 2/ CBF = 2ZABC = 90°,「.DF丄CF.(2) (1)中的结论仍然成立•证明如下:如解图①,延长DF交BC于点G.VzADE =/ACB = 90° /.DE //BC,••/DEF = / GBF, ZEDF = / BGF.VF 为BE 的中点,/-EF= BF ,• ZDEF ^z GBF(AAS),•••DE = GB , DF = GF.°.°AD = DE ,「.AD = GB .TAC = BC , /.AC —AD = BC —GB,即DC = GC.VzACB = 90° ./Z DCG是等腰直角三角形.••DF = GF, /.DF = CF, DF 丄CF.D(第24题解)⑶如解图②,延长DF交BA于点H .•••△ ABC和厶ADE是等腰直角三角形,••• AC = BC, AD = DE , Z AED =Z ABC = 45由旋转可知/ CAE = Z BAD =Z ACB = 90° ,• AE II BC,•Z AEB =Z CBE , /.Z DEF = Z HBF .T F是BE的中点,• EF = BF.又vZ DFE = Z HFB ,•△DEFHBF(ASA) , • ED = BH .v BC = AC = >/8, Z ACB = 90°, • AB = 4.v BH = ED = AD = 1, • AH = 3.vZ BAD = 90°, • DH =伍,•DF = ¥,••• CF =于25. (10分)问题探究:⑴如图①,在锐角△ ABC中,分别以AB , AC为边向外作等腰三角形ABE和等腰三角形ACD ,使AE = AB , AD = AC , Z BAE =Z CAD ,连结BD , CE,试猜想BD 与CE的大小关系,并说明理由.深入探究:⑵如图②,在四边形ABCD 中,AB =乙BC= 3, Z ABC =Z ACD =Z ADC = 45求BD的长.(3) 如图③,在(2)的条件下,当厶ACD在线段AC的左侧时,求BD的长.(第25题)导学号:91354018【解】(1)BD = CE.理由如下:v/BAE = Z CAD ,•••/BAE + Z BAC = Z CAD + Z BAC , 即Z EAC = Z BAD .AE = AB ,在厶EAC 和厶BAD 中,v ZEAC = Z BAD ,AC = AD ,• ZEAC 也zBAD(SAS) , /.BD = CE.(2)如解图①,在厶ABC的外部作等腰直角三角形BAE ,使Z BAE = 90° AE = AB , 连结EC.vZ ACD =Z ADC = 45°•••AC = AD , ZCAD = 90°• Z BAE + Z BAC = Z CAD + Z BAC , 即Z EAC = Z BAD .AE = AB ,在厶EAC 和厶BAD 中,v ZEAC = Z BAD , AC = AD ,• ZEAC 也Z AD(SAS) , .-.EC= BD .TAE = AB = 7, /.BE = 7 + 72= 98.易知Z ABE = 45° 又vZ ABC = 45°•••ZCBE = 45°445°=90°•••EC= ‘BE2+ BC2 = - ( 98) 2+ 32= .107,•••BD = EC = , 107.①(第25题解)⑶如解图②,在线段AC的右侧过点A作AE丄AB ,交BC的延长线于点E. ••• AE 丄AB , •••/ BAE = 90°.又K ABC = 45° , •••/ E=Z ABC = 45° ,•AE = AB = 7, • BE = 72+ 72= 98.vZ ACD =Z ADC = 45° ,.•Z DAC = 90°=Z BAE ,•Z BAE —Z BAC =Z DAC — Z BAC ,即Z EAC =Z BAD .AE = AB ,在厶EAC 和厶BAD 中,v Z EAC = Z BAD ,AC = AD ,•△ EAC BAD(SAS) , • EC= BD .又v BC = 3, • BD = EC= BE —BC = .98—3 .。
第2章• 素养综合检测卷(考查范围:第2章 时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1. 【跨学科·语文】甲骨文是中国的一种古代文字,下列是“北”“比”“鼎”“射”四个字甲骨文的大致写法,其中不是轴对称图形的是( )A B C D2. (2023浙江杭州大关中学联考)在△ABC中,它的三边长分别为a,b,c,条件:①∠A=∠C-∠B;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=3∶4∶5;④a∶b∶c=1∶2∶2中,能确定△ABC是直角三角形的有( )A. 1个B. 2个C. 3个D. 4个3. 【新定义试题】(2023浙江杭州拱墅月考)若一个等腰三角形的一条边长是另一条边长的k倍,我们把这样的等腰三角形叫做“k倍边等腰三角形”.如果一个等腰三角形是“4倍边等腰三角形”,且周长为18 cm,则该等腰三角形的底边长为( )A. 12 cmB. 12 cm或2 cmC. 2 cmD. 4 cm或12 cm4. 【一题多解】(2023浙江杭州第十四中学附属学校期中)如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则( )A. 2α+3β=180°B. 3α+2β=180°C. β+2γ=90°D. 2β+γ=90°5. 【跨学科·科学】如图,某自动感应门的正上方A处装着一个感应器,离地2.5米(AB=2.5米),当人体进入感应器的感应范围时,感应门就会自动打开.一个身高为1.6米的学生CD正对门,走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则学生头顶离感应器的距离AD等于( )A. 1.2米B. 1.5米C. 2.0米D. 2.5米6. (2023浙江兰溪外国语中学期中)如图,△ABC中,AC=8,点D,E分别在BC,AC上,F是BD的中点.若AB=AD,EF=EC,则EF的长是( )A. 3B. 4C. 5D. 67. (2023浙江宁波海曙雅戈尔中学期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=9,AB=15,则CE的长为( )A. 4B. 92C. 245D. 58. 【数学文化】(2023浙江余姚梨洲中学期中)勾股定理是人类最伟大的科学发现之一,在中国古算书《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两个正方形按图②所示的方式放置在最大的正方形内.若知道图中阴影部分的面积,则一定能求出( )图① 图②A. 直角三角形的面积 B. 最大正方形的面积C. 较小两个正方形重叠部分的面积 D. 最大正方形与直角三角形的面积差二、填空题(每小题4分,共24分)9. (2023浙江杭州中学期中)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 .它是 命题(填“真”或“假”).10. 【新考法】(2022浙江嘉兴中考)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件: .11. (2022湖南株洲中考)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO= 度.12. (2023浙江杭州十三中教育集团检测)如图,在等边三角形ABC的边AB,AC上各取一点D,E,连结CD,BE交于点F,使∠EFC=60°,若BD=1,CE=2,则BC= .13. 【新独家原创】如图,△ABC的边AB,AC的垂直平分线l1与l2分别交BC于点D,E,且l1与l2交于点O,过点O作OF⊥BC于点F,BF=5 cm,则△ADE的周长为 .14. (2023浙江宁波鄞州七校联考)如图,在△ABC中,∠C=90°,BC=6 cm,AC=8 cm,BD是∠ABC的平分线.(1)CD= cm;(2)若点E是线段AB上的一个动点,从点B以每秒1 cm的速度向A 运动, 秒时△EAD是直角三角形.三、解答题44分)15. (2023浙江杭州大关中学、风帆中学、春蕾中学联考)(8分)如图,网格中每个小正方形的边长都为1,点A、B、C均在格点上.(1)画出与△ABC关于直线l成轴对称的△A'B'C';(2)求△ABC的面积.16. (2023浙江杭州观成教育集团期中)(10分)如图,△ABC为等腰直角三角形,∠ACB=90°,E是AC上一点,D是BC延长线上一点,连结AD.(1)若AD=BE,求证:∠CBE=∠CAD;(2)若BC=2,△ABD是等腰三角形,求CD的长.17. (2022浙江杭州中考)(12分)如图,在Rt△ACB中,∠ACB=90°,点M 为边AB的中点,点E在线段AM上,EF⊥AC于点F,连结CM,CE.已知∠A=50°,∠ACE=30°(在直角三角形中,30°角所对的直角边等于斜边的一半).(1)求证:CE=CM;(2)若AB=4,求线段FC的长.18. 【项目式学习试题】(2023浙江宁波海曙雅戈尔中学期中)(14分)【概念学习】规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.【理解概念】(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中的“等角三角形”;【概念应用】(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的“等角分割线”;(3)在△ABC中,∠A=42°,CD是△ABC的“等角分割线”,直接写出∠ACB 的度数.图1 图2答案全解全析1. B 根据轴对称图形的概念可得,选项B中的图形不是轴对称图形.故选B.2. A ∵∠A=∠C-∠B,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故①符合题意;∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∴∠A=∠B=72°,∴△ABC不是直角三角形,故②不符合题意;∵∠A∶∠B∶∠C=3∶4∶5,∠A+∠B+∠C=180°,=75°,∴△ABC不是直角三角形,故③不符合题意;∴∠C=180°×53+4+5∵a∶b∶c=1∶2∶2,∴设a=k,b=2k,c=2k,∴a2+b2=k2+(2k)2=3k2,c2=(2k)2=2k2,∴a2+b2≠c2,∴△ABC不是直角三角形,故④不符合题意.∴能确定△ABC是直角三角形的条件有1个.故选A.3. C 设该等腰三角形较短边的长为x cm(x>0),则较长边的长为4x cm.①当腰长为x cm时,∵x+x<4x,∴x,x,4x不能组成三角形;②当腰长为4x cm时,4x,4x,x能够组成三角形,∵4x+4x+x=18,∴x=2,∴该等腰三角形的底边长为2 cm.故选C.4. D 解法一(利用直角三角形的性质):∵AD=DC,∴∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90°,∵∠CDE=γ,∠AED=∠CDE+∠C,∴∠AED=γ+β,∴2β+γ=90°.故选D.解法二(利用平角的定义):∵AD=DC,∴∠C=∠CAD=β,∴∠ADB=∠C+∠CAD=2β,∵DE⊥AD,∴∠ADE=90°,∴∠ADB+∠CDE=90°,即2β+γ=90°.故选D.5. B 如图,过点D作DE⊥AB于点E,易知BE=CD=1.6米,ED=BC=1.2米,∴AE=AB-BE=2.5-1.6=0.9(米),在Rt△ADE中,AD2=AE2+DE2,∴AD=1.5米.故选B.6. B 如图,连结AF,∵AB= AD,F是BD的中点,∴AF⊥BD,∴∠AFD=90°,∴∠EAF+∠C=90°,∠AFE+∠EFC=90°,∵EF=EC,∴∠EFC=∠C,∴∠EAF=∠AFE,∴EA=EF,∴EF=EA=EC=12 AC=4.故选B.7. B 过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CAF+∠CFA=90°,∠CDA=90°,∴∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵在Rt△ABC中,AC=9,AB=15,BC2=AB2-AC2,∴BC=12,在Rt △ACF 和Rt △AGF 中,AF =AF ,FC =FG ,∴Rt △ACF ≌Rt △AGF(HL),∴AG=AC=9,∴BG=15-9=6,设CE=x,则FC=FG=x,∴BF=12-x,∵FG 2+BG 2=BF 2,即x 2+62=(12-x)2,解得x=92,即CE=92.故选 B.8. C 设直角三角形的斜边长为c,较长的直角边长为b,较短的直角边长为a,根据勾股定理得c 2=a 2+b 2,∴阴影部分的面积=c 2-b 2-a(c-b)=a 2-ac+ab=a(a+b-c),∵较小的两个正方形重叠部分的一边长=a-(c-b),其邻边长=a,∴较小的两个正方形重叠部分的面积=a·[a-(c-b)]=a(a+b-c)=阴影部分的面积,∴知道题图中阴影部分的面积,一定能求的是较小两个正方形重叠部分的面积.故选C.9. 答案 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真解析 该命题的条件为“一个三角形是直角三角形”,结论为“它斜边上的中线等于斜边的一半”,所以逆命题为“如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”,它是真命题.10. 答案 ∠B=60°(答案不唯一)解析 该题借助图形考查特殊三角形与三角形之间的关系,考查形式新颖.答案不唯一.如:根据“有一个角是60°的等腰三角形是等边三角形”可得∠B=60°.11. 答案 15解析 由题意知ON⊥BC,OM⊥AB,OM=ON,∴BO是∠ABC的平分线,∵∠ABC=30°,∴∠ABO=12∠ABC=15°.12. 答案 3解析 ∵△ABC为等边三角形,∴AB=CB=AC,∠A=∠ABC=60°,∴∠ABE+∠CBF=60°,又∵∠EFC=∠CBF+∠BCF=60°,∴∠ABE=∠BCF,在△ABE和△BCD中,∠A=∠DBC, AB=BC,∠ABE=∠BCD,∴△ABE≌△BCD (ASA),∴AE=BD,∴BC=AC=AE+CE=DB+CE=1+2=3.13. 答案 10 cm解析 连结OA,OB,OC,∵l1是AB边的垂直平分线,l2是AC边的垂直平分线,∴OA=OB,AD=BD,EA=EC,OA=OC,∴OB=OC,∴点O在线段BC的垂直平分线上,∵OF⊥BC,∴BC=2BF=10 cm,∴△ADE的周长=AD+AE+DE=BD+DE+EC=BC=10 cm.14. 答案 (1)3 (2)6或154解析 (1)如图1,过点D作DE⊥AB于E,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,∴AB=10 cm,∵BC⊥AC,DE⊥BE,BD是∠ABC的平分线,∴CD=DE,∵S △ABD =12AD·BC=12AB·DE,∴设CD=DE=x cm,则(8-x)×6=10x,解得x=3,即CD=3 cm.图1 图2(2)设t 秒时△EAD 是直角三角形,则BE=t cm.如图2,当ED ⊥AD 时,ED ∥BC,∴∠CBD=∠BDE,∵BD 为∠ABC 的平分线,∴∠CBD=∠EBD,∴∠BDE=∠EBD,∴DE=BE=t cm,由(1)知CD=3 cm,∴AD=5 cm,在Rt △ADE 中,由勾股定理得52+t 2=(10-t)2,解得t=154;当DE ⊥AB 时,由(1)得CD=DE,∵BD=BD,∴Rt △CBD ≌Rt △EBD(HL),∴BE=BC=6 cm,∴t=6.综上,t=6或154时△EAD 是直角三角形.15. 解析 (1)如图,△A'B'C'即为所求作.(2)△ABC 的面积=3×4-12×1×2-12×1×4-12×3×3=4.5.16. 解析 (1)证明:∵△ABC 为等腰直角三角形,∠ACB=90°,∴AC=BC,∠ACD=∠ACB=90°,在Rt △BCE 和Rt △ACD 中,BE =AD ,BC =AC ,∴Rt △BCE ≌Rt △ACD(HL),∴∠CBE=∠CAD.(2)当AB=AD时,∵AC⊥BD,∴CD=BC=2;当BD=AB时,在Rt△ABC中,AB2=AC2+BC2,∴AB=8,∴BD=AB=8,∴CD=BD-BC=8-2.不存在AD=BD的情况,∴CD的长为2或8-2.17. 解析 (1)证明:∵∠ACB=90°,点M为边AB的中点,∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B,∵∠A=50°,∴∠MCA=50°,∠MCB=∠B=40°,∴∠EMC=∠MCB+∠B=80°,∵∠ACE=30°,∴∠MEC=∠A+∠ACE=80°,∴∠MEC=∠EMC,∴CE=CM.AB=2,(2)∵AB=4,∴CE=CM=12CE=1,∵EF⊥AC,∠ACE=30°,∴EF=12在Rt△CEF中,FC2=CE2-EF2,∴FC=3.18. 解析 (1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”.(2)证明:∵在△ABC中,∠A=40°,∠B=60°,∴∠ACB=180°-∠A-∠B=80°,∵CD为角平分线,∠ACB=40°,∴∠ACD=∠DCB=12∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°-∠DCB-∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的“等角分割线”.(3)∠ACB的度数为111°或84°或106°或92°.详解:当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°;当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°;不存在△ACD是等腰三角形,AC=CD的情况;当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°;当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°-2x,则∠ACD=∠B=180°-2x,由题意得180°-2x+42°=x,解得x=74°,∴∠ACD=180°-2x=32°,∴∠ACB=106°;不存在△BCD是等腰三角形,DC=BC的情况.∴∠ACB的度数为84°或111°或92°或106°.。
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.112、如图,在⊙O中C为的中点,BC= ,O到AB的距离为1,则半径的长()A.2B.3C.4D.53、如图所示,该图案是经过( )A.平移得到的B.旋转或轴对称得到的C.轴对称得到的D.旋转得到的4、如图,已知是的角平分线,是的垂直平分线,,,则的长为()A.6B.5C.4D.5、如图,不是轴对称图形的是( )A. B. C. D.6、如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°7、已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°8、下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形符合题意命题的个数是()A. 个B. 个C. 个D. 个9、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.25°C.30°D.大于30°10、在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是 ( )A. B.1 C.2 D.11、在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+ 或11﹣D.11+ 或1+12、下列图形是轴对称图形的是()A. B. C. D.13、下列学习用具中,假如不考虑刻度文字,不是轴对称图形的为()A. B. C. D.14、如图,在中,为的中点,有下列四个结论:①;② ;③ ;④ .其中正确的结论有()A.1个B.2个C.3个D.4个15、如图,在△ABC中,∠ACB=90°,∠B=30°,D在AB上,E在CB上,A,C关于DE的对称点分别是G,F,若F在AB上,DG⊥AB,DG=2,则DE的长是()A.3 ﹣3B.3 ﹣C.4D.2二、填空题(共10题,共计30分)16、如图,已知扇形OAB的半径为9,点C在OA上,将△OBC沿BC折叠,点O 恰好落在上的点D处,且=2∶3,若扇形 O4B恰好是一个圆锥的侧面展开图,则该圆锥的底面直径为________.17、如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为________.18、如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为________.19、工人师傅在正中间立着一根圆形排水管的正方形地面(如图①)铺瓷砖,先裁出四块全等直角三角形ABC的瓷砖如图②,再在AB边上各切割一个弓形(阴影部分),然后围着排水管拼接而成(不重叠,无缝隙)如图③所示.已知∠BAC=90°,切割点分别为A1, A2, A3, A4, A5, A6, A7, A8,依次连接这8个点恰好组成正八边形,AB﹣AC=(4+2 )cm,则AA1=________cm;如果π取3,那么切去的每块弓形面积为________cm2.20、如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为________.21、在中,,,,把绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点、,如果恰好经过点A,那么点A与点的距离为________22、“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是4和2,则飞镖投到小正方形(阴影)区域的概率是________.23、如图,两个大小不同的三角板放在同一平面内,直角顶点重合于C点,点D在上,,与交于点,连接,若,,则________.24、如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为________米.25、如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则ΔABC最小周长为 ________ 。
第2章自我评价
一、选择题(每小题3分,共30分)
1.在下列标志中,属于轴对称图形的是(B)
2.下列四组线段能构成直角三角形的是(D)
A. a=1,b=2,c=3 B. a=2,b=3,c=4
C. a=2,b=4,c=5 D. a=3,b=4,c=5
3.有下列命题:①同位角相等,两直线平行;②全等三角形的周长相等;
③直角都相等;④等边对等角.其中逆命题是真命题的有(B)
A. 1个 B. 2个 C. 3个 D. 4个
4.如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是(C)
A.20° B.35°
C.40° D.70°
(第4题)
(第5题)
5.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果M是OP的中点,那么DM的长是(C)
A. 2 B. 2
C. 3 D. 2 3
(第6题)
6.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为
半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于1
2
MN长为
半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确
的个数是(D)
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S
△DAC
∶
S
△ABC
=1∶3.
A. 1 B. 2 C. 3 D. 4
7.如图,将一把含45°角的三角尺的直角顶点放在一张宽为3 cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角尺的一边与纸带的一边所在的直线成30°角,则三角尺的最大边长为(D)
A. 3 cm B. 6 cm
C.18 cm D.72 cm
(第7题)
(第7题解)
【解】如解图,过点C作CD⊥AD于点D,
则CD=3 cm.
在Rt△ADC中,
∵∠CAD=30°,∴AC=2CD=2×3=6(cm).
∵该三角尺是含45°角的三角尺,
∴∠BAC=90°,AB=AC=6 cm,
∴BC=AB2+AC2=62+62=72(cm).
(第8题)
8.如图,在△ABC中,AB=AC=BD,DA=DC,则∠B的度数为(C)
A.22.5° B.30°
C.36° D.45°
【解】设∠B=x.
∵AB=AC,∴∠C=∠B=x.
∵DA=DC,∴∠DAC=∠C=x.
∴∠ADB=∠C+∠DAC=2x.
∵AB=BD,∴∠BAD=∠ADB=2x.
在△ABD中,∵∠B=x,∠ADB=∠BAD=2x,
∴x+2x+2x=180°,解得x=36°,即∠B=36°.
9.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是线段AD 上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为(C)
A.20°B.25°C.30°D.45°。