数列历年高考试题
- 格式:doc
- 大小:378.11 KB
- 文档页数:3
近三年数列高考真题(带解析)1.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .2.设等比数列{an }满足124a a +=,318a a -=. (1)求{an }的通项公式;(2)记n S 为数列{log 3an }的前n 项和.若13m m m S S S +++=,求m . 3.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.4.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.5.记n S 为数列{}n a 的前n 项和,已知210,3n a a a >=,且数列是等差数列,证明:{}n a 是等差数列.6.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 7.已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.8.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-. (1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.9.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+. (1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.10.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.参考答案:1.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可. 【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n ∈N ,都有21n a n =+成立; [方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+. [方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=. 由134n n a a n +=-得1114333n n n n n a a n+++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯, (111)4(1)(2)333n n n n na a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯++-⨯⎢⎥⎣⎦,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++()()()()2132431n n b b b b b b b b +=-+-+-++-11n b b +=-1(21)22n n +=-+. [方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122nn n pn q p S S ----=+⋅,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠-,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦', 所以12n b b b +++21122322n n -=+⋅+⋅++⋅1(2)12(1)2n nf n n +==+-+'⋅.故234(2)2222nn S f =++'+++()1212412(1)212n n nn n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解; 方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式; 方法三:由134n n a a n +=-化简得1114333n n n n n a a n+++-=-,根据累加法即可求出数列{}n a 的通项公式; 方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式. (2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法; 方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n n x x f x x x x x x x-=++++=≠-的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.2.(1)13n n a -=;(2)6m =.【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式;(2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13n n a -=;(2)令313log log 31n n n b a n -===-, 所以(01)(1)22n n n n n S +--==, 根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.3.(1)2-;(2)1(13)(2)9nn n S -+-=. 【分析】(1)由已知结合等差中项关系,建立公比q 的方程,求解即可得出结论; (2)由(1)结合条件得出{}n a 的通项,根据{}n na 的通项公式特征,用错位相减法,即可求出结论.【详解】(1)设{}n a 的公比为q ,1a 为23,a a 的等差中项,212312,0,20a a a a q q =+≠∴+-=,1,2q q ≠∴=-;(2)设{}n na 的前n 项和为n S ,111,(2)n n a a -==-,21112(2)3(2)(2)n n S n -=⨯+⨯-+⨯-++-,①23121(2)2(2)3(2)(1)(2)(2)n n n S n n --=⨯-+⨯-+⨯-+--+-,②①-②得,2131(2)(2)(2)(2)n n n S n -=+-+-++---1(2)1(13)(2)(2)1(2)3n n n n n ---+-=--=--, 1(13)(2)9nn n S -+-∴=. 【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题. 4.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用. 5.证明见解析.【分析】的公差d ,进一步写出的通项,从而求出{}n a 的通项公式,最终得证.【详解】∵数列是等差数列,设公差为d(n -=()n *∈N ∴12n S a n =,()n *∈N∴当2n ≥时,()221111112n n n a S S a n a n a n a -=-=--=- 当1n =时,11121=a a a ⨯-,满足112n a a n a =-, ∴{}n a 的通项公式为112n a a n a =-,()n *∈N ∴()()111111221=2n n a a a n a a n a a --=----⎡⎤⎣⎦ ∴{}n a 是等差数列.【点睛】在利用1n n n a S S -=-求通项公式时一定要讨论1n =的特殊情况. 6.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n n n n .设0121111101212222Γ3333------=++++n n n , ⑧则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n n n nT --=++++,① 231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n nn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁. (2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法, 方法四利用导数方法求和,也是代替错位相减求和法的一种方法.7.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=, 则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.8.(1)证明见解析;(2)9.【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出;(2)根据题意化简可得22k m -=,即可解出.【详解】(1)设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112d b a ==,所以原命题得证. (2)由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k =,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.9.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221n n S n a n+=+,即222n n S n na n +=+①, 当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈, 所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=-- ⎪⎝⎭, 所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<=. 则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10.(1)()12n n n a +=(2)见解析【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. 【详解】(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=, ∴()()112133n n n n n n a n a a S S --++=-=-, 整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯ ()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111n a a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。
数列专题高考真题(2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1,,,其中为常数.(Ⅰ)证明:;(Ⅱ)是否存在,使得{}为等差数列并说明理由.(2014·II) 17.(本小题满分12分) 已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明: .(2015·I)(17)(本小题满分12分)为数列的前项和.已知,(Ⅰ)求的通项公式:(Ⅱ)设 ,求数列的前项和。
(2015·I I)(4)等比数列满足,135a a a ++ =21,则357a a a ++= ( )(A )21 (B )42 (C )63 (D )84(2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列前9项的和为27,,则(A )100 (B )99 (C )98 (D )97(2016·I)(15)设等比数列满足的最大值为__________。
(2016·II)(17)(本题满分12分)S n 为等差数列的前项和,且=1 ,=28 记,其中表示不超过的最大整数,如.(I )求,,;(II )求数列的前1 000项和.(2016·III)(12)定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有 (A )18个(B )16个(C )14个(D )12个(2016·III)(17)(本小题满分12分)已知数列的前项和,其中(I )证明是等比数列,并求其通项公式;(II )若 ,求.(2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
历年高考真题汇编---数列(含)1、(全国新课标卷理)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。
有条件可知a>0,故13q =。
由12231a a +=得12231a a q +=,所以113a =。
故数列{a n }的通项式为a n =13n 。
(Ⅱ )111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+2、(全国新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g(1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S解(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-=。
而 12,a =所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知35211222322n n S n -=⋅+⋅+⋅++⋅L ①从而 23572121222322n n S n +⋅=⋅+⋅+⋅++⋅L ②①-②得 2352121(12)22222n n n S n -+-⋅=++++-⋅L 。
数 列第Ⅰ卷(选择题 共60分)一、选择题1.(文)(2011·北京朝阳区期末)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于( )A .4B .2C .1D .-2[答案] A [解析] S 1=2a 1-2=a 1,∴a 1=2,S 2=2a 2-2=a 1+a 2,∴a 2=4. 2.(文)(2011·巢湖质检)设数列{a n }满足a 1=0,a n +a n +1=2,则a 2011的值为( )A .2B .1C .0D .-2[答案] C [解析] ∵a 1=0,a n +a n +1=2,∴a 2=2,a 3=0,a 4=2,a 5=0,…,即a 2k -1=0,a 2k =2,∴a 2011=0.3.(理)(2011·辽宁沈阳二中检测,辽宁丹东四校联考)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15[答案] A[解析] 由log 3a n +1=log 3a n +1(n ∈N *)得,a n +1=3a n ,∴数列{a n }是公比等于3的等比数列,∴a 5+a 7+a 9=(a 2+a 4+a 6)×33=35,∴log 13(a 5+a 7+a 9)=-log 335=-5.4.(文)(2011·四川资阳模拟)数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( )A .24B .25C .26D .27[答案] A [解析] 解法1:a 1=-47,d =2,∴S n =-47n +n (n -1)2×2=n 2-48n =(n -24)2-576,故选A.解法2:由a n =2n -49≤0得n ≤24.5,∵n ∈Z ,∴n ≤24,故选A. 5.(2011·重庆南开中学期末)已知各项均为正数的等比数列{a n }的首项a 1=3,前三项的和为21,则a 3+a 4+a 5=( )A .33B .72C .84D .189[答案] C[解析] ∵a 1=3,a 1+a 2+a 3=21,∴q 2+q -6=0,∵a n >0,∴q >0,∴q =2,∴a 3+a 4+a 5=(a 1+a 2+a 3)·q 2=84,故选C.6.(2011·四川广元诊断)已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2011,则m =( )A .1004B .1005C .1006D .1007[答案] C [解析] 由条件知⎩⎪⎨⎪⎧a 1=13a 1+3×22d =a 1+4d ,∴⎩⎪⎨⎪⎧a 1=1d =2, ∵a m =a 1+(m -1)d =1+2(m -1)=2m -1=2011,∴m =1006,故选C.7.(2014•天津模拟)已知函数f (x )=(a >0,a ≠1),数列{a n }*7,8) B . (1,8) C . (4,8) D . (4,7) 解答: 解:∵{a n }是单调递增数列,∴,解得7≤a <8.故选:A .8.(2014•天津)设{a n }的首项为a 1,公差为﹣1的等差数列,S n 为其前n 项和,若S 1,S 2,. . D .﹣解:解:∵{a n }是首项为a 1,公差为﹣1的等差数列,S n 为其前n 项和,∴S 1=a 1,S 2=2a 1﹣1,S 4=4a 1﹣6,由S 1,S 2,S 4成等比数列,得:, 即,解得:.故选:D .9.(2014•河南一模)设S n 是等差数列{a n }的前n 项和,若,则=( )A . 1B . ﹣1C .2 D .解答:解:由题意可得====1故选A10.(2014•河东区一模)阅读图的程序框图,该程序运行后输出的k 的值为( )A.5B.6C.7D.8A.8B.18 C.26 D.8012.(2014•河西区三模)设S n为等比数列{a n}的前n项和,8a2+a5=0,则等于()1 B.5C.﹣8 D.﹣11解答:解:设等比数列{a n}的公比为q,(q≠0)由题意可得8a2+a5=8a1q+a1q4=0,解得q=﹣2,故====﹣11故选D13.(2014•河西区二模)数列{a n}满足a1=2,a n=,其前n项积为T n,则T2014=().B.C6﹣解答:解:∵a n=,∴a n+1=,∵a1=2,∴a2=﹣3,a3=﹣,a4=,a5=2,…,∴数列{a n}是周期为4的周期数列,且a1a2a3a4=1,∵2014=4×503+2,∴T2014=﹣6.故选:D.7 B.45 C.38 D.54解答:解:设公差为d,由S7=28,S11=66得,,即,解得,所以S9=9×1=45.故选B.16.(2014•天津)设{a n}是首项为a1,公差为﹣1的等差数列,S n为其前n项和,若S1,S2,S4成等比数列,则a1的值为﹣.解答:解:由题意可得,a n=a1+(n﹣1)(﹣1)=a1+1﹣n,S n==,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1﹣6),解得a1=﹣,故答案为:﹣.*等级图标需要天数等级图标需要天数5 7712 9621 19232 32045 115260 2496则等级为50级需要的天数a50=2700.解答:解:由表格可知:a n=5+7+…+(2n+3)==n(n+4),∴a50=50×54=2700.故答案为:2700.(2014•郑州模拟)数列{a n}为等比数列,a2+a3=1,a3+a4=﹣2,则a5+a6+a7=24.解答:解:由a2+a3=1,a3+a4=﹣2,两式作商得q=﹣2.代入a2+a3=1,得a1(q+q2)=1.解得a1=.所以a5+a6+a7=(24﹣25+26)=24.故答案为:24.2014•厦门一模)已知数列{a n}中,a n+1=2a n,a3=8,则数列{log2a n}的前n项和等于.解答:解:∵数列{a n}中,a n+1=2a n,∴=2,∴{a n}是公比为2的等比数列,∵a3=8,∴,解得a1=2,∴,∴log2a n=n,∴数列{log2a n}的前n项和:S n=1+2+3+…+n=.故答案为:.三.解答题(共12小题)20.已知等比数列{a n }中,a 1=,公比q=.(Ⅰ)S n 为{a n }的前n 项和,证明:S n =解答:证明:(I )∵数列{a n }为等比数列,a 1=,q=∴a n =×=,S n =又∵==S n ∴S n =(II )∵a n =∴b n =log 3a 1+log 3a 2+…+log 3a n =﹣log 33+(﹣2log 33)+…﹣nlog 33 =﹣(1+2+…+n )=﹣∴数列{b n }的通项公式为:b n =﹣n 前n 项和为S n ,且b 1=1,b n +1=13S n .(1)求b 2,b 3,b 4的值; (2)求{b n }的通项公式;(3)求b 2+b 4+b 6+…+b 2n 的值.[解析] (1)b 2=13S 1=13b 1=13,b 3=13S 2=13(b 1+b 2)=49,b 4=13S 3=13(b 1+b 2+b 3)=1627.(2)⎩⎨⎧b n +1=13S n ①b n=13Sn -1②①-②解b n +1-b n =13b n ,∴b n +1=43b n ,∵b 2=13,∴b n =13·⎝⎛⎭⎫43n -2(n ≥2)∴b n =⎩⎪⎨⎪⎧1 (n =1)13·⎝⎛⎭⎫43n -2(n ≥2).(3)b 2,b 4,b 6…b 2n 是首项为13,公比⎝⎛⎭⎫432的等比数列, ∴b 2+b 4+b 6+…+b 2n =13[1-(43)2n ]1-⎝⎛⎭⎫432=37[(43)2n -1].22.(本小题满分12分)(2011·四川广元诊断)已知数列{a n }的前n 项和S n =2n 2-2n ,数列{b n }的前n 项和T n =3-b n .①求数列{a n }和{b n }的通项公式;②设c n =14a n ·13b n ,求数列{c n }的前n 项和R n 的表达式.[解析] ①由题意得a n =S n -S n -1=4n -4(n ≥2) 而n =1时a 1=S 1=0也符合上式 ∴a n =4n -4(n ∈N +)又∵b n =T n -T n -1=b n -1-b n , ∴b n b n -1=12∴{b n }是公比为12的等比数列,而b 1=T 1=3-b 1,∴b 1=32,∴b n =32⎝⎛⎫12n -1=3·⎝⎛⎭⎫12n (n ∈N +). ②C n =14a n ·13b n =14(4n -4)×13×3⎝⎛⎭⎫12n=(n -1)⎝⎛⎭⎫12n,∴R n =C 1+C 2+C 3+…+C n=⎝⎛⎭⎫122+2·⎝⎛⎭⎫123+3·⎝⎛⎭⎫124+…+(n -1)·⎝⎛⎭⎫12n ∴12R n =⎝⎛⎭⎫123+2·⎝⎛⎭⎫124+…+(n -2)⎝⎛⎭⎫12n +(n -1)⎝⎛⎭⎫12n +1 ∴12R n =⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n -1)·⎝⎛⎭⎫12n +1, ∴R n =1-(n +1)⎝⎛⎭⎫12n.23.(2014•濮阳二模)设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13(Ⅰ)求{a n }、{b n }的通项公式; (Ⅱ)求数列的前n 项和S n .解答:解:(Ⅰ)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且解得d=2,q=2.所以a n =1+(n ﹣1)d=2n ﹣1,b n =qn ﹣1=2n ﹣1.(Ⅱ).,①,②②﹣①得,===.24.(2014•天津模拟)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,.(Ⅰ)求a n与b n;解答:解:(1)∵在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,.∴b2=b1q=q,,(3分)解方程组得,q=3或q=﹣4(舍去),a2=6(5分)∴a n=3+3(n﹣1)=3n,b n=3n﹣1.(7分)(2)∵a n=3n,b n=3n﹣1,∴c n=a n•b n=n•3n,∴数列{c n}的前n项和T n=1×3+2×32+3×33+…+n×3n,∴3T n=1×32+2×33+3×34+…+n×3n+1,∴﹣2T n=3+32+33+…+3n﹣n×3n+1=﹣n×3n+1=﹣n×3n+1,∴T n=×3n+1﹣.。
2010-2019历年高考数学《等差数列》真题汇总专题六 数列第十五讲 等差数列2019年1. (2019全国Ⅰ文18)记S n 为等差数列{}n a 的前n 项和,已知95S a =-. (1)若34a =,求{}n a 的通项公式;(2)若10a >,求使得n n S a ≥的n 的取值范围.2. (2019全国Ⅲ文14)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.3.(2019天津文18)设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知113a b ==,23b a = ,3243b a =+.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足21,,,n n n c b n ⎧⎪=⎨⎪⎩奇偶为数为数求()*112222n na c a c a c n N +++∈L .4.(2019江苏8)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 .2010-2018年一、选择题1.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件 2.(2015新课标2)设n S 是数列}{n a 的前n 项和,若3531=++a a a ,则=5SA .5B .7C .9D .13.(2015新课标1)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = A .172 B .192C .10D .12 4.(2014辽宁)设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则A .0d <B .0d >C .10a d <D .10a d >5.(2014福建)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =A .8B .10C .12D .14 6.(2014重庆)在等差数列{}n a 中,1352,10a a a =+=,则7a =A .5B .8C .10D .147.(2013新课标1)设等差数列{}n a 的前n 项和为n S ,1m S -=-2,m S =0,1m S +=3,则m =A .3B .4C .5D .68.(2013辽宁)下面是关于公差0d >的等差数列{}n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为A .12,p pB .34,p pC .23,p pD .14,p p 9.(2012福建)等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 的公差为A .1B .2C .3D .410.(2012辽宁)在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S A .58 B .88 C .143 D .17611.(2011江西)设{}n a 为等差数列,公差2d =-,n s 为其前n 项和,若1011S S =,则1a =A .18B .20C .22D .2412.(2011安徽)若数列}{n a 的通项公式是1210(1)(32),nn a n a a a =--+++=L 则A .15B .12C .-12D .-1513.(2011天津)已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .11014.(2010安徽)设数列{}n a 的前n 项和2n S n =,则8a 的值为A .15B .16C .49D .64 二、填空题15.(2015陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为_____.16.(2014北京)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =____时,{}n a 的前n 项和最大.17.(2014江西)在等差数列{}n a 中,71=a ,公差为d ,前n 项和为n S ,当且仅当8=n 时n S 取最大值,则d 的取值范围_________.18.(2013新课标2)等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n nS 的最小值为____.19.(2013广东)在等差数列{}n a 中,已知3810a a +=,则573a a +=_____. 20.(2012北京)已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = ;n S = .21.(2012江西)设数列{},{}n n a b 都是等差数列,若117a b +=,3321a b +=,则55a b +=____.22.(2012广东)已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =____.23.(2011广东)等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k =_________.三、解答题24.(2018全国卷Ⅱ)记n S 为等差数列{}n a 的前n 项和,已知17=-a ,315=-S .(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.25.(2018北京)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=.(1)求{}n a 的通项公式; (2)求12e e e n aa a +++L .26.(2017天津)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N . 27.(2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka --+-++-+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 28.(2016年北京)已知{}n a 是等差数列,{}n b 是等差数列,且23b =,39b =,11a b =,144a b =.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n c a b =+,求数列{}n c 的前n 项和.29.(2016年山东)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(I )求数列{}n b 的通项公式;(II )令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 30.(2015福建)等差数列{}n a 中,24a =,4715a a +=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.31.(2015山东)已知数列}{n a 是首项为正数的等差数列,数列11{}n n a a +⋅的前n 项和为12+n n. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设(1)2n an n b a =+⋅,求数列}{n b 的前n 项和n T . 32.(2015北京)已知等差数列{}n a 满足1210a a +=,432a a -=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =.问:6b 与数列{}n a 的第几项相等? 33.(2014新课标1)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和. 34.(2014新课标1)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.35.(2014浙江)已知等差数列{}n a 的公差0d >,设{}n a 的前n 项和为n S ,11a =,2336S S ⋅= (Ⅰ)求d 及n S ;(Ⅱ)求,m k (*,m k N ∈)的值,使得1265m m m m k a a a a +++++++=L . 36.(2013新课标1)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.37.(2013福建)已知等差数列{}n a 的公差1d =,前n 项和为n S .(Ⅰ)若131,,a a 成等比数列,求1a ; (Ⅱ)若519S a a >,求1a 的取值范围.38.(2013新课标2)已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+.39.(2013山东)设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列{}n b 的前n 项和n T ,且12n n na T λ++=(λ为常数),令2n n c b =(*n ∈N ).求数列{}n c 的前n 项和n R .40.(2011福建)已知等差数列{}n a 中,1a =1,33a =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n a 的前k 项和35k S =-,求k 的值.41.(2010浙江)设1a ,d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56S S +15=0.(Ⅰ)若5S =5,求6S 及1a ; (Ⅱ)求d 的取值范围. 答案部分1.解析(1)设{}n a 的公差为d .由95S a =-得140a d +=.由a 3=4得124a d +=.于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d=-,故(9)(5),2n n n n da n d S -=-=.由10a >知0d <,故n n S a…等价于211100n n -+„,解得110n ≤≤.所以n 的取值范围是{|110,}n n n ∈N 剟. 2.解析 在等差数列{}n a 中,由35a =,713a =,得731352734a a d --===-,所以132541a a d =-=-=,则1010910121002S ⨯=⨯+⨯=.3.解析(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q 依题意,得23323154q d q d =+⎧⎨=+⎩,解得33d q =⎧⎨=⎩,故33(1)3n a n n =+-=,1333n nn b -=⨯=.所以,{}n a 的通项公式为3n a n =()n *∈N ,{}n b 的通项公式 为3n n b =()n *∈N .(Ⅱ)112222n na c a c a c ++⋯+()()135212142632n n n a a a a a b a b a b a b -=+++⋯++++++L()123(1)3663123183...632n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦()2123613233n n n =+⨯+⨯++⨯L1213233nn T n =⨯+⨯+⋯+⨯. ① 2331313233n T n +=⨯+⨯++⨯L , ②②-①得,()12311313(21)3323333..3313.2n n n n n n n T n n +++--+=----+=-⨯=-+⨯-,故()121334n n n T +-+=.所以,()122112222213336332n n n n n a c a c a c n T n +-+++=+=+⨯L()22*(21)3692n n n n N +-++=∈.4.解析 设等差数列{}n a 的首项为1a ,公差为d ,则1111()(4)70989272a d a d a d a d ++++=⎧⎪⎨⨯+=⎪⎩,解得152a d =-⎧⎨=⎩.所以818786(5)152162dS a ⨯=+=⨯-+⨯=.2010-2018年1.C 【解析】∵655465()()S S S S a a d---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .2.A 【解析】13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A .3.B 【解析】设等差数列{}n a 的首项为1a ,公差为d ,由题设知1d =,844S S =,所以118284(46)a a +=+,解得112a =,所以10119922a =+=.4.C 【解析】∵数列1{2}na a 为递减数列,111111[(1)]()n a a a a n d a dn a a d =+-=+-,等式右边为关于n 的一次函数,∴10a d <.5.C 【解析】 设等差数列{}n a 的公差为d ,则3133S a d=+,所以12323d =⨯+,解得2d =,所以612a =.6.B 【解析】由等差数列的性质得1735a a a a +=+,因为12a =,3510a a +=,所以78a =,选B .7.C 【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a +=1m S +-mS =3,∴公差d =1m a +-ma =1,∴3=1m a +=-2m +,∴m =5,故选C . 8.D 【解析】设1(1)n a a n d dn m=+-=+,所以1p 正确;如果312n a n =-则满足已知,但2312n na n n =-并非递增所以2p 错;如果若1n a n =+,则满足已知,但11n a n n =+,是递减数列,所以3p 错;34n a nd dn m +=+,所以是递增数列,4p 正确.9.B 【解析】由题意有153210a a a +==,35a =,又∵47a =,∴432a a -=,∴2d =.10.B 【解析】4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a ,故选B.11.B 【解析】由1011S S =,得1111100a S S =-=,111(111)0(10)(2)20a a d =+-=+-⨯-=.12.A 【解析】10121014710(1)(3102)a a a ++⋅⋅⋅+=-+-++⋅⋅⋅+-⋅⨯-910(14)(710)[(1)(392)(1)(3102)]15=-++-++⋅⋅⋅+-⋅⨯-+-⋅⨯-=.13.D 【解析】因为7a 是3a 与9a 的等比中项,所以2739a a a =,又数列{}n a 的公差为-2,所以2111(12)(4)(16)a a a -=--,解得120a =,故20(1)(2)222n a n n=+-⨯-=-,所以1101010()5(202)1102a a S +==⨯+=.14.A 【解析】887644915a S S =-=-=.15.5【解析】设该数列的首项为1a ,由等差数列的性质知1201510102a +=,所以1202020155a =-=.16.8【解析】∵数列{}n a 是等差数列,且789830a a a a ++=>,80a >.又710890a a a a +=+<,∴90a <.当n =8时,其前n 项和最大.17.7(1,)8--【解析】由题意可知,当且仅当8=n 时n S 取最大值,可得8900d a a <⎧⎪>⎨⎪<⎩,解得718d -<<-.18.-49【解析】设{}n a 的首项为1a ,公差d ,由100S =,1525S =,得112903215a d a d +=⎧⎨+=⎩,解得123,3a d =-=,∴()321103n nS n n =-,设()()321103f n n n =-,()220,3f n n n '=- 当2003n <<时()0f n '<,当203n >,()0f n '>,由*n N ∈, 当6n =时,()()31661036483f =-⨯=- 当7n =时,()()3217107493f n =-⨯=-∴7n =时,nnS 取得最小值49-.19.20【解析】 依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=.或:()57383220a a a a +=+=20.1,(1)4n n +【解析】设公差为d ,则1122a d a d +=+,把112a =代入得12d =, ∴21a =,n S =1(1)4n n +21.35【解析】(解法一)因为数列{},{}n n a b 都是等差数列,所以数列{}n n a b +也是等差数列.故由等差中项的性质,得()()()5511332a b a b a b +++=+,即()557221a b ++=⨯,解得5535a b +=.(解法二)设数列{},{}n n a b 的公差分别为12,d d ,因为331112(2)(2)a b a d b d +=+++1112()2()a b d d =+++1272()21d d =++=所以127d d +=.所以553312()2()35a b a b d d +=+++=.22.21n a n =-【解析】221321,412(1)4a a a d d ==-⇔+=+-221n d a n ⇔=⇔=-.23.10【解析】设{}n a 的公差为d ,由94S S =及11a =,得9843914122d d ⨯⨯⨯+=⨯+,所以16d =-.又40k a a +=,所以11[1(1)()][1(41)()]066k +-⨯-++-⨯-=,即10k =. 24.【解析】(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得2=d .所以{}n a 的通项公式为29n a n =-. (2)由(1)得228(4)16n S n n n =-=--.所以当4=n 时,nS 取得最小值,最小值为−16.25.【解析】(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=, ∴1235ln 2a d +=,又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=.(2)由(1)知ln 2n a n =,∵ln 2ln 2e ee =2nn a n n ==, ∴{e }na 是以2为首项,2为公比的等比数列. ∴212ln 2ln 2ln 2e e e e ee nn a a a +++=+++L L 2=222n +++L 1=22n +-.∴12e e ena a a+++L 1=22n +-.26.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2n n b =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(Ⅱ)解:设数列2{}n n a b 的前n 项和为nT ,由262n a n =-,有2342102162(62)2nn T n =⨯+⨯+⨯++-⨯L ,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得23142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯L1212(12)4(62)2(34)21612n n n n n ++⨯-=---⨯=----.得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.27.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-,从而,当n 4≥时,n k n k a a a -++=+11(1)(1)n k d a n k d--+++-122(1)2na n d a =+-=,1,2,3,k =所以n n n n n n na a a a a a a ---+++++=321123+++6,因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此,当3n ≥时,n n n n na a a a a --+++++=21124,①当4n ≥时,n n n n n n na a a a a a a ---++++++++=3211236.②由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n na a a -++=112,其中4n ≥,所以345,,,a a a L是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-,所以数列{}n a 是等差数列.28.【解析】(I )等比数列{}n b 的公比32933b q b ===,所以211bb q ==,4327b b q ==.设等差数列{}n a 的公差为d .因为111a b ==,14427a b ==,所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅).(II )由(I )知,21n a n =-,13n n b -=.因此1213n n n n c a b n -=+=-+.从而数列{}n c 的前n 项和()11321133n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+()12113213n n n +--=+-2312n n -=+.29.【解析】(Ⅰ)由题意当2≥n 时,561+=-=-n S S a n n n ,当1=n 时,1111==S a ;所以56+=n a n ;设数列的公差为d ,由⎩⎨⎧+=+=322211b b a b b a ,即⎩⎨⎧+=+=d b db 321721111,解之得3,41==d b ,所以13+=n b n .(Ⅱ)由(Ⅰ)知112)1(3)33()66(=-⋅+=++=n nn n n n n c ,又n n c c c c T +⋅⋅⋅+++=321,即23413[223242(1)2]n n T n +=⨯+⨯+⨯+⋅⋅⋅++,所以]2)1(242322[322543+++⋅⋅⋅+⨯+⨯+⨯=n n n T ,以上两式两边相减得234123[22222(1)2]n n n T n ++-=⨯+++⋅⋅⋅+-+224(21)3[4(1)2]3221n n n n n ++-=+-+=-⋅-.所以223+⋅=n n n T .30.【解析】(Ⅰ)设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+. (Ⅱ)由(Ⅰ)可得2n n b n=+,所以231012310(21)(22)(23)(210)b b b b ++++=+=+=++++…………2310(2222)=+++++......(1+2+3+ (10)102(12)(110)10122-+⨯=+-11(22)55=-+112532101=+=. 31.【解析】(Ⅰ)设数列{}n a 的公差为d ,令1n =,得12113a a =,所以123a a =.令2n =,得12231125a a a a +=,所以2315a a =.解得11,2a d ==,所以21n a n =-.(Ⅱ)由(Ⅰ)知24224,n n n b n n -=⋅=⋅所以121424......4,n n T n =⋅+⋅++⋅所以23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅两式相减,得121344......44n n n T n +-=+++-⋅114(14)13444,1433n n n n n ++--=-⋅=⨯-- 所以113144(31)44.999n n n n n T ++-+-⋅=⨯+=32.【解析】(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22(1,2,)n a n n n =+-=+=L .(Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =.所以61642128b -=⨯=.由128=22n +得63n =.所以6b 与数列{}n a 的第63项相等.33.【解析】(Ⅰ)方程2560x x -+=的两根为2,3,由题意得242, 3.a a ==设数列{}n a 的公差为d ,则422,a a d -=故1,2d =从而13,2a = 所以{}n a 的通项公式为112n a n =+.(Ⅱ)设2n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,由(I )知12,22n n n a n ++=则2313412...,2222n n n n n S +++=++++ 341213412....22222n n n n n S ++++=++++两式相减得31213112(...)24222n n n n S +++=+++-123112(1).4422n n n -++=+--所以1422n n n S ++=-.34.【解析】(Ⅰ)由题设,11211, 1.n n n n n n a a S a a S λλ++++=-=-两式相减得121().n n n a a a a λ+++-= 由于10n a +≠,所以2.n n a a λ+-=(Ⅱ)由题设,11a =,1211a a S λ=-,可得2 1.a λ=-由(Ⅰ)知,3 1.a λ=+令2132a a a =+,解得 4.λ= 故24n n a a +-=,由此可得{}21n a -是首项为1,公差为4的等差数列,2143n a n -=-; {}2n a 是首项为3,公差为4的等差数列,241n a n =-.所以21n a n =-,12n n a a --=.因此存在4λ=,使得数列{}n a 为等差数列.35.【解析】(Ⅰ)由题意,36)33)(2(11=++d a d a , 将11=a 代入上式得2=d 或5-=d ,因为0>d ,所以2=d ,从而12-=n a n ,2n S n =(*∈N n ).(Ⅱ)由(Ⅰ)知,)1)(12(1+-+=+⋅⋅⋅++++k k m a a a k n n n ,所以65)1)(12(=+-+k k m ,由*∈N ,k m 知,1)1)(12(>+-+k k m ,所以⎩⎨⎧=+=-+511312k k m ,所以⎩⎨⎧==45k m . 36.【解析】(Ⅰ)设{}n a 的公差为d ,则n S =1(1)2n n na d -+。
专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。
近几年山东高考数列真题
1、2016文理同(19)已知数列{}n a 的前n 项和2
38n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.
(I )求数列{}n b 的通项公式;
(II )令1
(1)(2)n n n n
n a c b ++=+.求数列{}n c 的前n 项和n T .
2、2015山东文科19.已知数列}{n a 是首项为正数的等差数列,数列11{
}n n a a +的前n 项和为1
2+n n。
(I )求数列}{n a 的通项公式;
(II )设b (1)2n a
n n a =+,求数列}{n b 的前n 项和n T .
3、2015山东理科(18)设数列{}n a 的前n 项和为n S .已知233n
n S =+.
(Ⅰ)求{}n a 的通项公式;
(Ⅱ)若数列{}n b 满足3log 2n n a b =,求{}n b 的前n 项和n T .
4、2014山东理科(19)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列.
(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令1
1
4(1)n n n n n
b a a -+=-,求数列{}n b 的前n 项和n T .
5、2014山东文科(19)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项.
(I)求数列{}n a 的通项公式;
(II )设(1)2
n n n b a +=,记1234(1)n
n n T b b b b b =-+-+-+-…,求n T .
6、2013山东理科(20) 设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1 (1) 求数列{a n }的通项公式;
7、2013山东文科(20)设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a
(Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足
*12
12
1
1,2
n n n b b b n N a a a +++
=-∈ ,求{}n b 的前n 项和n T
8、2012山东理科(20)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;
(2)对任意m ∈N ﹡,将数列{a n }中落入区间(9m ,92m
)内的项的个数记为bm ,求数列{b m }的前m 项和S m 。
9、2012山东文科(20)已知等差数列{}n a 的前5项和为105,且2052a a =.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .
1、31n a n =+,2
32n n T n +=;2、21n a n =-1
13144(31)44.999
n n n n n T ++-+-⋅=⨯+=
3、13,1,3, 1.n n n a n -=⎧=⎨>⎩13631243n n
n T +=-⨯;4、21n a n =-22
,21
,n n n n T n +⎧⎪⎪+=⎨⎪⎪⎩为奇数2n 为偶数2n+1 5、2n a n =2
(1),2(1),2n n n T n n n ⎧+-⎪⎪=⎨+
⎪⎪⎩为奇数为偶数
67、21n a n =-23
32n n
n T +=-;8、89-=n a n 89801912m m m S -+=+ 9、7(1)77n a n n =+-⋅=7(149)7
(491)14948
m m m S -==--
近几年全国高考数列真题
1、2015全国1理科(17)n S 为数列{}n a 的前n 项和.已知2
0,243n n n n a a a S >+=+,
(Ⅰ)求{}n a 的通项公式: (Ⅱ)设1
1
n n n b a a +=
,求数列{}n b 的前n 项和。
2、2015全国2理科(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________ 3、2015全国1文科(13)在数列{a n }中, a 1=2,a n+1=2a n , S n 为{a n }的前n 项和。
若-S n =126,则n=________. 4、2015全国2文科9.已知等比数列{}n a 满足11
4
a =,a 3a 5 = 44(1)a -,则a 2 = ()
A .2
B .1
C .
12
D .18
5、201
6、文科全国3、17.已知是公差为3的等差数列,
数列
满足
,.
(I )求
的通项公式;(II )求
的前n 项和.
6、2016全国文1(17)已知各项都为正数的数列{}n a 满足11a =,2
11(21)20n n n n a a a a ++---=.
(I )求23,a a ;
(II )求{}n a 的通项公式.
7、2016全国理科3已知数列的前n 项和
,
,其中λ0
(I )证明
是等比数列,并求其通项公式
(II )若
,求λ
8、2016全国1理科(15)设等比数列满足}{a n
满足a 1
+a 3
=10,a 2
+a 4
=5,则a 1a 2
…a n
的最大值为 。
1、21n a n =+,Sn 3(23)n n =+;
2、1n -;
3、6、;
4、C ;
5、31n a n =-1
11()313.122313n
n n S --==-⨯-
6、121
-=
n n a ;7、11-=+λλn
n a a 1λ=-;8、64。