高考数列近五年真题
- 格式:doc
- 大小:108.50 KB
- 文档页数:2
专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。
2024全国卷真题分类汇编(教师版)-数列1.(2024年新课标全国Ⅱ卷)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.2.(2024年高考全国甲卷数学(理))等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2【详解】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.3.(2024年高考全国甲卷数学(理))记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【详解】(1)当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13n n a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.(2)111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343n n T n =⋅+⋅+⋅++⋅所以1212443434343n n n T n --=+⋅+⋅++⋅-⋅ ()1313444313n n n --=+⋅-⋅-()14233143n n n -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.4.(2024年新课标全国Ⅰ卷)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【详解】(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k k a a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.。
数列考试题型及答案高中一、选择题1. 已知数列{a_n}是等差数列,且a_1=1,a_4=7,求a_7的值。
A. 13B. 15C. 10D. 7答案:A解析:根据等差数列的性质,a_4 = a_1 + 3d,其中d为公差。
已知a_1=1,a_4=7,可以求得公差d=(7-1)/3=2。
因此,a_7 = a_1 + 6d = 1 + 6*2 = 13。
2. 已知数列{a_n}是等比数列,且a_1=2,a_3=18,求a_5的值。
A. 72B. 108C. 144D. 162答案:C解析:根据等比数列的性质,a_3 = a_1 * q^2,其中q为公比。
已知a_1=2,a_3=18,可以求得公比q=√(18/2)=3。
因此,a_5 =a_1 * q^4 = 2 * 3^4 = 144。
二、填空题3. 已知数列{a_n}的前n项和为S_n,且S_n = 2^n - 1,求a_5的值。
答案:15解析:根据数列的前n项和公式,a_n = S_n - S_(n-1)。
已知S_n = 2^n - 1,可以求得S_5 = 2^5 - 1 = 31,S_4 = 2^4 - 1 = 15。
因此,a_5 = S_5 - S_4 = 31 - 15 = 16。
4. 已知数列{a_n}的通项公式为a_n = 3n - 2,求前5项的和。
答案:35解析:根据数列的通项公式,可以求得前5项分别为a_1=1,a_2=4,a_3=7,a_4=10,a_5=13。
因此,前5项的和为1+4+7+10+13=35。
三、解答题5. 已知数列{a_n}是等差数列,且a_1=2,a_3=8,求数列{a_n}的通项公式和前n项和公式。
答案:通项公式为a_n = 2 + 3(n-1) = 3n - 1;前n项和公式为S_n = n(2 + 3n - 1)/2 = 3n^2 - n。
解析:根据等差数列的性质,a_3 = a_1 + 2d,其中d为公差。
历年(2019-2024)全国高考数学真题分类(数列)汇编考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ). A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项D .无最大项,无最小项考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 .3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .293.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .154.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( )A .-1B .12-C .0D .125.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =-二、填空题 15.(2024∙全国新Ⅱ卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .16.(2022∙全国乙卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d = . 17.(2020∙山东∙高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为 .18.(2020∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S = .19.(2019∙江苏∙高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .20.(2019∙北京∙高考真题)设等差数列{an }的前n 项和为Sn ,若a 2=−3,S 5=−10,则a 5= ,Sn 的最小值为 .21.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = . 22.(2019∙全国∙高考真题)记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S = .考点04 等比数列及其前n 项和一、单选题 1.(2023∙全国甲卷∙高考真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =( ) A .158B .658C .15D .402.(2023∙天津∙高考真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =( )A .16B .32C .54D .1623.(2023∙全国新Ⅱ卷∙高考真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =( ). A .120B .85C .85-D .120-4.(2022∙全国乙卷∙高考真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( ) A .14B .12C .6D .35.(2021∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .106.(2020∙全国∙高考真题)设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A .12B .24C .30D .327.(2020∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n nS a =( )A .2n –1B .2–21–nC .2–2n –1D .21–n –18.(2020∙全国∙高考真题)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则 k =( ) A .2B .3C .4D .5二、填空题 11.(2023∙全国甲卷∙高考真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为 . 12.(2023∙全国乙卷∙高考真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a = . 13.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若13314a S ==,,则S 4= . 14.(2019∙全国∙高考真题)记Sn 为等比数列{an }的前n 项和.若214613a a a ==,,则S 5= .考点05 数列中的数学文化1.(2023∙北京∙高考真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a = ;数列{}n a 所有项的和为 .2.(2022∙全国新Ⅱ卷∙高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021∙全国新Ⅰ卷∙高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么1nk k S ==∑ 2dm .4.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .5.(2020∙全国∙高考真题)0‐1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0‐1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0‐1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0‐1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A .11010B .11011C .10001D .110016.(2020∙全国∙高考真题)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块考点06 数列求和1.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 2.(2021∙全国新Ⅱ卷∙高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则( ) A .()()2n n ωω= B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nn ω-=3.(2020∙江苏∙高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是 .参考答案考点01 数列的增减性1.(2022∙全国乙卷∙高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则( ) A .15b b < B .38b b <C .62b b <D .47b b <【答案】D【详细分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【答案详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误; 178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,,,47b b <故D 正确.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n nS a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2021∙全国甲卷∙高考真题)等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【详细分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案. 【答案详解】由题,当数列为2,4,8,--- 时,满足0q >, 但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件. 故选:B .【名师点评】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4.(2020∙北京∙高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项【答案】B【详细分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【答案详解】由题意可知,等差数列的公差511925151a a d --+===--, 则其通项公式为:()()11912211n a a n d n n =+-=-+-⨯=-, 注意到123456701a a a a a a a <<<<<<=<< , 且由50T <可知()06,i T i i N <≥∈, 由()117,ii i T a i i N T -=>≥∈可知数列{}n T 不存在最小项, 由于1234569,7,5,3,1,1a a a a a a =-=-=-=-=-=,故数列{}n T 中的正项只有有限项:263T =,46315945T =⨯=. 故数列{}n T 中存在最大项,且最大项为4T . 故选:B.【名师点评】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.考点02 递推数列及数列的通项公式1.(2023∙北京∙高考真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则( ) A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立 B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立 C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立 D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立【答案】B【详细分析】法1:利用数列归纳法可判断ACD 正误,利用递推可判断数列的性质,故可判断B 的正误. 法2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性;对于A ,构造()()32192647342h x x x x x =-+-≤,判断得11n n a a +<-,进而取[]4m M =-+推得n a M >不恒成立;对于B ,证明n a 所在区间同时证得后续结论;对于C ,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+推得n a M >不恒成立;对于D ,构造()()32192649942g x x x x x =-+-≥,判断得11n n a a +>+,进而取[]1m M =+推得n a M <不恒成立. 【答案详解】法1:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤, 证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立; 设当n k =时,63k a -≤-成立, 则()3162514764,4k k a a +⎛⎫-∈--- ⎝=⎪⎭,故136k a +≤--成立, 由数学归纳法可得3n a ≤成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<, 故{}n a 为减数列,注意1063k a +-≤-< 故()()()()23111666649644n n n n n a a a a a +-=≤-=-⨯--,结合160n a +-<,所以()16694n n a a +--≥,故19634n n a +⎛⎫-≥ ⎪⎝⎭,故19634nn a +⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则9634nM ⎛⎫-> ⎪⎝⎭,故6934nM -⎛⎫> ⎪⎝⎭,故946log 3M n -<,故n a M >恒成立仅对部分n 成立, 故A 不成立.对于B ,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<, 证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立; 设当n k =时,56k a ≤<成立, 则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即 由数学归纳法可得156k a +≤<成立. 而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦, ()201416n a --<,60n a -<,故10n n a a +->,故1n n a a +>,故{}n a 为增数列, 若6M =,则6n a <恒成立,故B 正确.对于C ,当17a =时, 可用数学归纳法证明:061n a <-≤即67n a <≤, 证明:当1n =时,1061a <-≤,此时不等关系成立; 设当n k =时,67k a <≤成立, 则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤ 由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664n n a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭, 若1164nn a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164nM ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D ,当19a =时, 可用数学归纳法证明:63n a -≥即9n a ≥, 证明:当1n =时,1633a -=≥,此时不等关系成立; 设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立 由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()11116396449n n n a a --+⎭-⎛⎫⎛⎫-= ⎪⎪⎝⎝⎭> ,所以114963n n a -+⎛⎫⎪⎭≥+⎝,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,这与n 的个数有限矛盾,故D 错误.故选:B.法2:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-, 令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x ¢>,得06x <<6x >+;令()0f x '<,得66x << 所以()f x在,6⎛-∞ ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛⎫-+ ⎪ ⎪⎝⎭上单调递减, 令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<<,768<<, 所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >, 对于A ,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <, 假设当n k =时,3k a <, 当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<, 综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-, 令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯, 所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-, 假设存在常数0M ≤,使得n a M >恒成立,取[]14m M =-+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- , 上式相加得,[][]()14333M a a M M M -+<--+≤+-=, 则[]14m M a a M +=<,与n a M >恒成立矛盾,故A 错误; 对于B ,因为15a =, 当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<, 假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<, 所以()3116664k k a a +=-+<, 又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >, 假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-, 所以()3116654k k a a +=-+≥, 综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 此时,取6M =,满足题意,故B 正确;对于C ,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()1312164nn a -⎛⎫+ ⎪=⎝⎭,假设当n k =时,)1312164k k a -⎛⎫+ ⎪=⎝⎭,当1n k =+时,所以()())13113131122311666116664444k k k k a a +-+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=, 综上:()()13121624n n a n - =⎛⎫+≥⎪⎝⎭,易知310n->,则)13121014n -⎛⎫<< ⎪⎝⎭,故()()()1312166,724n n a n -⎛⎪=⎫+∈≥ ⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列, 假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*00001,N m m m m -<≤∈,则()0142log 6133m mM ->=+, 故()()14log 61312m M ->-,所以()1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164m M -⎛⎫+ ⎪⎭<⎝, 所以m a M <,故n a M >不恒成立,故C 错误; 对于D ,因为19a =, 当1n =时,()32116427634a a ==->-,则29a >, 假设当n k =时,3k a ≥, 当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上:9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列, 因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-, 令()()32192649942g x x x x x =-+-≥,则()239264g x x x '=-+, 因为()g x '开口向上,对称轴为96324x -=-=⨯, 所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ≥=⨯-⨯+'>',所以()()321999926949042g x g ≥=⨯-⨯+⨯->, 故110n n a a +-->,即11n n a a +>+, 假设存在常数0M >,使得n a M <恒成立, 取[]21m M =+,其中[]1M M M -<≤,且[]Z M ∈,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ , 上式相加得,[][]1191M a a M M M +>+>+->, 则[]21m M a a M +=>,与n a M <恒成立矛盾,故D 错误. 故选:B.【名师点评】关键名师点评:本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.2.(2022∙北京∙高考真题)已知数列{}n a 各项均为正数,其前n 项和n S 满足9(1,2,)n n a S n ⋅== .给出下列四个结论:①{}n a 的第2项小于3; ②{}n a 为等比数列; ③{}n a 为递减数列; ④{}n a 中存在小于1100的项. 其中所有正确结论的序号是 . 【答案】①③④ 【详细分析】推导出199n n n a a a -=-,求出1a 、2a 的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.【答案详解】由题意可知,N n *∀∈,0n a >,当1n =时,219a =,可得13a =;当2n ≥时,由9n n S a =可得119n n S a --=,两式作差可得199n n n a a a -=-,所以,199n n n a a a -=-,则2293a a -=,整理可得222390a a +-=, 因为20a >,解得2332a =<,①对;假设数列{}n a 为等比数列,设其公比为q ,则2213a a a =,即2213981S S S ⎛⎫= ⎪⎝⎭,所以,2213S S S =,可得()()22221111a q a q q +=++,解得0q =,不合乎题意,故数列{}n a 不是等比数列,②错; 当2n ≥时,()1119990n n n n n n n a a a a a a a ----=-=>,可得1n n a a -<,所以,数列{}n a 为递减数列,③对; 假设对任意的N n *∈,1100n a ≥,则10000011000001000100S ≥⨯=, 所以,1000001000009911000100a S =≤<,与假设矛盾,假设不成立,④对. 故答案为:①③④.【名师点评】关键点名师点评:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.3.(2022∙浙江∙高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则( )A .100521002a <<B .100510032a << C .100731002a <<D .100710042a << 【答案】B【详细分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +⎛⎫-=<=+ ⎪-+⎝⎭-+,累加可求出()111111113323nn a n ⎛⎫-<-++++ ⎪⎝⎭ ,再次放缩可得出10051002a >. 【答案详解】∵11a =,易得()220,13a =∈,依次类推可得()0,1n a ∈ 由题意,1113n n n a a a +⎛⎫=- ⎪⎝⎭,即()1131133n n n n na a a a a +==+--,∴1111133n n n a a a +-=>-, 即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->≥, 累加可得()11113n n a ->-,即11(2),(2)3n n n a >+≥, ∴()3,22n a n n <≥+,即100134a <,100100100334a <<, 又11111111,(2)333132n n n n a a a n n +⎛⎫-=<=+≥ ⎪-+⎝⎭-+, ∴211111132a a ⎛⎫-=+ ⎪⎝⎭,321111133a a ⎛⎫-<+ ⎪⎝⎭,431111134a a ⎛⎫-<+ ⎪⎝⎭,…,111111,(3)3n n n a a n -⎛⎫-<+≥ ⎪⎝⎭, 累加可得()11111111,(3)3323n n n a n ⎛⎫-<-++++≥ ⎪⎝⎭ ,∴100111111111333349639323100326a ⎛⎫⎛⎫-<++++<+⨯+⨯< ⎪ ⎪⎝⎭⎝⎭ , 即100140a <,∴100140a >,即10051002a >; 综上:100510032a <<. 故选:B .【名师点评】关键点名师点评:解决本题的关键是利用递推关系进行合理变形放缩. 4.(2021∙浙江∙高考真题)已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( )A .100332S << B .10034S << C .100942S <<D .100952S << 【答案】A【详细分析】显然可知,10032S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【答案详解】因为)111,N n a a n *+==∈,所以0n a >,10032S >.由211111124n n n a a a ++⎛⎫=⇒=+=+-⎪⎪⎭2111122n a +⎛⎫∴<⇒<⎪⎪⎭12<()111,222n n n -+<+=≥,当1n =112+=,12n +≤,当且仅当1n =时等号成立,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得()6,2(1)(2)n a n n n ≤≥++,且16(11)(12)a =++,则6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得:所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100332S <<. 故选:A .【名师点评】的不等关系,再由累加法可求得24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.5.(2020∙浙江∙高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +⎧⎫⎨⎬⎩⎭就是二阶等差数列,数列(1)2n n +⎧⎫⎨⎬⎩⎭(N )n *∈ 的前3项和是 .【答案】10【详细分析】根据通项公式可求出数列{}n a 的前三项,即可求出. 【答案详解】因为()12n n n a +=,所以1231,3,6a a a ===. 即312313610S a a a =++=++=. 故答案为:10.【名师点评】本题主要考查利用数列的通项公式写出数列中的项并求和,属于容易题.6.(2020∙全国∙高考真题)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = .【答案】7【详细分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【答案详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++135********()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.【名师点评】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.7.(2019∙浙江∙高考真题)设,a b R ∈,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则A .当101,102b a =>B .当101,104b a =>C .当102,10b a =->D .当104,10b a =->【答案】A【解析】若数列{}n a 为常数列,101a a a ==,则只需使10a ≤,选项的结论就会不成立.将每个选项的b 的取值代入方程20x x b -+=,看其是否有小于等于10的解.选项B 、C 、D 均有小于10的解,故选项B 、C 、D 错误.而选项A 对应的方程没有解,又根据不等式性质,以及基本不等式,可证得A 选项正确.【答案详解】若数列{}n a 为常数列,则1n a a a ==,由21n n a a b +=+,可设方程20x x b -+= 选项A :12b =时,2112n n a a +=+,2102x x -+=, 1210∆=-=-<, 故此时{}n a 不为常数列,222112n n n n a a a +=+=+≥ ,且2211122a a =+≥,792a a ∴≥≥21091610a a >≥>, 故选项A 正确; 选项B :14b =时,2114n n a a +=+,2104x x -+=,则该方程的解为12x =, 即当12a =时,数列{}n a 为常数列,12n a =,则101102a =<,故选项B 错误; 选项C :2b =-时,212n n a a +=-,220x x --=该方程的解为=1x -或2,即当1a =-或2时,数列{}n a 为常数列,1n a =-或2, 同样不满足1010a >,则选项C 也错误;选项D :4b =-时,214n n a a +=-,240x x --=该方程的解为12x =, 同理可知,此时的常数列{}n a 也不能使1010a >, 则选项D 错误. 故选:A.【名师点评】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.考点03 等差数列及其前n 项和一、单选题 1.(2024∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( ) A .72B .73 C .13-D .711-【答案】B【详细分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【答案详解】由105678910850S S a a a a a a -=++++==,则80a =, 则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.2.(2024∙全国甲卷∙高考真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( ) A .2-B .73C .1D .29【答案】D【详细分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【答案详解】方法一:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=. 故选:D方法二:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=.故选:D方法三:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选:D3.(2023∙全国甲卷∙高考真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =( ) A .25B .22C .20D .15【答案】C【详细分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出; 方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出. 【答案详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==, 所以515455210202S a d ⨯=+⨯=⨯+=. 故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=, 所以53520S a ==. 故选:C.4.(2023∙全国乙卷∙高考真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =( ) A .-1B .12-C .0D .12【答案】B【详细分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素详细分析、推理作答.【答案详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-, 显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=, 于是有2πcos cos()3θθ=+,即有2π()2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈, 所以Z k ∈,2ππ4πππ1cos(π)cos[(π)]cos(π)cos πcos πcos 333332ab k k k k k =--+=--=-=-.故选:B5.(2023∙全国新Ⅰ卷∙高考真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】C【详细分析】利用充分条件、必要条件的定义及等差数列的定义,再结合数列前n 项和与第n 项的关系推理判断作答.,【答案详解】方法1,甲:{}n a 为等差数列,设其首项为1a ,公差为d , 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a nn n +--=+=+=+--=+,因此{}nS n为等差数列,则甲是乙的充分条件; 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t ,即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥,两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件,C 正确.方法2,甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为d ,即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n-=+=+-,因此{}n S n 为等差数列,即甲是乙的充分条件;反之,乙:{}nS n 为等差数列,即11,(1)1n n n S S S D S n D n n n+-==+-+, 即1(1)n S nS n n D =+-,11(1)(1)(2)n S n S n n D -=-+--,当2n ≥时,上两式相减得:112(1)n n S S S n D --=+-,当1n =时,上式成立, 于是12(1)n a a n D =+-,又111[22(1)]2n n a a a nD a n D D +-=+-+-=为常数, 因此{}n a 为等差数列,则甲是乙的必要条件, 所以甲是乙的充要条件. 故选:C6.(2022∙北京∙高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【详细分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【答案详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”;若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.7.(2020∙浙江∙高考真题)已知等差数列{an }的前n 项和Sn ,公差d ≠0,11a d≤.记b 1=S 2,bn+1=S2n+2–S 2n ,n N *∈,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【详细分析】根据题意可得,21212222n n n n n b S a a S ++++=+=-,而1212b S a a ==+,即可表示出题中2468,,,b b b b ,再结合等差数列的性质即可判断各等式是否成立.【答案详解】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+,∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-, 当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++, ()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.【名师点评】本题主要考查等差数列的性质应用,属于基础题.8.(2019∙全国∙高考真题)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则。
}a{a则1,a?a?16,a?中,(福建卷)已知等差数列)的值是( 1. n1297415.64AB .30C.31D.3a?*n)Nn?,a?(a?01?1n aa}{1?3a = ((湖南卷)已知数列满足,则)2. n0n2333?2 DC . A.0B..aaa a a=( ) ,则在各项都为正数的等比数列{+}中,首项+=3,前三项和为213.(江苏卷)5 n431 ( A ) 33 ( B ) 72 ( C ) 84 ( D )189??a)(是等差数列,则( )4. 如果数列全国卷II n a?a?a?aa?a?a?aa?a?a?aaa?aa (C) (B) (D) (A) 5114481188454855a,a,L,ad?0) (,则全国卷II为各项都大于零的等差数列,公差 115.如果( )??aaand n等于( )821aa?aaaa?aaa?a?a?aaa?aa (D) (A)(B) (C) 5885845485141141(山东卷)=2005=3的等差数列,如果是首项,则序号=1,公差为6.n1(A)667 (B)668 (C)669 (D)670有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个)重庆卷7. (顶点是下层正方体上底面各边的中点。
已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( )(A) 4; (B) 5; (C) 6; (D) 7。
{a}的公比为q,前n项和为S,若S,S,S8. (湖北卷)设等比数列成等差数列,则q的值为 .n n+2nn+1n82732) (之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为全国卷II______和9.在a,a,?,a n!n!n行的数阵。
可得到个不同的实数个不同的排列,)10. (上海12、用每个排列为一行写成一个n21n na)?1a??(2b??a?a?3a,a,?,a!,2,3,?,ni?1i ini3ii12i对第行,记,。
高考数列选择题部分(2016全国I )(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(2016上海)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a(C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a(2016四川)5. 【题设】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年 (B )2019年 (C )2020年 (D )2021年 (2016天津)(5)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件(2016浙江)6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}n S 是等差数列C .{}n d 是等差数列D .2{}n d 是等差数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、62.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .93.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列2.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .35.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14高考数列填空题部分(2016全国I )(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .(2016上海)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.(2016北京)12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..(2016江苏)8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ .(2016浙江)13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 .9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为3.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。
1.[2014 新·课标全国卷Ⅰ ]已知数列 { a, a = 1, a ≠ 0, a += λS- 1,其中 λ为常数.n } 的前 n 项和为 S n1 nn a n 1 n(1) 证明: a n + 2- a n = λ.(2) 是否存在 λ,使得 { a n } 为等差数列?并说明理由.2.[2014 新·课标全国卷 2]已知数列 a满足 a 1 =1, a n 13a n1.n(Ⅰ)证明a n 1 是等比数列,并求 a n 的通项公式;2(Ⅱ)证明: 1 11 3 aa⋯ + a2 .12n3.[2013 新·课标全国卷 1] 设等差数列 a n 的前 n 项和为 S n , S m 1 2, S m 0, S m 13 ,则 m ()A . 3B. 4C.5D.64.[2013 新·课标全国卷 1]设 A B Ca ,b , c,A B Cn 的 面 积 为S n , n1,2,3,, 若n nn 的 三 边 长 分 别 为nn nn nb 1c 1 ,b 1 c 1 2a 1 , a n 1 a n , b n 1c na n,c n 1 b na n,则 ()A. { S } 为递减数列22B. { S } 为递增数列nnC.{ S 2n - 1} 为递增数列, { S 2n } 为递减数列D.{ S 2n - 1} 为递减数列, { S 2n } 为递增数列 5.[2013 新·课标全国卷 1]若数列 { a } 的前 n 项和为 S n=2a 1 ,则数列 { a } 的通项公式是a =______.n 3 n 3 n n6.(2013 课标全国Ⅱ,理3)n.已知3=2+10 1,5=9,则1=().等比数列 { n}的前n 项和为 a aa S S a a1 1 1 1A.3B.3C. 9D.97.(2013 课标全国Ⅱ,理16)等差数列 { a n} 的前n项和为S n,已知S10= 0,S15 = 25,则nS n的最小值为 __________.8.[2012 新课标全国卷 ]已知 an为等比数列, a4 a7 2 , a5a6 8 ,则 a1 a10 ()(A) 7 (B) 5 (C) (D )9.[2012 新课标全国卷 ]数列 { a n} 满足 a n 1(1)n a n 2n 1,则 { a n} 的前60 项和为10.[2010 新课标全国卷]设数列a n满足a12, a n 1a n 3 22n 1 (1)求数列a n的通项公式;(2)令b n na n,求数列的前n 项和S n11、( 2015 全国 1 卷 17 题)S n为数列 { a n } 的前n项和 . 已知a n> 0,a n2a n= 4S n3. (Ⅰ)求 { a n } 的通项公式;(Ⅱ)设b n1, 求数列 { b n } 的前n项和 . anan 112、( 2015 全国 2 卷 4 题)已知等比数列a n 满足 a1=3,a1a3 a5 =21 ,则a3 a5 a7 ()A.21 B .42C .63 D . 84.13、( 2015 全国 2卷 16 题)设 S n是数列a n 的前 n 项和,且a1 1, a n 1 S n S n 1,则S n ________.14、( 2016 全国 1 卷 3 题)已知等差数列a n 前 9 项的和为 27, a10 8 ,则 a100 ()(A ) 100 (B)99 ( C)98 (D)9715、( 2016 全国 2 卷 15 题)设等比数列a n 满足 a1+a3 =10,a2+a4=5,则 a1a2 a n的最大值为.16、( 2016 全国 2 卷 17 题)S n为等差数列a n 的前 n 项和,且 a1 1 ,S7 28 .记b n lg a n,其中 x 表示不超过x的最大整数,如0.9 0 , lg99 1 .(Ⅰ)求 b1, b11, b101;(Ⅱ)求数列b n的前1000项和.17、( 2016 全国 3 卷 17 题) 已知数列{ a n }的前 n 项和S n1a n,其中 0 .(I )证明{ a n }是等比数列,并求其通项公式;31 (II )若S 532,求 .18、( 2017 年国 1 卷 4 题)记 S n 为等差数列 a n 的前 n 项和,若 a 4 a 524 ,S 6 48 ,则 a n的公差为() A . 1B .2C . 4D .8 19、( 2017 全国 2 卷 3 题)我国古代数学名著《算法统宗》中有如下问题: “远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯()A .1 盏B .3 盏C .5 盏D .9 盏20、( 2017 全国 2 卷 15 题) 等差数列a n 的前 n 项和为 S n , a 3 3, S 4 10,则n1.k 1S k21、( 2017全国 3卷 9题) 等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则 a n 前 6项的和为()A . 24B . 3C . 3D . 812、( 2017 全国 3卷 14题)设等比数列a n 满足 a 1 a 21 , a 1 a 33 ,则 a 4 ________..详细解析1.解: (1) 证明:由题设, += λS - 1,a ++=λS + 1 - 1,a n a n 1nn 1a n 2n两式相减得 a n1(a n2- a n )= λa n 1.+ + +因为 a n + 1≠0,所以 a n + 2- a n = λ.= 1, a = λS- 1,可得 a = λ- 1,(2) 由题设, a 1 1a 2 1 2由(1) 知, a 3= λ+ 1.若{ a n } 为等差数列,则 2a 2= a 1+ a 3,解得 λ=4,故 a n + 2- a n =4. 由此可得 { a 2n -1} 是首项为 1,公差为 4 的等差数列, a 2n -1= 4n - 3;{ a 2n } 是首项为 3,公差为 4 的等差数列, a 2n =4n - 1. 所以 a n = 2n -1, a n + 1- a n =2.因此存在 λ= 4,使得数列 { a n } 为等差数列.a 1 1, a n 1 3a n 1.n ∈ N * .2.解: ∴ a n 11 3a n 1 13(a n 1). 2 2 2 1 是首项为 a 1 1 3 ,公比为 3的等比数列。
数列专题高考真题(2014·I) 17. (本小题满分12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n−1,其中λ为常数.(Ⅰ)证明:a n+2−a n=λ;(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.(2014·II) 17.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+12}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:1a1+1a2+⋯+1a n<32.(2015·I)(17)(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a n2+2a n=4S n+3,(Ⅰ)求{a n}的通项公式:(Ⅱ)设b n=1a n a n+1,求数列{b n}的前n项和。
(2015·II)(4)等比数列{a n}满足a1=3,=21,则( )(A)21 (B)42 (C)63 (D)84(2015·II)(16)设是数列的前n 项和,且,,则________.(2016·I)(3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为__________。
(2016·II)(17)(本题满分12分)S n 为等差数列{a n }的前n 项和,且a 1=1 ,S 7=28 记b n =[log a n ],其中[x]表示不超过x 的最大整数,如[0.9] = 0,[lg 99]=1.(I )求b 1,b 11,b 101;(II )求数列{b n }的前1 000项和.(2016·III)(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,⋯,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0 (I )证明{a n }是等比数列,并求其通项公式;(II )若S n =3132,求λ.(2017·I)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。
专题13数列(解答题)1.【2022年全国甲卷】记为数列的前n 项和.已知2+=2+1.(1)证明:是等差数列;(2)若4,7,9成等比数列,求的最小值.2.【2022年新高考1卷】记为数列的前n 项和,已知1=是公差为13的等差数列.(1)求的通项公式;(2)证明:11+12+⋯+1<2.3.【2022年新高考2卷】已知为等差数列,是公比为2的等比数列,且2−2=3−3=4−4.(1)证明:1=1;(2)求集合=+1,1≤≤500中元素个数.4.【2021年甲卷文科】记nS 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列.5.【2021年甲卷理科】已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.6.【2021年乙卷文科】设{}n a 是首项为1的等比数列,数列{}n b 满足3n n na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2n n S T <.7.【2021年乙卷理科】记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.8.【2021年新高考1卷】已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.9.【2021年新高考2卷】记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.10.【2020年新课标1卷理科】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.11.【2020年新课标3卷理科】设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .12.【2020年新课标3卷文科】设等比数列{an }满足124a a +=,318a a -=.(1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m .13.【2020年新高考1卷(山东卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .14.【2020年新高考2卷(海南卷)】已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.15.【2019年新课标1卷文科】记Sn 为等差数列{an }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{an }的通项公式;(2)若a 1>0,求使得Sn ≥an 的n 的取值范围.16.【2019年新课标2卷理科】已知数列{an }和{bn }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{an +bn }是等比数列,{an –bn }是等差数列;(2)求{an }和{bn }的通项公式.17.【2019年新课标2卷文科】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.18.【2018年新课标1卷文科】已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.19.【2018年新课标2卷理科】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.20.【2018年新课标3卷理科】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .。
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
1. (福建卷)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .642. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .233. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )1894. (全国卷II ) 如果数列{}n a是等差数列,则( )(A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则( )(A)1845a a a a >(B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a =6. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6707. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。
已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。
8. (湖北卷)设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .9. (全国卷II ) 在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______10. (上海)12、用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。
数列一、单选题1.(2024·全国)等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A .2-B .73C .1D .292.(2024·全国)等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A .2-B .73C .1D .2二、填空题3.(2024·全国)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.4.(2024·北京)已知{}|k k M k a b ==,n a ,n b 不为常数列且各项均不相同,下列正确的是.①n a ,n b 均为等差数列,则M 中最多一个元素;②n a ,n b 均为等比数列,则M 中最多三个元素;③n a 为等差数列,n b 为等比数列,则M 中最多三个元素;④n a 单调递增,n b 单调递减,则M 中最多一个元素.5.(2024·上海)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-ÎÈ,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.三、解答题6.(2024·全国)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j £<£,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ³时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.7.(2024·全国)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.8.(2024·全国)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.9.(2024·全国)记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .10.(2024·北京)设集合(){}{}{}{}(){},,,1,2,3,4,5,6,7,8,2M i j s t i j s t i j s t =ÎÎÎÎ+++.对于给定有穷数列{}():18n A a n ££,及序列12:,,...,s w w w W ,(),,,k k k k k i j s t M w =Î,定义变换T :将数列A 的第1111,,,i j s t 项加1,得到数列()1T A ;将数列()1T A 的第2222,,,i j s t 列加1,得到数列()21T T A …;重复上述操作,得到数列()21...s T T T A ,记为()A W .(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7W ,写出()A W ;(2)是否存在序列W ,使得()A W 为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的W ;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,证明:“存在序列W ,使得()A W为常数列”的充要条件为“12345678a a a a a a a a +=+=+=+”.11.(2024·天津)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.。
1 + a n, 4 2 84 2 8 近五年(2017-2021)高考数学真题分类汇编七、数列一、单选题(2021·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 S 2 = 4 ,S 4 = 6 ,则 S 6 =()A .7B .8C .9D .102.(2021·浙江)已知a , b ∈ R, a b > 0 ,函数 f ( x ) = ax 2+ b (x ∈ R) .若 f (s - t ), f (s ), f (s + t ) 成等比数列,则平面上点(s ,t ) 的轨迹是()A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线3.(2021·全国(理))等比数列{a n }的公比为 q ,前 n 项和为S n ,设甲: q > 0 ,乙: {S n } 是递增数列,则()A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件4.(2021·浙江)已知数列{a } 满足a = 1, a = a n (n ∈ N *).记数列{a }的前 nn1n +1n项和为S n ,则( )A . 3< S< 3B .3 < S < 4C . 4 < S< 9D . 9< S < 52100100100221005.(2020·北京)在等差数列{a n }中,a 1 = -9 ,a 5 = -1 .记T n = a 1a 2…a n (n = 1, 2,…) ,则数列{T n }().A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项(2020·浙江)已知等差数列{a n }的前n 项和S n ,公差d ≠0n ∈ N * ,下列等式不.可.能.成立的是( )a 1≤ 1 .记b 1=S 2,b n+1=S 2n+2–S 2n , dA .2a 4=a 2+a 6B .2b 4=b 2+b 6C . a 2= a a D . b 2= b b7.(2020·全国(文))设{a n } 是等比数列,且a 1 + a 2 + a 3 = 1 , a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ()a k +1 k +2 k +10A .12B .24C .30D .32S n 8.(2020·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a 5–a 3=12,a 6–a 4=24,则=n( )A .2n –1B .2–21–nC .2–2n –1D .21–n –19.(2020·全国(理))数列{a n } 中,a 1 = 2 , a m +n = a m a n ,若a + a ++ a = 215 - 25 , 则 k = ( )A .2B .3C .4D .510.(2020·全国(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌 9 块扇面形石板构成第一环,向外 每环依次增加 9 块,下一层的第一环比上一层的最后一环多 9 块,向外每环依次也增加9 块,已知每层环数相同,且下层比中层多 729 块,则三层共有扇面形石板(不含天心石) ( )A .3699 块B .3474 块C .3402 块D .3339 块11.(2020·全国(理))0-1 周期序列在通信技术中有着重要应用.若序列 a 1a 2 a n 满足a i ∈{0,1}(i = 1, 2,) ,且存在正整数 m ,使得 a i + m = a i (i = 1, 2,) 成立,则称其为 0-1 周期序列,并称满足 a i + m = a i (i = 1, 2,) 的最小正整数 m 为这个序列的周期.对于周期为 m C (k ) = 1 ma a(k = 1, 2,, m - 1)的 0-1 序列 a 1a 2 a n , ∑ i =1i i + k 是描述其性质的重要指标, 下列周期为 5 的 0-1 序列中,满足C (k ) ≤ 1(k = 1, 2, 3, 4) 的序列是( )5A .11010B .11011C .10001D .1100112.(2019·全国(理))已知各项均为正数的等比数列{a n } 的前 4 项和为 15,且a 5 = 3a 3 + 4a 1 ,则 a 3 =A .16B .8C .4D .2m32 n 13.(2019·全国(理))记S n 为等差数列{a n } 的前 n 项和.已知 S 4 = 0,a 5 = 5 ,则A. a n = 2n - 5B. a n = 3n -10C. S n = 2n 2- 8nD. S n= 1 n 2- 2n214.(2018·浙江)已知 a 1 , a 2 , a 3 , a 4 成等比数列,且 a 1 + a 2 + a 3 + a 4 = ln(a 1 + a 2 + a 3 ) .若a 1 > 1 ,则A . a 1 < a 3 , a 2 < a 4C .a 1 < a 3 ,a 2 > a 4 B . a 1 > a 3 ,a 2 <a 4D .a 1 > a 3 ,a 2 > a 415.(2018·北京(理))“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个 单音的频率的比都等于12 2 .若第一个单音的频率为 f ,则第八个单音的频率为A.fC . 12 25 fD . 12 27 f16.(2017·全国(理))等差数列{a n } 的首项为1,公差不为0 .若a 2 、a 3 、a 6 成等比数列,则{a n }的前6 项的和为( )A . -24B. -3C. 3D . 817.(2017·上海)已知 a 、b 、c 为实常数,数列{x n }的通项 x = an 2+ bn + c ,n∈ N * ,则“存在 k ∈ N * ,使得x 100+k 、 x 200+k 、 x 300+k 成等差数列”的一个必要条件是( )A. a ≥ 0B. b ≤ 0C. c = 0 D . a - 2b + c = 018.(2017·全国(理))(2017 新课标全国 I 理科)记S n 为等差数列{a n } 的前 n 项和.若a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为A .1B .2C .4D .819.(2017·浙江)已知等差数列{a n }的公差为 d,前 n 项和为 S n ,则“d>0”是 " S 4 +S 6 > 2S 5 "的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B . 3 22 fn 20.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏21.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏二、填空题22.(2020·海南)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前 n 项和为.23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如⎧ n (n +1) ⎫ ⎧ n (n +1) ⎫ *数列⎨ 2 ⎬ 就是二阶等差数列,数列 ⎨ 2 ⎬ (n ∈ N ) 的前3 项和是.⎩ ⎭ ⎩ ⎭24.(2020·江苏)设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和 S = n 2 - n + 2n-1(n∈ N + ) ,则 d +q 的值是 .25.(2020·全国(文))数列{a n } 满足 an +2 + (-1)na = 3n -1,前 16 项和为 540,则 a 1 =.26.(2020·全国(文))记 S n 为等差数列{a n }的前 n 项和.若 a 1 = -2, 则S 10 = .a 2 + a 6 = 2 ,27.(2019·江苏)已知数列{a n }(n ∈ N *) 是等差数列, S n 是其前 n 项和.若a 2a 5 + a 8 = 0, S 9 = 27 ,则 S 8 的值是 . 28.(2019·全国(文))记S n 为等差数列{a n }的前n 项和,若 a 3 = 5, a 7 = 13 ,则 S 10 = . 29.(2019·全国(理))记 S n 为等差数列{a n }的前 n 项和,a 1≠0,a 2 = 3a 1 ,则 n1 S 10S 5= .30.(2019·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a= 1,S = 3,则S 4=.13431.(2019·全国(理))记 S n 为等比数列{a n }的前 n 项和.若 a = 1,a 2= a ,则S 5=.134 6(2018·上海)记等差数列{a n }的前 n 项和为 S n ,若 a 3 = 0 ,a 6 + a 7 = 14 ,则 S 7 = .33.(2018·全国(理))记 S n 为数列{a n }的前 n 项和,若 S n = 2a n +1,则 S 6 = .34.(2017·上海)已知数列{a } 和{b },其中 a = n 2, n ∈ N * ,{b } 的项是互不相等nnnn的正整数,若对于任意 n ∈ N * ,{b n } 的第 a n 项等于{a n } 的第b n 项,则lg(b 1b 4b 9b 16 ) =lg(b 1b 2b 3b 4 ).2017·全国()2017 新课标全国 II 理科)等差数列{a n } 的前n 项和为 S n ,a 3 = 3 ,S = 10 ,则∑1 = .4 k =1 S36.(2017·北京(理))若等差数列{a n }和等比数列{b n }满足 a 1 = b 1 = -1,a 4 = b 4 = 8 , 则 a 2 = . b 237.(2017·江苏)等比数列{ a }的各项均为实数,其前n 项为 S ,已知 S = 7,S = 63,n则a 8 = .n 346438.(2021·全国)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为 20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm ,20dm ⨯ 6dm 两种规格的图形,它们的面积之和 S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果nkS对折n 次,那么∑ Sk= dm 2 .k =139.(2019·北京(理))设等差数列{a n }的前 n 项和为 S n ,若 a 2=−3,S 5=−10,则 a 5=,S n 的最小值为 .三、解答题40.(2021·全国(文))设{a }是首项为 1 的等比数列,数列{b } 满足b =na n.已知 na 1 , 3a 2 , 9a 3 成等差数列.(1) 求{a n } 和{b n }的通项公式;n n3(2) 记 S 和T 分别为{a }和{b }的前 n 项和.证明: T <S n. nnnnn241.(2021·浙江)已知数列{a }的前 n 项和为S , a = - 9,且4S = 3S - 9 .n(1) 求数列{a n } 的通项;n14n +1n(2) 设数列{b n }满足3b n + (n - 4)a n = 0 ,记{b n }的前 n 项和为Tn,若T n ≤ λb n 对任意 n ∈ N * 恒成立,求λ的范围.42.(2021·全国(理))已知数列{a n }的各项均为正数,记S n 为{a n }的前 n 项和,从 下面①②③中选取两个作为条件,证明另外一个成立. ①数列{a n }是等差数列:②数列{ S n}是等差数列;③ a2= 3a 1 .注:若选择不同的组合分别解答,则按第一个解答计分.43.(2021·全国(理))记 S n 为数列{a n }的前 n 项和, b n 为数列{S n } 的前 n 项积,已知2 + 1nb n = 2 .(1) 证明:数列{b n }是等差数列;(2) 求{a n } 的通项公式.44.(2020·海南)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 求 a a - a a+⋯+ (-1)n -1 a a .1 22 3n n +145.(2020·天津)已知{a n }为等差数列, {b n }为等比数列,na ann a a 1 = b 1 = 1, a 5 = 5(a 4 - a 3 ), b 5 = 4(b 4 - b 3 ) . (Ⅰ)求{a n } 和{b n }的通项公式; (Ⅱ)记{a }的前 n 项和为 S ,求证: S S< S 2(n ∈ N *) ;nnn n +2⎧(3a n - 2)b n n +1(Ⅲ)对任意的正整数n ,设c n⎪⎪a n a n +2 ⎨ a, n 为奇数, 求数列{c n } 的前 2n 项和. ⎪ n -1 , ⎩ b n +1n 为偶数. 46.(2020·北京)已知{a n }是无穷数列.给出两个性质:①对于{a }中任意两项 a i , a j (i > 2j) ,在{a }中都存在一项a ,使 i= a ;n n mm j2②对于{a n }中任意项a n (n 3) ,在{a n }中都存在两项a k , a l (k > l ) .使得 a n = k.a l(Ⅰ)若 a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;(Ⅱ)若 a = 2n -1(n = 1, 2,) ,判断数列{a }是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明: {a n }为等比数列. 47.(2020·浙江)已知数列{a n },{b n },{c n }中,a =b =c = 1, c = a - a , c= b n ⋅ c (n ∈ N * ) .111nn +1n n +1b n +2(Ⅰ)若数列{b n }为等比数列,且公比 q > 0 ,且b 1 + b 2 = 6b 3 ,求 q 与{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且公差 d > 0 ,证明: c + c++ c < 1 + 1.(n ∈ N * ) 12nd48.(2020·山东)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 记b m 为{a n } 在区间(0, m ](m ∈ N * ) 中的项的个数,求数列{b m } 的前100 项和 S 100 .49.(2020·全国(理))设数列{a n }满足 a 1=3,a n +1 = 3a n - 4n . (1) 计算 a 2,a 3,猜想{a n }的通项公式并加以证明; (2) 求数列{2n a n }的前 n 项和 S n .50.(2020·全国(理))设{a n } 是公比不为 1 的等比数列, a 1 为 a 2 , a 3 的等差中项.(1)求{a n } 的公比;n = ⎪(2)若 a 1 = 1 ,求数列{na n }的前 n 项和.a n 2b nn1n51.(2020·全国(文))设等比数列{a n }满足a 1 + a 2 = 4 , a 3 - a 1 = 8 . (1) 求{a n }的通项公式;(2) 记 S n 为数列{log 3a n }的前 n 项和.若 S m + S m +1 = S m +3 ,求 m .52.(2019·江苏)定义首项为 1 且公比为正数的等比数列为“M -数列”.(1) 已知等比数列{a n }满足: a 2 a 4 = a 5 , a 3 - 4a 2 + 4a 1 = 0 ,求证:数列{a n }为“M -数列”;(2) 已知数列{b }满足: b= 1, 1= 2 - 2 ,其中 S为数列{b }的前 n 项和.S n b n b n +1①求数列{b n }的通项公式;②设 m 为正整数,若存在“M -数列”{c n },对任意正整数 k ,当 k ≤m 时,都有c k b k c k +1成立,求 m 的最大值.53.(2019·北京(文))设{a n }是等差数列,a 1=–10,且 a 2+10,a 3+8,a 4+6 成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前 n 项和为 S n ,求 S n 的最小值.54.(2019·浙江)设等差数列{a n } 的前n 项和为 S n ,a 3 = 4 ,a 4 = S 3 ,数列{b n }满足:对每 n ∈ N *, S n + b n , S n +1 + b n , S n +2 + b n 成等比数列.(1) 求数列{a n },{b n } 的通项公式;(2) 记C =, n ∈ N *, 证明: C + C ++ C < 2 n , n ∈ N *.n1 2n55.(2019·天津(文)) 设{a n }是等差数列, {b n }是等比数列,公比大于0 ,已知a 1 =b 1 = 3 , b 2 = a 3 , b 3 = 4a 2 + 3 .(Ⅰ)求{a n }和{b n } 的通项公式;⎧⎪1,n 为奇数,(Ⅱ)设数列{c } 满足c= ⎨b n 为偶数, 求a c + a c ++ a c(n ∈ N *).nnn⎩21 12 22n 2n56.(2019·全国(文))已知{a n } 是各项均为正数的等比数列,a 1 = 2, a 3 = 2a 2 +16 . n(1)求{a n } 的通项公式;n →∞{ }(2) 设b n = log 2 a n ,求数列{b n } 的前 n 项和.57.(2019·全国(文))记 S n 为等差数列{a n }的前 n 项和,已知 S 9=-a 5.(1) 若 a 3=4,求{a n }的通项公式;(2) 若 a 1>0,求使得 S n ≥a n 的 n 的取值范围.58.(2019·全国(理))已知数列{a n }和{b n }满足 a 1=1,b 1=0,4a n +1 = 3a n - b n + 4 (1) 证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2) 求{a n }和{b n }的通项公式.59.(2019·上海)已知数列{a n },a 1 = 3 ,前 n 项和为 S n . (1) 若{a n } 为等差数列,且a 4 = 15 ,求 S n ; (2) 若{a n } 为等比数列,且 lim S n < 12 ,求公比q 的取值范围.,4b n +1 = 3b n - a n - 4 .60.(2019·上海)已知等差数列{a n }的公差d ∈(0,π] ,数列{b n }满足b n = sin (a n ) ,集合 S = {x | x = b n , n ∈ N *}.(1) 若 a 1(2) 若 a = 0, d =2π,求集合 S ; 3= π,求 d 使得集合 S 恰好有两个元素;12(3) 若集合 S 恰好有三个元素: b n +T = b n , T 是不超过 7 的正整数,求T 的所有可能的值.61.(2019·天津(理))设{a n } 是等差数列, {b n }是等比数列.已知a 1 = 4,b 1 = 6 ,b 2 = 2a 2 - 2,b 3 = 2a 3 + 4 .(Ⅰ)求{a n } 和{b n }的通项公式;⎧1, 2k < n < 2k +1, (Ⅱ)设数列 c n 满足c 1 = 1, c n = ⎨ b , n = 2k ,其中 k ∈ N * . ⎩ k(i ) 求数列{a 2n(c2n-1)}的通项公式;2n(ii ) 求∑ a i ci(n ∈ N *).i =162.(2018·江苏)设{a n } 是首项为 a 1 ,公差为 d 的等差数列,{b n } 是首项为b 1 ,公比为 q 的等比数列.(1)设 a 1 = 0,b 1 = 1, q = 2 ,若| a n - b n |≤b 1 对 n = 1, 2,3, 4 均成立,求 d 的取值范围;(2)若 a = b > 0, m ∈ N *, q ∈ (1, m 2] ,证明:存在 d ∈ R ,使得| a n - b n |≤ b 1 对11n = 2, 3,, m +1 均成立,并求 d 的取值范围(用b 1, m , q 表示).63.(2018·江苏)设 n ∈ N * ,对 1,2,···,n 的一个排列i 1i 2 i n ,如果当 s <t 时,有i s > i t ,则称(i s , i t ) 是排列i 1i 2i n 的一个逆序,排列i 1i 2 i n 的所有逆序的总个数称为其逆序数.例如:对 1,2,3 的一个排列 231,只有两个逆序(2,1),(3,1),则排列 231 的逆序数为 2.记 f n (k ) 为 1,2,···,n 的所有排列中逆序数为 k 的全部排列的个数. (1)求 f 3 (2), f 4 (2) 的值;(2) 求 f n (2)(n ≥ 5) 的表达式(用 n 表示).64.(2018·全国(文))记 S n 为等差数列{a n } 的前 n 项和,已知 a 1 = -7 , S 3 = -15 .(1) 求{a n } 的通项公式;(2) 求 S n ,并求 S n 的最小值.65.(2018·北京(文))设{a n } 是等差数列,且a 1 = ln 2, a 2 + a 3 = 5 l n 2 .(Ⅰ)求{a n } 的通项公式;(Ⅱ)求e a 1 + e a 2 ++ e a n .66.(2018·全国(理))等比数列{a n }中,a 1 = 1,a 5 = 4a 3 . (1) 求{a n }的通项公式;(2) 记S n 为{a n }的前n 项和.若 S m = 63 ,求 m . 67.(2018·浙江)已知等比数列{a n }的公比 q >1,且a 3+a 4+a 5=28,a 4+2 是 a 3,a 5 的等差中项.数列{b n }满足 b 1=1,数列{(b n +1−b n )a n }的前 n 项和为 2n 2+n . (Ⅰ)求 q 的值;(Ⅱ)求数列{b n }的通项公式.68.(2018·全国(文))已知数列{a }满足a = 1 , na= 2(n +1) a,设b = an.(1)求b 1 ,b 2 ,b 3 ;n 1 n +1n nn(2) 判断数列{b n } 是否为等比数列,并说明理由;n n k =1⎩⎭⎩ n n n (3) 求{a n } 的通项公式.69.(2018·天津(理))设{a }是等比数列,公比大于 0,其前 n 项和为 S (n ∈ N *),{b n }是等差数列.已知a 1 = 1 , a 3 = a 2 + 2 , a 4 =b 3 + b 5 , a 5 = b 4 + 2b 6 . (I ) 求{a n }和{b n }的通项公式;(II ) 设数列{S }的前 n 项和为T (n ∈ N *) ,(i ) 求T n ;n(T k+ bk +2)b k=2n +2 - ∈ *(ii )证明∑ (k +1)(k + 2)n + 22 (nN ) .70.(2018·天津(文))设{a n }是等差数列,其前 n 项和为 S n (n ∈N *);{b n }是等比数列,公比大于 0,其前 n 项和为 T n (n ∈N *).已知 b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求 S n 和 T n ;(Ⅱ)若 S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数 n 的值.71.(2017·全国(文))设数列{a n } 满足a 1 + 3a 2 +⋯+ (2n -1)a n = 2n . (1) 求{a n } 的通项公式;⎧ a n ⎫ (2) 求数列的前 n 项和. ⎨ 2n +1⎬72.(2017·上海)根据预测,某地第n (n ∈ N * ) 个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),⎧5n 4 +15, 1 ≤ n ≤ 3其中 a n = ⎨-10n + 470, ,b n = n + 5 ,第n 个月底的共享单车的保有量是前 n 个n ≥ 4月的累计投放量与累计损失量的差.(1) 求该地区第 4 个月底的共享单车的保有量;(2) 已知该地共享单车停放点第 n 个月底的单车容纳量 S = -4(n - 46)2+ 8800 (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点 的单车容纳量?73.(2017·天津(文))已知{a n } 为等差数列,前 n 项和为 S n(n ∈ N * ) ,{b } 是首项为2 的等比数列,且公比大于 0,n2n n n 1 n n +1 b 2 + b 3 = 12,b 3 = a 4 - 2a 1 , S 11 = 11b 4 .(Ⅰ)求{a n } 和{b n } 的通项公式;(Ⅱ)求数列{a b } 的前 n 项和(n ∈ N *) .74.(2017·山东(理))已知{x n } 是各项均为正数的等比数列,且x 1 + x 2 = 3,x 3 - x 2 = 2 (Ⅰ)求数列{x n } 的通项公式;(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点P 1 ( x 1 ,1),P 2 ( x 2 , 2)⋯ P n +1 ( x n +1 , n +1) 得到折线 P 1P 2 ⋯P n +1 ,求由该折线与直线y = 0 , x = x 1,x = x n +1 所围成的区域的面积T n ..75.(2017·浙江)已知数列{x } 满足: x =1 , x = x + ln (1+ x ) (n ∈ N *)证明:当 n ∈ N * 时,(I )0 < x n +1 < x n ;(II )2x- x ≤ x n x n +1 ;(III ) n +112n -1 n≤x n ≤ 21 2n -2 . 76.(2017·全国(文))记 S n 为等比数列{a n }的前 n 项和,已知 S 2=2,S 3=-6.(1) 求{a n } 的通项公式;(2) 求 S n ,并判断 S n +1,S n ,S n +2 是否成等差数列.77.(2017·山东(文))已知{a n }是各项均为正数的等比数列,且a 1 + a 2 = 6, a 1a 2 = a 3 . (I) 求数列{a n }通项公式;n +1(II){b }为各项非零的等差数列,其前n 项和S ,已知S=b b ⎧b n ⎫,求数列的前n 项n n 2n+1n n+1⎨a ⎬⎩n ⎭和Tn.78.(2017·北京(理))设{a n}和{b n}是两个等差数列,记c n = max{b1-a1n,b2-a2n,⋅⋅⋅,bn-ann} (n = 1, 2, 3,⋅⋅⋅) ,其中max{x1, x2 , ⋅⋅⋅, x s} 表示x1 , x2 ,⋅⋅⋅, x s 这s 个数中最大的数.(Ⅰ)若a n =n ,b n = 2n -1,求c1 , c2 , c3 的值,并证明{c n }是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,cn >M ;或者存在正n整数m ,使得c m , c m+1, c m+2 , ⋅⋅⋅是等差数列.(2017·北京(文))已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1 +b3 +b5 +…+b2 n-1 .80.(2017·全国(文))已知等差数列{a n }的前n 项和为S n,等比数列{b n }的前n 项和为T n ,且 a1 = 1 ,b1 =1,a2 +b2 = 4 .(1)若a3+b3=7,求{b n }的通项公式;(2)若T3 = 13 ,求S5 .81.(2017·江苏)对于给定的正整数k,若数列{a n}满足a +a +...a +a +...a +a = 2k an-k n-k+1 n-1 n+1 n+k-1 n+k n对任意正整数n(n> k) 总成立,则称数列{a n} 是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.近五年(2017-2021)高考数学真题分类汇编七、数列(答案解析)1.A【解析】∵S n 为等比数列{a n}的前n项和,∴S2 ,S4 -S2 ,S6 -S4 成等比数列∴S2 = 4 ,S4 -S2 = 6 - 4 = 2 ,∴S6 -S4 = 1,∴S6 = 1+S4 = 1+ 6 = 7 .故选:A.2.C【解析】由题意得f (s -t) f (s +t) = [ f (s)]2 ,即⎡⎣a(s-t)2+b⎤⎦⎡⎣a(s+t)2+b⎤⎦=(as2+b)2,对其进行整理变形:(as2+at2-2ast+b)(as2+at2+2ast+b)=(as2+b)2,(as2+at2+b)2-(2ast)2-(as2+b)2=0,(2as2+at2+2b)at2-4a2s2t2=0,-2a2s2t2+a2t4+2abt2=0,s 2-t 2所以-2as2 +at 2 + 2b = 0 或t = 0 ,其中b 2b = 1为双曲线,t = 0 为直线.a a故选:C.3.B【解析】由题,当数列为-2, -4, -8,时,满足q > 0 ,但是{S n }不是递增数列,所以甲不是乙的充分条件.若{S n }是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q > 0 成立,所以甲是乙的必要条件.故选:B.4.A【解析】因为a= 1, a=an (n ∈ N*),所以a > 0 ,S >1 .1 n+1n 100 21 +ana n a n a n +1 a na n + 1a n2 2 ⎝⎭ ⎝ ⎭ < 1 2 a 1 1 1⎛ 1 1 ⎫ 1 由a n +1 = n ⇒ = + = + ⎪ -1+∴ 1 ⎛ 1a+ 1 ⎫ 2 ⎪ a n +1 2⇒a n ⎝ 1 < 1 + 1 2 2 ⎭ 4,即-1 < 12n +1 ⎝ ⎭1 根据累加法可得,≤ 1+n -1 = n +1,当且仅当 n = 1 时取等号,∴a ≥ 4 ∴a = a n ≤ a n= n +1 a n (n +1)2 n +1 1+ 2 n +1n + 3 n ∴a n +1 ≤ n +1 ,a n n + 3由累乘法可得 a n ≤ 6(n +1)(n + 2),当且仅当 n = 1 时取等号,由裂项求和法得:所以 S ≤ 6⎛ 1 - 1 + 1 - 1 + 1 - 1 ++ 1-1 ⎫ = 6 ⎛ 1 -1 ⎫ < 3 , 即 1< S< 3 .1002 3 3 4 4 5 101 102 ⎪ 2 102 ⎪2 100故选:A .【小结】本题解题关键是通过倒数法先找到a n ,的不等关系,再由累加法可求得a ≥4,由题目条件可知要证 S 小于某数,从而通过局部放缩得到a , a 的不等 n(n +1)2100 n n +1关系,改变不等式的方向得到 a n ≤6(n +1)(n + 2),最后由裂项相消法求得 S 100 < 3 .5.B 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在 最大项和最小项. 【解析】由题意可知,等差数列的公差d =a 5 - a 1 = -1+ 9= 2 , 5 -1 5 -1则其通项公式为: a n = a 1 + (n -1)d = -9 + (n -1)⨯ 2 = 2n -11 ,a n a n a n1+ a n a n +1注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1<a7 <,且由T5 < 0 可知T i < 0 (i ≥ 6,i ∈N ),Ti 由Ti-1 =ai>1(i≥7,i∈N)可知数列{T n }不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 = 1,故数列{T n }中的正项只有有限项:T2= 63 ,T4= 63⨯15 = 945 .故数列{T n }中存在最大项,且最大项为T4.故选:B.【小结】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.6.D【分析】根据题意可得,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,而b1 =S2 =a1 +a2 ,即可表示出题中b 2 , b4, b6, b8,再结合等差数列的性质即可判断各等式是否成立.【解析】对于A,因为数列{a n}为等差数列,所以根据等差数列的下标和性质,由4 + 4 = 2 + 6 可得,2a4 =a2+a6,A 正确;对于B,由题意可知,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,b1 =S2 =a1 +a2 ,∴b2 =a3 +a4 ,b4 =a7 +a8 ,b6 =a11 +a12 ,b8 =a15 +a16 .∴2b4=2(a7+a8),b2+b6=a3+a4+a11+a12.根据等差数列的下标和性质,由3 +11 = 7 + 7, 4 +12 = 8 + 8 可得b 2+b6=a3+a4+a11+a12=2(a7+a8)=2b4,B正确;对于C,a2-a a=(a+3d)2-(a+d)(a+7d)=2d2-2a d=2d(d-a),4 2 8 1 1 1 1 14 2 8 1 1 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1⎪a q a q 12 ⎨ 当a 1 = d 时, a 2= a a ,C 正确;对于 D , b 2 = (a + a )2 = (2a + 13d )2= 4a 2 + 52a d + 169d 2 ,478111b b = (a + a )(a + a ) = (2a + 5d )(2a + 29d )= 4a 2 + 68a d + 145d 2 ,2 83415161111b 2 - b b = 24d 2 - 16a d = 8d (3d - 2a ) .42 811当 d > 0 时, a ≤ d ,∴ 3d - 2a = d + 2 (d - a ) > 0 即b 2 - b b > 0 ;11142 8当 d < 0 时,a ≥ d ,∴ 3d - 2a = d + 2 (d - a ) < 0 即b 2 - b b > 0 ,所以b 2 - b b > 0 ,11142 842 8D 不正确. 故选:D.7.D【解析】设等比数列{a } 的公比为q ,则 a + a + a= a (1+ q + q2) = 1 ,a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2 ) = q = 2 ,因此, a + a + a = a q 5+ a q 6+ a q 7= a q 5(1+ q + q 2) = q 5= 32 .故选:D.8.B【解析】设等比数列的公比为q ,⎧ 4 - 2= 由a -a =12,a -a =24可得: ⎨1 1⇒⎧q = 2 ,5364⎪⎩a q5 - a q 3= 24 a (1- q n ) 1- 2n ⎩a 1 =1 S 2n-11-n 所以 a = a q n -1 = 2n -1, S =1 = = 2n -1,因此 n = =2 - 2 . n 1 n1- q 1- 2 a 2n -1故选:B.9.C【解析】在等式 a= a a中,令 m = 1,可得 a= a a = 2a ,∴a n +1= 2 ,m +nm nn +1n 1nn所以,数列{a n } 是以 2 为首项,以 2 为公比的等比数列,则a n = 2 ⨯ 2n -1= 2n ,na2 ⋅(1- 2 ) 5 i =1 5 5∴a + a++ a=a k +1 ⋅(1- 210 ) k +110= = 2k +1 (210 -1) = 25 (210 -1),k +1k +2k +101- 2 1- 2∴ 2k +1 = 25 ,则 k +1 = 5 ,解得 k = 4 .故选:C.10.C【解析】设第 n 环天石心块数为 a n ,第一层共有 n 环,则{a n } 是以 9 为首项,9 为公差的等差数列, a n = 9 + (n - 1) ⨯ 9 = 9n , 设 S n 为{a n } 的前 n 项和,则第一层、第二层、第三层的块数分 别为 S n , S 2n - S n , S 3n - S 2n ,因为下层比中层多 729 块, 所以 S 3n - S 2n = S 2n - S n + 729 , 即3n (9 + 27n ) - 2n (9 + 18n ) = 2n (9 + 18n ) - n (9 + 9n ) + 729 2 2 2 2即9n 2 = 729 ,解得n = 9 ,所以 S 3n = S 27= 27(9 + 9 ⨯ 27)= 3402 .故选:C 211.C1 5【解析】由a i +m = a i 知,序列 a i 的周期为 m ,由已知,m = 5 ,C (k ) = ∑a i ai +k, k = 1, 2,3, 4i =1对于选项 A ,1 51 1 1 1C (1) = 5 ∑a i a i +1 = 5 (a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = 5 (1 + 0 + 0 + 0 + 0) = ≤i =1 5 5 1 51 1 2C (2) = 5 ∑a i a i +2 = 5 (a 1a 3 + a 2a 4 + a 3a 5 + a 4a 6 + a 5a 7 ) = 5 (0 +1 + 0 +1 + 0) = 5,不满足;对于选项 B ,1 5 C (1) = ∑a i a i +1 = i =1对于选项 D ,(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = ,不满足;1 5C (1) = ∑a i a i +1 = i =1(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6) = ,不满足; 1 1 35 5 (1 + 0 + 0 +1 +1) = 511(1 + 0 + 0 + 0 +1) =25 5 51 1 1 ⎩故选:C12.C⎧a + a q + a q 2 + a q 3 = 15,【解析】设正数的等比数列{a n }的公比为q ,则⎨ ⎩1 1 1 1 , a q 4 = 3a q 2+ 4a解得⎧a 1 = 1, ,∴ a = a q 2= 4 ,故选 C .⎨q = 2 3 1 13.A 【解析】⎧S = 4a + d ⨯ 4 ⨯ 3 = 0⎧a = -3 ⎪ 4 1 由题知, 2,解得⎨ 1,∴ a = 2n - 5 ,故选 A . ⎨ ⎪⎩a 5 = a 1+ 4d = 5 ⎩d = 2 n14.B 【解析】令 f (x ) = x - ln x -1, 则 f ' (x ) = 1- 1,令 f '(x ) = 0, 得 x = 1 ,所以当 x > 1 时, f '(x ) > 0 ,x当0 < x < 1 时, f '(x ) < 0 ,因此 f (x ) ≥ f (1) = 0,∴ x ≥ ln x +1 ,若公比 q > 0 ,则 a 1 + a 2 + a 3 + a 4 > a 1 + a 2 + a 3 > ln(a 1 + a 2 + a 3 ) ,不合题意;若公比q ≤ -1 ,则 a + a + a + a = a (1+ q )(1+ q 2) ≤ 0,12341但ln(a + a + a ) = ln[a (1+ q + q 2)] > ln a > 0 ,12311即a 1 + a 2 + a 3 + a 4 ≤ 0 < ln(a 1 + a 2 + a 3 ) ,不合题意;因此-1 < q < 0, q 2 ∈(0,1) ,∴ a > a q 2 = a , a < a q 2= a< 0 ,选 B.113224【小结】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 x ≥ ln x +1,e x ≥ x +1, e x ≥ x 2 +1(x ≥ 0).15.Dn n -1 +【解析】因为每一个单音与前一个单音频率比为12 2 ,所以 a = 122a (n ≥ 2, n ∈ N ) ,又a 1 = f ,则 a = a q 7 = f (12 2)7 = 12 27 f故选 D.8116.A 【分析】根据等比中项的性质列方程,解方程求得公差 d ,由此求得{a n }的前6 项的和.【解析】设等差数列{a } 的公差为 d ,由 a 、 a 、 a 成等比数列可得 a 2= a a ,n 2 3 6 3 2 6即(1+ 2d )2 = (1+ d )(1+ 5d ) ,整理可得 d 2 + 2d = 0 ,又公差不为 0,则d = -2 ,故{a n } 前6 项的和为 S 6 = 6a 1 +6⨯(6 -1)d = 6⨯1+6⨯(6 -1)⨯(-2) = -24 .22故选:A 17.A 【解析】存在 k ∈ N + ,使得 x 100+k , x 200+k , x 300+k 成等差数列,可得2[a (200 + k )2 + b (200 + k ) + c ] = a (100 + k )2 + b (100 + k ) + c + a (300 + k )2 + b (300 + k ) + c,化简可得 a = 0 ,所以使得 x 100+k , x 200+k , x 300+k 成等差数列的必要条件是 a ≥ 0 . 18.C 【解析】设公差为d , a 4 + a 5 = a 1 + 3d + a 1 + 4d = 2a 1 + 7d = 24 ,S = 6a + 6 ⨯ 5 d = 6a+15d = 48 ,联立⎧ 2a 1 + 7d = 24 , 解得d = 4 ,故选 C. 6 1 21⎨6a +15d = 48 ⎩ 119.C 【解析】由 S 4 + S 6 - 2S 5 = 10a 1 + 21d - 2(5a 1 + 10d ) = d ,可知当 d > 0 时,有 S 4 + S 6 - 2S 5 > 0 ,即 S 4 + S 6 > 2S 5 ,反之,若 S 4 + S 6 > 2S 5 ,则 d > 0 ,所以“d >0”是“S 4 + S 6>2S 5”的充要条件, 选 C .20.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .21.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .22. 3n 2 - 2n【解析】因为数列{2n -1} 是以 1 为首项,以 2 为公差的等差数列, 数列{3n - 2}是以 1 首项,以 3 为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以 1 为首项,以 6 为公差的等差数列, 所以{a }的前 n 项和为 n ⋅1+n (n -1)⋅ 6 = 3n 2 - 2n ,故答案为: 3n 2 - 2n .n223.10【解析】因为 a= n (n +1) a = 1, a= 3, a= 6 . n21 2 3即 S 3 = a 1 + a 2 + a 3 = 1+ 3+ 6 = 10 .故答案为:10 .24. 4【解析】设等差数列{a n } 的公差为 d ,等比数列{b n }的公比为q ,根据题意 q ≠ 1.1 ⎪ n +2 n =等差数列{a }的前 n 项和公式为 P = na +n (n -1) d = d n 2 + ⎛a - d ⎫n , nn12 2 12 ⎪等比数列{b }的前 n 项和公式为Qb (1-q n) ⎝ ⎭= - b 1q n+ b 1,nn 1- q 1- q 1- q依题意 S = P + Q ,即 n 2 - n + 2n -1 = d n 2 + ⎛a - d ⎫n -b 1 q n + b ,n n n 21 2 ⎪ 1 - q 1 - q⎧ d= 12 ⎝ ⎭⎧d = 2 ⎪ d ⎪ ⎪a 1 - = -1 ⎪a 1 = 0通过对比系数可知⎨ 2 ⇒ ⎨q = 2 ,故 d + q = 4 .故答案为: 4⎪q = 2 ⎪⎪ b ⎩⎪b 1 = 1 ⎪ 1 = -1 ⎩1- q25.7【解析】 a + (-1)na = 3n -1,当n 为奇数时, a n +2 = a n + 3n - 1 ;当 n 为偶数时, a n +2 + a n = 3n - 1 .设数列{a n } 的前 n 项和为 S n , S 16 = a 1 + a 2 + a 3 + a 4 + + a 16= a 1 + a 3 + a 5+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .26. 25 【解析】{a n }是等差数列,且 a 1 = -2 , a 2 + a 6 = 2设{a n } 等差数列的公差 d ,根据等差数列通项公式:a n = a 1 + (n -1) d 可得 a 1 + d + a 1 + 5d = 2 ,即: -2 + d + (-2) + 5d = 2 ,整理可得: 6d = 6 解得: d = 1⎪ 1⎪ ⎨ d = 2根据等差数列前 n 项和公式: S n= na 1 + n (n - 1) d , n ∈ N *2可得: S = 10 ( -2 ) + 10 ⨯ (10 - 1) = -20 + 45 = 25 ,∴ S = 25 . 10 21027.16.⎧a 2 a 5 + a 8 = (a 1 + d )(a 1 + 4d ) + (a 1 + 7d ) = 0 【解析】由题意可得: ⎨⎪⎩ S 9 = 9a 1 + 9 ⨯ 8 d = 27 , 2解得: ⎧a 1 = -5 ,则 S ⎩ 8 = 8a 1+ 8⨯ 7d = -40 + 28⨯ 2 = 16 . 228.100【解析】 ⎧a 3 = a 1 + 2d = 5 , 得⎧a 1 = 1, ∴S= 10a+ 10⨯ 9 d = 10⨯1+ 10⨯ 9⨯ 2 = 100. ⎨a = a + 6d = 13 ⎨d = 2 10 1 2 2⎩ 7 1⎩29.4.【解析】因 a 2 = 3a 1 ,所以 a 1 + d = 3a 1 ,即 2a 1 = d ,S 1010a 1 = + 10 ⨯ 9 d2= 100a 1 = 4所以 S 5⨯ 4 25a .5 5a 1 + d1 2530. .8【解析】设等比数列的公比为q ,由已知S = a + a q + a q 2 = 1+ q + q 2 = 3 ,即 q 2 + q + 1 = 0 解得 q = - 1, 3 1 1 144 4 2 1- (- 1 )4所以 S = a 1 (1- q ) =2 = 5. 4 1- q 1- (- 1) 8231.121 .3【解析】设等比数列的公比为q ,由已知 a = 1, a 2= a 1 3 2 1 5 ,所以 = q , 又q ≠ 0 , 134 651(1- 35 ) ( q )33所以 q = 3, 所以 S =a 1 (1- q ) = 3 = 121 . 5 1- q 1- 3 332.14【解析】∵等差数列{a n }的前 n 项和为 S n ,a 3=0,a 6+a 7=14,⎧ a 1 + 2d = 0 ∴ ,解得 a =﹣4,d=2,∴S =7a + 7 ⨯ 6d =﹣28+42=14. ⎨a + 5d + a + 6d = 14 1 7 1⎩ 1 1故答案为 14.33. -63【解析】根据 S n = 2a n +1,可得 S n +1 = 2a n +1 +1 , 两式相减得a n +1 = 2a n +1 - 2a n ,即 a n +1 = 2a n , 当 n = 1 时, S 1 = a 1 = 2a 1 +1,解得 a 1 = -1, 所以数列{a n }是以-1 为首项,以 2 为公比的等比数列,所以 S 6 = -(1- 26 )1- 2= -63 ,故答案是-63 .34.2【解析】由 a = n 2 ,若对于任意 n ∈ N +,{b } 的第 a 项等于{a }的第b 项,n则b = a = (b )2 ,则b= 1 = (b )2 , b n= (b )2, b n= (b )2 , b n n= (b )2a nb nn114293164lg(b b b b ) lg(b b b b ) 2 2 lg(b b b b )所以b b b b = (b b b b )2 ,所以 1 4 9 16 = 1 2 3 4= 1 2 3 4 = 2 . 1 4 9 16 1 2 3 4 lg(b b b b ) lg(b b b b ) lg(b b b b )1 2 3 41 2 3 41 2 3 435.2nn +1【解析】2S1S ⎧a1 + 2d = 3⎧a = 1设等差数列的首项为a ,公差为d ,由题意有⎪4 ⨯3,解得⎨ 1 ,1 ⎨4a + d = 10 ⎩d = 1⎩⎪12数列的前 n 项和Sn =na1+n (n -1)2d =n ⨯1+n (n -1)2⨯1 =n (n +1)2裂项可得=2= 2(1-1) ,S k k (k +1)k k +1n 1= 2[(1-1) + (1-1) ++ (1-1)] = 2(1-1) =2n所以∑k =1 k2 2 3n n +1n +1n +1.36.1【解析】设等差数列的公差和等比数列的公比分别为d 和q,则-1+ 3d =-q3 = 8 ,求得q =-2 ,d = 3,那么a2b2=-1+ 3= 1 ,故答案为1.237.32【解析】⎧=a1⎪ 3 1-q(1-q3 ) =741-q6由题意可得 q ≠ 1,所以⎨⎪S⎩=a11-q(1-q 6 ) =634两式相除得1-q3= 9, q3 = 8, q = 2, 代入得a =1, a =1⨯ 27 = 25 = 32 ,填32.1 4 8(4)38.5 72015 (3 +n)2n-4【解析】(1)由对折2 次共可以得到5dm⨯12dm,10dm⨯6dm ,20dm⨯3dm三种规格的图形,所以对着三次的结果有:5⨯12,5⨯6,10⨯3;20⨯3,共4种不同规格(单位dm2);2 2,62 ( )故对折 4 次可得到如下规格: 5⨯12 , 5 ⨯ 6 , 5⨯ 3 ,10 ⨯ 3 , 20 ⨯ 3 ,共 5 种不同规格; 4 2 2 4(2) 由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格1 如何,其面积成公比为 2的等比数列,首项为 120 (dm 2),第 n 次对折后的图形面积为⎛ 1 ⎫n -1120 ⨯ ⎪ ⎝ ⎭,对于第 n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想 S n = 120(n +1) ,2n -1设 S =∑ S = 120⨯ 2 + 120⨯ 3 + 120⨯ 4 +L + 120(n +1) ,k =12021 222n -1则 1S =120 ⨯ 2 + 120 ⨯ 3++ 120n + 120(n +1) ,2 2122两式作差得:2n -1 2n 1 S = 240 +120⎛ 1 + 1++ 1 ⎫ - 120(n +1) 2 2 222n -1 ⎪ 2n⎝ ⎭60 ⎛1 - 1 ⎫ 2n -1 ⎪ 120(n +1) 120 120(n +1) 120(n + 3) = 240 + ⎝ ⎭ -= 360 - - = 360 - , 1- 1 2n22n -1 2n 2n240(n + 3) 15(n + 3)因此, S = 720 - = 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -439.0. -10.【解析】等差数列{a n }中, S 5 = 5a 3 = -10 ,得 a 3 = -2, a 2 = -3 ,公差 d = a 3 - a 2 = 1, a 5 = a 3 + 2d = 0 ,由等差数列{a n } 的性质得 n ≤ 5 时, a n ≤ 0 , n ≥ 6 时, a n 大于0,所以 S n 的最小值为 S 4 或 S 5 , 即为-10 .k n。
完整版)全国卷高考数学真题数列高考数学——数列在高考数学中,数列是一个非常重要的知识点。
下面我们来看一些数列相关的题目。
17年全国I卷17题,给定一个数列,求它的通项公式和前n项和。
如果这个数列是等差数列,还需要判断一下。
如果是等比数列,还需要求出它的通项公式和前n项和。
17年全国II卷17题,已知一个等差数列的前n项和为S,如果它的第一项是a1,公差是d,那么当S等于某个值时,求a1和d。
同样地,如果这个等差数列的第一项是a1,前n项和为Sn,那么当Sn等于某个值时,求a1和d。
17年全国III卷17题,给定一个数列,求它的通项公式和前n项和。
如果这个数列满足某个条件,还需要在此基础上求数列的某些值。
16年全国I卷17题,已知一个公差为3的等差数列,数列满足某个条件,求它的通项公式和前n项和。
同样地,如果这个等差数列的前n项和为Sn,其中Sn表示不超过x的最大整数,那么求它的前10项和。
16年全国II卷17题,给定一个公差为1的等差数列,求它的通项公式和前n项和。
如果这个等差数列满足某个条件,还需要在此基础上求数列的某些值。
16年全国III卷17题,给定一个数列,它的各项都为正数,求它的通项公式和前n项和。
如果这个数列满足某个条件,还需要在此基础上求数列的某些值。
15年全国I卷7题,已知一个等差数列的前n项和为Sn,如果它的第一项是a1,公差是d,那么当Sn等于某个值时,求a1和d。
15年全国I卷13题,给定一个数列,求它的前n项和。
如果这个数列满足某个条件,还需要在此基础上求数列的某些值。
15年全国II卷5题,给定一个公差为d的等差数列,求它的通项公式和前n项和。
如果这个等差数列满足某个条件,还需要在此基础上求数列的某些值。
15年全国II卷9题,已知一个等比数列的前n项和为Sn,公比是q,求它的通项公式和前n项和。
如果这个等比数列满足某个条件,还需要在此基础上求数列的某些值。
14年全国I卷17题,给定一个等差数列,求它的通项公式和前n项和。
全国卷历年高考数列真题归类分析(含答案)1.(2016年1卷3)已知等差数列{an}前9项的和为27,a10=8,则求a100.解析:由已知,9a1+36d=27,a1+9d=8,解得a1=-1,d=1,a100=a1+99d=-1+99=98,选C。
2.(2017年1卷4)记Sn为等差数列{an}的前n项和,若a4+a5=24,S6=48,则{an}的公差为多少?解析:S6=48,即a1+a6=16,a4+a5=24,代入公差d的通项公式an=a1+(n-1)d,得到a8-a6=8=2d,故d=4,选C。
3.(2017年3卷9)等差数列{an}的首项为1,公差不为0.若a2、a3、a6成等比数列,则{an}前6项的和为多少?解析:设公差为d,则a3(a1+2d)=(a1+d)(a1+5d),代入a1=1解得d=-2,故a6=a1+5d=-9,前6项和为S6=6a1+15d=-24,选A。
4.(2017年2卷15)等差数列{an}的前项和为Sn,则1=∑k=1nSk,求an。
解析:设a1=1,d=2,Sn=n(2a1+(n-1)d)/2=n(n+1),代入an=a1+(n-1)d=2n-1,故1=∑k=1nSk=∑k=1n(k+1)-(k-1)=2n,故n=1/2,代入an=2n-1=-1,选D。
5.(2016年2卷17)Sn为等差数列{an}的前n项和,且a1=1,S7=28.记bn=[lga1+2Sn-1]/[lga1+2],求b7.解析:由等差数列前n项和的通项公式Sn=n(2a1+(n-1)d)/2=n(2+(n-1)d)/2,代入a1=1,S7=28,得到d=4,an=1+4(n-1)=4n-3,代入bn=[lga1+2Sn-1]/[lga1+2],得到b7=[XXX(2×28-1)]/[lg3]=2,选B。
题目一:求等比数列中的数值要求:改写成完整的句子,避免使用符号表示1.求b1,b11,b101;2.求数列{bn}的前1000项和。
高考数列测试题及答案一、选择题(每题4分,共20分)1. 下列数列中,哪一个是等差数列?A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 8, 16D. 3, 5, 7, 11, 13答案:A2. 已知数列{a_n}的通项公式为a_n = 2n - 1,求a_5的值。
A. 7B. 9C. 11D. 13答案:C3. 等比数列{b_n}中,b_1 = 2,公比q = 3,求b_4的值。
A. 24B. 48C. 72D. 96答案:C4. 已知数列{c_n}的前n项和S_n = n^2 + 2n,求c_3的值。
A. 7B. 8C. 9D. 10答案:A5. 等差数列{d_n}中,d_1 = 3,d_2 = 7,求d_5的值。
A. 17B. 19C. 21D. 23答案:A二、填空题(每题4分,共20分)6. 等差数列{e_n}中,e_3 = 10,e_5 = 16,求公差d。
答案:37. 等比数列{f_n}中,f_1 = 4,f_3 = 64,求公比q。
答案:48. 已知数列{g_n}的前n项和S_n = 3n^2 + 5n,求g_2的值。
答案:119. 等差数列{h_n}中,h_1 = 5,h_3 = 17,求h_5的值。
答案:2910. 等比数列{i_n}中,i_1 = 2,i_4 = 64,求i_2的值。
答案:4三、解答题(每题15分,共30分)11. 已知数列{j_n}是等差数列,且j_1 = 1,j_2 + j_3 = 10,求数列{j_n}的通项公式。
解答:设数列{j_n}的公差为d,则j_2 = 1 + d,j_3 = 1 + 2d。
根据题意,有(1 + d) + (1 + 2d) = 10,解得d = 3。
因此,数列{j_n}的通项公式为j_n = 1 + 3(n - 1) = 3n - 2。
12. 已知数列{k_n}是等比数列,且k_1 = 6,k_2 = 9,求数列{k_n}的前5项和。
高考数列近五年真题
17.[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.
(1)证明:a n +2-a n =λ. (2)是否存在λ,使得{a n }为等差数列?并说明理由.
[2014·新课标全国卷2]17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明
{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+.
[2013·新课标全国卷1]7.设等差数列
{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A .3
B .4 C.5
D.6
[2013·新课标全国卷1]14.若数列{n a }的前n 项和为S n =2133
n a +,则数列{n a }的通项公式是n a =______.
(2013课标全国Ⅱ,理16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为__________.
[2012新课标全国卷](5)已知
{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )
()A 7 ()B 5 ()C -5 ()D -7
[2012新课标全国卷](16)数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为
[2010新课标全国卷](17)(本小题满分12分)设数列
{}n a 满足21112,32n n n a a a -+=-= (1).求数列{}n a 的通项公式; (2).令n n b na =,求数列的前n 项和n S
[2015新课标全国卷](17)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+, (Ⅰ)求{}n a 的通项公式:(Ⅱ)设1
1n n n b a a += ,求数列{}n b 的前n 项和。
[2016新课标全国卷](15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。