七年级数学多边形典型题
- 格式:doc
- 大小:1.26 MB
- 文档页数:5
7.3 多边形及其内角和5分钟训练(预习类训练,可用于课前)1.三角形的内角和等于_____________度,外角和等于_____________度.解析:三角形的内角和等于180°,外角和等于360°.答案:180 3602.n 边形的内角和等于_____________度,外角和等于_____________度.解析:n 边形的内角和等于(n-2)180°,外角和等于360°.答案:(n-2)180 3603.如果一个多边形的内角和为1 440°,那么这个多边形是( )A.6边形B.8边形C.10边形D.12边形解析:设这个多边形为n 边形,由n 边形的内角和定理得(n-2)180°=1 440°,解得n=10. 答案:C4.过多边形一个顶点可引5条对角线,那么这个多边形是______________边形.( )A.5B.7C.8D.10解析:过n 边形的一个顶点可作(n-3)条对角线,则n-3=5,∴n=8.答案:C10分钟训练(强化类训练,可用于课中)1.若一个多边形的边数减少1,则它的内角和( )A.不变B.增加180°C.减少180°D.无法确定解析:因为(n-2)180°-(n-1-2)180°=180°,所以应选C.答案:C2.若正n 边形的一个外角为60°,则n 为( )A.4B.5C.6D.9解析:n 边形的外角和为360°,由于正n 边形的一个外角为60°,所以n=360°÷60°=6.答案:C3.凸n 边形的n 个内角与某一个外角的和为1 350°,则n 等于( )A.6B.7C.8D.9解析:设该外角为α,则(1 350°-α)应是180°的整数倍,所以1 350°÷180°的整数部分即n 边形的边数. 答案:D4.过n 边形一个顶点可作_______________条对角线,过n 个顶点可作_______________条对角线. 解析:由图形规律可得,过n 边形的一个顶点可作(n-3)条对角线,则过n 个顶点可作(n-3)·n÷2,即21n (n-3)条.答案:n-3 21n(n-3) 5.已知多边形的每一个内角都是150°,求它的边数和内角和.解:设这个多边形为n 边形,则(n-2)180°=n·150°,所以n=12.所以(12-2)×180°=1 800°.答:它的边数为12,内角和为1 800°.6.一个多边形除去一个内角外,其余各角之和为2 750°,求这个多边形的边数及去掉的角的度数. 解析:由于多边形的内角和是180°的整数倍,所以去掉的这个角与2 750°÷180的余数的和应是180°. 设去掉的这个角为α,又有2 750°÷180的余数为50°,所以可得α+50°=180°.所以α=130°.∴该多边形的边数为(2 750°+130°)÷180°+2=18.所以这个多边形的边数为18,去掉的角度为130°.30分钟训练(巩固类训练,可用于课后)1.一个多边形的内角与外角的总和为2 160°,则此多边形是_____________边形.( )A.五B.六C.十D.十二解析:设这个多边形为n 边形,则(n-2)180°+360°=2 160°,解得n=12.答案:D2.若多边形的边数由n (n 为正整数)减少到3,则其外角和的度数( )A.不变B.增加C.减少D.无法确定解析:由多边形的外角和等于360°,故应选A. 答案:A3.若一个多边形的每个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数为( )A.9B.8C.7D.6解析:先求出多边形的边数n ,则从这个多边形的一个顶点出发的对角线的条数为(n-3)条.答案:D4.(2010四川广安模拟,22)已知一个多边形的内角和等于外角和的2倍,则这个多边形的边数是_________________.解析:设多边形的边数为n ,则(n-2)180°=2×360°,解得n=6.答案:65.多边形的每个内角都等于它的相邻外角的6倍,则多边形是_______________边形.解析:设多边形的边数为n ,则多边形的每个外角为7180︒,则7180︒n=360°,解得n=14. 答案:十四6.某多边形所有内角的和与某一个外角的差是1 710°,那么这个多边形是_____________边形,这个外角的度数为__________________.解析:设这个多边形的边数为n ,则n 是满足(n-2)×180°>1 710°的最小整数,所以n=12.所以这个外角的度数为(12-2)·180°-1 710°=90°.答案:12 90°7.已知一个多边形的每一个内角都是钝角,则这样的多边形至少是几边形?解:设这样的多边形至少是n 边形,因为每个内角都是钝角,则每个外角都是锐角,由此可得90°·n >360°,∴n >4.∴n=5.答:这样的多边形至少是五边形.8.一块多边形的纸片,减去一个角后(没有过顶点)得到的多边形的内角和为1 620°,求原来的纸片为几边形?分析:减去一个角后比原来的多边形多了一条边.解:设新多边形的边数为n ,则(n-2)180°= 1 620°,解得n=11,所以原来的纸片为十边形.9.小明想:2008年奥运会在北京召开,设计一个内角和为2 008°的多边形图案多有意义,试问小明的想法能实现吗?并说明理由解:小明的想法不能实现.因为多边形的内角和是180°的整数倍,而2 008°不能被180°整除,所以多边形的内角和不能是2 008°,所以小明的想法不能实现.10.如图7-3-1所示,求∠A+∠B+∠C+∠D+∠E+∠F 的值.图7-3-1解:如图,连结AD.∵∠1+∠2+∠AOD=180°,∠E+∠F+∠EOF=180°,又∵∠AOD=∠EOF ,∴∠1+∠2=∠E+∠F.∴∠BAF+∠B+∠C+∠CDE+E+∠F=∠BAF+∠1+∠B+∠C+∠CDE+∠2=∠BAD+∠B+∠C+∠CDA=360°.11.已知一个多边形的对角线条数是边数的3倍,求它的内角和.解:设这个多边形的边数为n ,n 边形的对角线为21n(n-3)条,根据题意列方程,得21n(n-3)=3n, 即n(n-3)=6n.∵n≠0,两边都除以n ,得n-3=6,∴n=9.从而它的内角和为(n-2)·180°=(9-2)×180°=1 260°.答:这个多边形的内角和为1 260°.。
9.3 9.3 用正多边形铺设地面用正多边形铺设地面一、一、 选择题选择题 (共8小题;共 40 分)二、二、 填空题填空题 (共8小题;共 40 分)1. 下列正多边形中,不能够铺满地面的是A.等边三角形B.正方形C.正六边形D.正八边形2. 只用下列哪一种正多边形,可以进行平面镶嵌A.正五边形B.正六边形C.正八边形D.正十边形3. 用同一种正多边形地砖不能镶嵌成平整的地面的是A.正三角形地砖B.正方形地砖C.正五边形地砖D.正六边形地砖4. 六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖5. 边长相等的下列两种正多边形的组合,不能作平面镶嵌的是A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形6. 现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有 A. 种B. 种C. 种D. 种7. 下列边长为 的正多边形与边长为 的正方形组合起来,不能镶嵌成平面的是(1)正三角形;(2)正五边形;(3)正六边形;(4)正八边形A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(4)8. 用边长均为 的正三角形、正方形、正六边形镶嵌成一个边长为 的正十二边形的平面图形,现有 个正方形,个正六边形,那么还需要正三角形 A. 个B. 个C. 个D. 个9. 用边长相等的正三角形和正六边形把地面密铺,则在一个顶点处正三角形和正六边形的个数分别为10. 给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是 .(将所有答案的序号都填上)11. 用边长相等的三角形、四边形、五边形、六边形、七边形中的一种;能进行平面镶嵌的几何图形有 种.12. 幼儿园的小朋友打算选择一种形状、大小都相同的多边形塑料胶板铺地面.为了保证铺地时既无缝隙,又不重叠,请你告诉他们可以选择哪些形状的塑料胶板(填三种) .13. 在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是 .14. 单独使用正三角形、正方形、正六边形、正八边形四种地砖,不能镶嵌(密铺)地面的是 .三、三、 解答题解答题 (共2小题;共26 分)15. 如图 ①,②,③,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺.但图 ④,⑤不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形 .16. 现有 ①正三角形、②正方形、③正五边形、④正八边形四种地板砖,这四种地板砖的边长都相等,能用两种地板砖密铺是 .(只填写序号)17. 我们常常见到如下图所示图案的地板,它们分别是用正方形、正三角形的材料铺成的为什么用这样形状的材料能铺成平整(不互相重叠),又无空隙的地板呢?18. 工人师傅把-批形状、大小完全相同,但不规则的四边形边脚余料用来铺地板,按照下面给出的拼接四边形木块的方法,就可以不留下任何空隙而铺成一大片.I. 请你说出工人师傅之所以能这样拼接的道理;II. 如果工人师傅手里还有一批形状、大小完全相同,但不规则的三角形边脚余料,那么工人师傅能否用它们拼成平整且无空隙的地板呢?如果可以,请说出你的理由,并将你剪好的一些形状、大小完全相同、但不规则的三角形纸片,贴在下面的空白处(不互相重叠且无空隙),镶嵌成地板模型.123456789101112131415161718参考答案一、选择题D B C A B B B B二、填空题, 或 ,①②③正三角形、正方形、正六边形正五边形正八边形正十二边形①②或②④三、解答题这是因为它们的每一个内角分别为 和 ,用它们可以分别拼成周角为 .1. 这是因为任意四边形的内角和都是.2. 可以.因为三角形的内角和为,。
7.5 多边形的内角和与外角和一.选择题1.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.193.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155° D.150°5.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°7.正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.88.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α9.(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.(2017•临沂)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形11.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2 12.(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°13.(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°14.(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形二.填空题15.(2017•广东)一个n边形的内角和是720°,则n=.16.(2017•西宁)若正多边形的一个外角是40°,则这个正多边形的边数是.17.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.18.(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.19.(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为.20.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.21.(2017•南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.三.解答题22.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC 的度数.23.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°理由:连接A1A4∵∠1+∠2+∠A1OA4=180°∠A5+∠A6+∠A5OA6=180°又∵∠A1OA4=∠A5OA6∴∠1+∠2=∠A5+∠A6∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°即S=360°(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明②如图3是二环五边形,可得S=,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=度.(用含n的代数式表示最后的结果)24.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:.(2)从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.25.请你裁定,你一定要主持公道啊!小明和小方分别设计了一种求n边形的内角和(n为大于2的整数)的方案:(1)小明是在n边形内任取一点P,然后分别连接PA1,PA2,…,PA n(如图①);(2)小方是在n边形的一边A2A3上任取一点P,然后分别连接PA1,PA4,…,PA n(如图②).请你评判这两种方案是否可行;如果不可行,请你说明理由;如果可行,请你分别沿着两种方案的设计思路,求出n边形的内角和.26.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.27.问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为.28.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.29.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为.30.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.31.(1)如图①,你知道∠BOC=∠1+∠2+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=;x=(3)如图③,一个六角星,其中∠BOD=80°,求∠A+∠B+∠C+∠D+∠E+∠F的度数.参考答案与试题解析一.选择题1.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°【分析】先求出∠2,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选B.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.2.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点评】此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.3.过某个多边形一点顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成n﹣2个三角形,依此可得n的值.【解答】解:根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成n﹣2个三角形,∴n﹣2=5,即n=7.故选C.【点评】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.4.把一副三角板按如图叠放在一起,则∠α的度数是()A.165°B.160°C.155° D.150°【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【解答】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选:A.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°【分析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点评】此题主要考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解决问题的关键.7.正多边形的一个内角为135°,则该多边形的边数为()A.5 B.6 C.7 D.8【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数,根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵正多边形的一个内角为135°,∴外角是180﹣135=45°,∵360÷45=8,则这个多边形是八边形,故选D.【点评】本题考查了外角和的大小与多边形的边数无关,由外角和求正多边形的边数,难度适中.8.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.αC.90°+αD.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:B.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,关键是先求出∠ABC+∠BCD的度数.9.(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.10.(2017•临沂)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n ﹣2)•180°.11.(2017•台湾)如图为互相垂直的两直线将四边形ABCD分成四个区域的情形,若∠A=100°,∠B=∠D=85°,∠C=90°,则根据图中标示的角,判断下列∠1,∠2,∠3的大小关系,何者正确()A.∠1=∠2>∠3 B.∠1=∠3>∠2 C.∠2>∠1=∠3 D.∠3>∠1=∠2【分析】根据多边形的内角和与外角和即可判断.【解答】解:∵(180°﹣∠1)+∠2=360°﹣90°﹣90°=180°∴∠1=∠2∵(180°﹣∠2)+∠3=360°﹣85°﹣90°=185°∴∠3﹣∠2=5°,∴∠3>∠2∴∠3>∠1=∠2故选(D)【点评】本题考查多边形的内角与外角,解题的关键是熟练运用多边形的内角和与外角和,本题属于基础题型.12.(2017•株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=()A.145°B.150°C.155° D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,∴x=30°,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.13.(2017•郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360° D.270°【分析】根据三角形的外角的性质分别表示出∠α和∠β,计算即可.【解答】解:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°,故选:B.【点评】本题考查的是三角形外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.14.(2017•长沙)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.二.填空题15.(2017•广东)一个n边形的内角和是720°,则n=6.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.16.(2017•西宁)若正多边形的一个外角是40°,则这个正多边形的边数是9.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为9.【点评】本题主要考查了正多边形外角和的知识,正多边形的每个外角相等,且其和为360°,比较简单.17.(2017•青海)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.18.(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.19.(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.20.(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.21.(2017•南京)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=425°.【分析】根据补角的定义得到∠AED=115°,根据五边形的内角和即可得到结论.【解答】解:∵∠1=65°,∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°,故答案为:425.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.三.解答题22.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE.(1)当∠BAC=40°时,∠BPC=70°,∠BQC=125°;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC 的度数.【分析】(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=∠PBC,∠QCB=∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC的度数.【解答】解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=∠PBC,∠QCB=∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;故答案为:70°,125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴(∠DBC+∠BCE)=180°,即(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,∴∠BOC=225°﹣180°=45°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.23.(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°理由:连接A1A4∵∠1+∠2+∠A1OA4=180°∠A5+∠A6+∠A5OA6=180°又∵∠A1OA4=∠A5OA6∴∠1+∠2=∠A5+∠A6∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°即S=360°(2)延伸探究:①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明②如图3是二环五边形,可得S=1080,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=360(n﹣2)度.(用含n的代数式表示最后的结果)【分析】在(1)的基础上类似作辅助线,把要求的所有角转换到一个多边形中,再根据多边形的内角和定理进行求解.【解答】解:(1)如图所示,则S=∠A1+∠A2+…+∠A8=S=∠A1+∠A2+…+∠A5+∠M+∠1+∠2=(6﹣2)×180°=720°.(2)依此类推,得是二环五边形时,则S=1080°;推而广之,二环n边形(n≥3的整数)时,S=360(n﹣2).【点评】此题主要是巧妙构造辅助线把要求的角能够构造到一个多边形中.n边形的内角和是(n﹣2)×180°.24.分别画出下列各多边形的对角线,并观察图形完成下列问题:(1)试写出用n边形的边数n表示对角线总条数S的式子:S=n(n﹣3).(2)从十五边形的一个顶点可以引出12条对角线,十五边形共有90条对角线:(3)如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【分析】(1)根据多边形对角线的条数的公式即可求解;(2)根据多边形对角线的条数的公式代值计算即可求解;(3)根据等量关系:一个多边形对角线的条数与它的边数相等,列出方程计算即可求解.【解答】解:如图所示:(1)用n边形的边数n表示对角线总条数S的式子:S=n(n﹣3);(2)十五边形从一个顶点可引出对角线:15﹣3=12(条),共有对角线:×15×(15﹣3)=90(条);(3)设多边形有n条边,则n(n﹣3)=n,解得n=5或n=0(应舍去).故这个多边形的边数是5.故答案为:S=n(n﹣3);12,90.【点评】本题主要考查了多边形对角线的条数的公式总结,熟记公式对今后的解题大有帮助.25.请你裁定,你一定要主持公道啊!小明和小方分别设计了一种求n边形的内角和(n为大于2的整数)的方案:(1)小明是在n边形内任取一点P,然后分别连接PA1,PA2,…,PA n(如图①);(2)小方是在n边形的一边A2A3上任取一点P,然后分别连接PA1,PA4,…,PA n(如图②).请你评判这两种方案是否可行;如果不可行,请你说明理由;如果可行,请你分别沿着两种方案的设计思路,求出n边形的内角和.【分析】两种方案都是可行的,方案一可按照思路:n个三角形的内角和减去一个周角的度数,方案二按照思路:(n﹣1)个三角形的内角和减去一个平角的度数.【解答】解:小明和小方的方案均可行.理由如下:小明的方案:n边形的内角和等于n个三角形的内角和减去一个周角,即n边形的内角和为n×180°﹣360°为(n﹣2)×180°;小方的方案:n边形的内角和等于(n﹣1)个三角形的内角和减去一个平角,即n边形的内角和为(n﹣1)×180°﹣180°为(n﹣2)×180°.【点评】本题考查了多边形的内角和,解答本题关键是仔细观察所给图形,利用三角形的内角和定理解答.26.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠ADC,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.27.问题1:如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为∠AOC=∠A+∠C+∠P.问题2:如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B=28°,∠D=48°,求∠P的大小;小明认为可以利用“镖形”图的结论解决上述问题:由问题1结论得:∠AOC=∠PAO+∠PCO+∠APC,所以2∠AOC=2∠PAO+2∠PCO+2∠APC,即2∠AOC=∠BAO+∠DCO+2∠APC;由“外角的性质”得:∠AOC=∠BAO+∠B,∠AOC=∠DCO+∠D.所以2∠AOC=∠BAO+∠DCO+∠B+∠D.所以2∠APC=∠B+∠C.请帮助小明完善上述说理过程,并尝试解决下列问题(问题1、问题2中得到的结论可以直接使用,不需说明理由);解决问题1:如图(3)已知直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,并说明理由;解决问题2:如图(4),已知直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,则∠P与∠B、∠D的关系为∠P=90°+(∠B+∠D).【分析】问题1:根据三角形的外角的性质即可得到结论;问题2:根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;解决问题1:根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;解决问题2:根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.【解答】解:问题1:连接PO并延长.则∠1=∠A+∠2,∠3=∠C+∠4,∵∠2+∠4=∠P,∠1+∠3=∠AOC,∴∠AOC=∠A+∠C+∠P;故答案为:∠AOC=∠A+∠C+∠P;问题2:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,∵∠2+∠B=∠3+∠P,∠1+∠P=∠4+∠D,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(28°+48°)=38°;解决问题1:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣(∠B+∠D);解决问题2:如图4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+(∠B+∠D).故答案为:∠P=90°+(∠B+∠D).解法二:如图3,∵AP平分△AOB的外角∠FAD,CP平分△COD的外角∠BCE,∴∠1=∠2,∠3=∠4,分别作∠BAD、∠BCD的角平分线交于点M,则∠5=∠6,∵∠1+∠2+∠5+∠6=180°,∴∠2+∠6=90°,即∠PAM=90°,同理:∠PCM=90°,∴在四边形APCM中,∠P+∠M=180°,由问题2,得∠M=(∠B+∠D).∴∠P=180°﹣(∠B+∠D).如图4中,作∠BCD的角平分线,交AP的延长线于点N,则∠1=∠2,由问题2,得∠N=(∠B+∠D).∵CP平分△COD的外角∠BCE,∴∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,即∠PCN=90°,∵∠APC=∠PCN+∠N∴∠APC=90°+(∠B+∠D).【点评】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.28.△ABC的三条角平分线相交于点I,过点I作DI⊥IC,交AC于点D.(1)如图1,求证:∠AIB=∠ADI;(2)如图2,延长BI,交外角∠ACE的平分线于点F.①判断DI与CF的位置关系,并说明理由;②若∠BAC=70°,求∠F的度数.【分析】(1)只要证明∠AIB=90°+∠ACB,∠ADI=90°+∠ACB即可;(2)①只要证明∠IDC=∠DCF即可;②首先求出∠ACE﹣∠ABC=∠BAC=70°,再证明∠F=∠ACE﹣∠ABC=(∠ACE ﹣∠ABC)即可解决问题;【解答】(1)证明:∵AI、BI分别平分∠BAC,∠ABC,∴∠BAI=∠BAC,∠ABI=∠ABC,∴∠BAI+∠ABI=(∠BAC+∠ABC)=(180°﹣∠ACB)=90°﹣∠ACB,∴在△ABI中,∠AIB=180°﹣(∠BAI+∠ABI)=180°﹣(90°﹣∠ACB)=90°+∠ACB,∵CI平分∠ACB,∴∠DCI=∠ACB,∵DI⊥IC,∴∠DIC=90°,∴∠ADI=∠DIC+∠DCI=90°+∠ACB,∴∠AIB=∠ADI.(2)①解:结论:DI∥CF.理由:∵∠IDC=90°﹣∠DCI=90°﹣∠ACB,∵CF平分∠ACE,∴∠ACF=∠ACE=(180°﹣∠ACB)=90°﹣∠ACB,∴∠IDC=∠ACF,∴DI∥CF.②解:∵∠ACE=∠ABC+∠BAC,∴∠ACE﹣∠ABC=∠BAC=70°,∵∠FCE=∠FBC+∠F,∴∠F=∠FCE﹣∠FBC,∵∠FCE=∠ACE,∠FBC=∠ABC,∴∠F=∠ACE﹣∠ABC=(∠ACE﹣∠ABC)=35°【点评】本题考查三角形的内角和定理、三角形的外角的性质、平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.29.如图1,已知△ABC,射线CM∥AB,点D是射线CM上的动点,连接AD.(1)如图2,若∠ACB=∠ABC,∠CAD的平分线与BC的延长线交于点E.①若∠BAC=40°,AD∥BC,则∠AEC的度数为35°;②在点D运动的过程中,探索∠AEC和∠ADC之间的数量关系;(2)若∠ACB=n∠ABC,∠CAD内部的射线AE与BC的延长线交于点E,∠CAE=n ∠EAD,那么∠AEC和∠ADC之间的数量关系为∠AEC=∠ADC.【分析】(1)①先根据三角形的内角和求∠ACB=70°,由平行线的性质得:∠DAC=70°,利用角平分线得:∠DAE=35°,最后利用平行线的内错角相等得结论;②设∠CAE=x,∠BAC=y,在△ACD和△ABE中根据三角形内角和表示∠ADC和∠AEC,可得结论;(2)如图3,设∠ABC=x,∠EAD=y,则∠ACB=nx,∠CAE=ny,在△ACE中根据外角的性质得:∠AEC=nx﹣ny=n(x﹣y),在△ADC中,根据三角形内角和可得∠ADC的度数,由此可得结论.【解答】解:(1)①如图2,∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,∵∠ACB=∠ABC,∴∠ACB=70°,∵AD∥BC,∴∠DAC=∠ACB=70°,∵AE平分∠DAC,∴∠DAE=∠DAC=×70°=35°,∵AD∥BC,∴∠AEC=∠DAE=35°,故答案为:35°;②∠ADC=2∠AEC,理由是:设∠CAE=x,∠BAC=y,则∠EAD=x,∠ABC=,∵AB∥CM,∴∠ACM=∠BAC=y,∴∠ADC=180﹣2x﹣y,△ABE中,∠AEC=180﹣x﹣y﹣=90﹣x﹣,。
第十五讲 多边形的有关问题趣题引路】如图15-1,用黑白两种颜色的正六边形地砖按如下所示的规律,拼成若干个图案. (1)第四个图案中有白色地面砖 块. (2)第n 个图案中有白色地面砖 块. 第一个图案有白砖数6, 6=4×1+2; 第二个图案有白砖数10,10=4×2+2; 第三个图案有白砖数14,14=4×3+2; 第四个图案有白砖数18,18=4×4+2; ……一般地,第n 个图案有白色地砖(4n +2)块.图15-1...知识拓展】1.多边形的基本知识主要是指多边形的边、内外角、对角线、凸多边形、凹多边形等基本概念和多边形内角和定理、外角和定理,其中多边形内、外角和定理是解有关多边形问题的基础.2.多边形的许多性质与问题往往可以利用三角形来解决,将多边形问题转化为三角形问题来解决是解多边形问题的基本策略,从凸n 边形的一个顶点引出的对角线把凸n 边形分成(n -2)个三角形,凸n 边形一共可引出(3)2n n -条对角线. 3.多边形的内角和是随着多边形的边数变化而变化的,但外角和却总是不变的,所以,我们常以外角和的“不变”来制约内角和的“变”,把内角问题转化为外角问题来处理,这也是解多边形相关问题的常用技巧.4.多边形的内角和为(n -2)180°;外角和为360°; 正多边形的每个内角为(2)180n n -,每个外角为360n.一、多边形的内角与外角例1 (2003年全国联赛题)在凸10边形的所有内角中,锐角的个数最多是( )个. A .0 B .1 C .3 D .5解析 由于任何凸多边形的所有外角之和都是360°,故外角中钝角的个数不超过3个.又因为内角与外角互补,因此,内角中锐角最多不能超过3个.实际上,容易构造出内角中有三个锐角的凸10边形.故选C .点评 把内角问题转化为外角问题考虑.例2 一个凸n 边形,除了一个内角外,其余(n -1)个角之和为2002°,求n 的值.解析 本题实际上是求多边形内角和的延伸,要注意n 为自然数且每个内角不大于180°这两个隐含条件.解 设除去的这个内角是x 度,则(n -2)×180°-x °=2002°,那么(n -2)×180°=2002°+x°.显然2002°+x °应是180°的倍数,故x °=158°,这时求得n =14.二、多边形的边例3 (2002年全国竞赛题)若1239A A A A 是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于( )A .B .C .()12a b + D . a b + 解析 此题以正九边形为背景,考察观察能力和构造能力.不必画出完整图形,只需画出有用的局部图形.图15-215解 如图15-2,延长A 1A 2、A 5A 4.相交于点P ,连结A 2A 4,则A 2A 4// A 1A 5,且A 2A 4=A 1A 3=b ,因为正九边形的每一个内角为(92)1801409-⋅=,所以∠A 2A 1A 5=∠A 4A 5A 1(92)18031402-⋅-⨯=60=,故△P A 1A 5和△P A 2A 4均为正三角形.所以A 2P =A 2 A 4=A 1 A 3=b .于是A 1 A 5=A 1 P =A 1 A 2+A 2 P =a +b .选D .例4 (1999年全国联赛题)设有一个边长为1的正三角形,记作A 1[如图15-3(1)].将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2,[如图15-3(2)];将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3[如图15-3(3)];再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么,A 4的周长是 .图15-3(1)解析 从基本图形入手计算,寻找规律.解 从A 1开始,每进行一次操作,所得到的图形的周长是原来图形周长的43倍.所以, A 2的周长是4343⨯=;A 3的周长是416433⨯=;A 4的周长是41664339⨯=.三、多边形的对角线问题例5 (1)计算凸十边形所有对角线的条数,以及以凸十边形顶点为顶点的三角形的个数.(2)在凸十边形每个顶点处任意标上一个自然数,在(1)中的三角形,若三个顶点所标三数之和为奇数,则该三角形称为奇三角形;若三数之和为偶数,则称偶三角形,试判断:奇三角形个数是奇数还是偶数,并证明你的结论.解析(1)共有(103)10352-⨯=条对角线,因为边与对角线共有45条,每条属于8个三角形的边,则三角形个数为4581203⨯=个. (2)奇三角形个数是偶数.因为凸十边形每个顶点属于40个三角形,也就是说凸十边形每个顶点所写的数在总和中计算了40次,那么总和应为十顶点所标数和的40倍,则一定是偶数,偶三角顶点之和必为偶数.故奇三角形个数必为偶数.四、多边形的证明问题例6 已知凸六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形.求证:这样的六边形有无穷多个.解析 由n 边形(n ≥4)的不稳定性知,若存在一个这样的六边形,则必有无穷多个.故下面寻找是否存在六个正整数a 1,a 2,…,a 6(不妨设a 1≤a 2≤…≤a 6),满足(1)12620a a a +++=;(2)12123234345456,,,,a a a a a a a a a a a a a a ≤+≤+≤+≤+≤; (3)123456++a a a a a a ++>.如果这样的六边形存在,则以126a a a ,,,为边长的六边形即符合要求.实际上,对任选三个整数61i j k a a a a ≤≤≤≤,必有i j k a a a +≤,可见此六边形的任意三边不能构成三角形,如121a a ==,32a =,43a =,55a =,68a =,满足上述全部条件.所以,这样的六边形有无穷多个.点评 本题首先证明了这样的六边形存在,然后根据n 边形(n ≥4)的不稳定性,说明这样的六边形有无穷多个.五、多边形中的开放性问题例7 (1999年全国联赛题)在正五边形ABCDE 所在平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形.这样的不同的点P 的个数为( )A .2B .3C .4D .5解析 可先动手画出简图.由△PCD 与△BCD 的面积相等及等积变换的思想,点点P 应在平行于CD 且与CD 的距离等于B 点到CD 的距离的直线l 上,这样的直线l有两条,且位于CD 的两侧.然后再根据△ABP 为等腰三角形确定点P 的个数.图15-4如图15-4,由S △PCD =S △BCD 知,点P 只能在直线l 1(即直线BE )与直线l 2上,其中l 2与CD 平行且与CD 的距离等于l 1与CD 的距离.在等腰△ABP 中,按其底边可分如下三种情形:(1)当AB 为底边时,AB 的垂直平分线分别与l 1、l 2交于P 1、P 2,则P 1、P 2是符合条件的点. (2)当P A 为底边时,以B 为圆心,BA 为半径作圆,与l 1交于P 3、P 4两点,则P 3、P 4符合条件. (3)当PB 为底边时,只有E 点符合条件.综上所述,共有P 1、P 2、P 3、P 4、E 五个点符合题设全部条件,故应选D .点评 解答这类计数问题,需要分清谁是底,谁是腰,可直接通过作图确定点P 的个数,这里主要应用了交轨法.好题妙解】佳题新题品味例1 一个凸多边形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数有( )A .9条B .8条C .7条D .6条解析 每一内角为140°,得每一外角为40°,360°÷40°=9,即边数为9,故从一个顶点可作对角线9-3=6条,选D .例2 设12n A A A 是一个有n 个顶点的凸多边形,对每一个顶点(1,2,3,,)i A i n ,将构成该角的两边分别反向延长至12,i i A A ,连接12,i i A A ,得到两个角12,i i A A ∠∠(扫描件版本中有错),那么所有这些新得到的角的度数的和是 .解析 注意每一内角与相邻的外角互补即可求. 故:n ×180°-(n -2)·180°=360°.例3 正五边形广场ABCDE 的周长为2000m ,甲、乙两人分别从A 、C 两点同时出发绕广场沿A →B →C →D →E →A 的方向行走,甲的速度为50m/min ,乙的速度为46m/min ,则出发后经过 min ,甲、乙第一次行走在同一条边上.解析 设甲走完x 条边时,两人走在同一条边上,此时甲走了400x m ,乙走了4004636850xx ⨯=m ,甲、乙两人的距离不大于正五边形的边长400m ,所以(368x +800)-400x ≤400.解得x ≥12.5.而x 为整数,取x =13. 所以,甲、乙走了40010450x=min 后走到一条边上.中考真题欣赏例4 (吉林省)如图15-5,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示).(2)设铺地面用瓷砖的总数为y ,请写出y 与(1)中n 的函数关系式(不要求写自变量n 的取值范围). (3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 值. (4)若黑瓷砖每块4元,白瓷砖每块3元,在问题(3)中共需花多少元钱购买瓷砖? (5)是否存在黑瓷砖与白瓷砖块数相等的情况?请通过计算说明,为什么?图15-5解析()()()() 1231n n n n n n n n ⨯⨯⨯+⨯⨯⨯⨯⨯⨯+++: 1 2 3 白砖: 1 2 2334 黑砖:34-1 2 45-2 3 56-3 4-解(1)n +3,n +2.(2)y =(n +3)(n +2). (3)当y =506时,(n +3)(n +2)=506, 解得n 1=20,n 2=-25(舍去). 白色砖数:n (n +1)=20×(20+1)=420. 黑色砖数:506-420=86.(4)共需钱数:86×4+420×3=1604(元)(5)n (n +1)=(n +2)(n +3)-n (n +1),化简得n 2-3n -6=0,解得n .因n 的值不是整数, ∴不存在黑、白瓷砖块数相等的情形.竞赛样题展示例1 (2004年江苏省初中竞赛题)在一个多边形中,除了两个内角外,其内角之和为2002°,则这个多边形的边数为( )A .12B .12或13C .14D .14或15解析 设这个多边形为n (n 为正整数)边形,由题意2002°<(n -2)×180°<2002°+360°,111113159090n <<. 所以,n =14或15.选D .例2 (2002年上海市竞赛题)平面上有7个点,它们之间可以连一些线段,使7点中的任意3点必存在2点有线段相连.问至少要连多少条线段?证明你的结论.解析(1)若7个点中,有一点孤立(即它不与其他点连线),则剩下6点每2点必须连线,此时至少要连65152⨯=条. (2)若7点中,有一点只与另一点连线,则剩下5点每2点必须连线,此时至少要连541112⨯+=条. (3)若每一点至少引出3条线段,则至少要连732⨯条线段.由于线段数为整数,故此时至少要连11条. (4)若每点至少引出2条线段,且确有一点(记为A )只引出2条线段AB 、AC ,则不与A 相连的4点每2点必须连线,要连4362⨯=条.由B 引出的线段至少有2条,即除BA 外还至少有一条.因此,此时至少要连6+2+1=9条.图15-6图15-6给出连9条线的情况.综合(1)~(4),至少要连9条线段,才能满足要求.例3 (第14届希望杯)两条直线上各有n 个点,用这n 对点按如下规则连结线段: ①同直线上的点之间不连结;②连结的任意两条线段可以有共同的端点,但不得有其他的交点. (1)画图说明当n =1,2,3时,连结的线段最多各有多少条?(2)由(1)猜想n (n 为正整数)对点之间连结的线段最多有多少条,证明你的结论. (3)当n =2003时,所连结的线段最多有多少条?图15-7解析 (1)由图15-7可以看出,n =1时,最多可以连结1条线段,n =2时,最多可以连结3条线段,n =3时,最多可以连结5条线段.(2)猜想:对于正整数n ,则n 对点直接连结的直线段最多有2n -1条. 证明 将直线标记为l 1、l 2,它们上面的点从左到右排列分别为123,,,,n A A A A 和123,,,,n B B B B ,设这n 对点之间连结的直线段最多有P n 条,显然,其中必有n n A B 这一条,否则,P n 就不是最多的数. 当在l 1,l 2分别加上第n +1个点时,不妨设这两个点在A n 与B n 的右侧,那么除了原来已经有的P n 条直线段外,还可以连结A n+1B n ,An +1B n +1这两条线段,或连结A n B n +1,A n +1B n +1这两条线段. 所以P n +1≥P n +2.l 2l 1B n+1B i+1B i A n+1A n另一方面,设对于n +1对点有另一种连法:考虑图中以A n +1为端点的线段,若以A n +1为端点的线段的条数大于1,则一定可以找到一个i ≤n ,使得对于任意的j <i ,A n +1B j ,都不在所画的线段中,这时,B i +1,B i +2,...,B n +1,只能与A n +1连结,不妨设A n +1B i +1,A n +1B i +2,…,A n +1B n +1都已连结,此时图中的线段数为P n +1,我们做如下操作:去掉A n +1B i ,连结A n B i +1,得到新的连结图,而新的连结图满足要求且线段总数不变,将此操作一直进行下去,直到与A n +1连结的线段只有一条A n +1B n +1为止.最后图中,与点B n +1相关的线段只剩两条,即A n B n +1,A n +1B n +1,去掉这两条线段,则剩余P n +1-2条线段,而图形恰是n 对点的连结图,所以P n +1-2≤P . 由此我们得到P n +1=P n +2,而P 1=1,P 2=3,所以P n =1+2×(n -1)=2n -1. (3)当n =2003时,P 2003=4005(条).过关检测】A 级1.一个凸n 边形共有54条对角线,则它的内角和是( ) A .1080° B .1440° C .1800° D .1620°2.(1999年全国初中联赛试题)一个凸n 边形的内角和小于1999°,那么n 的最大值是( ) A .11 B .12 C .13 D .143.(第12届“希望杯”邀请赛试题)凸n 边形中有且仅有两个内角为饨角,则n 的最大值是( ) A .4 B .5 C .6 D .74.(美国中小学数学课程标准)如图,用硬纸片剪一个长为16cm 、宽为12cm 的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 cm ,周长最小的是 cm .16cm12cm5.如图,ABCD 是凸四边形,AB =2,BC =4,CD =7,则线段AD 的取值范围是 .DC BA6.如图,五边形ABCDE 中,AB=AE ,BC+DE=CD ,∠ABC +∠AED =180°,连接AD . 求证:AD 平分∠CDE .EDBAB 级1.一个凸n(n≥4)边形的每个外角的度数均为相等的奇数,则这样的凸多边形共有()A.4种B.6种C.3种D.2种2.一个凸n边形最小内角为95°,其他内角依次增加10°,则n等于()A.6 B.12 C.4 D.103.如图所示,CD//AF,∠CDE=∠BAF,AB⊥BC,∠C=124°,∠E=80°,求∠F的大小.F EDCBA4.若凸4n+2边形A1A2…A4n+2(n为自然数)的每个内角都是30°的整数倍,且∠A1=∠A2=∠A3=90°.求n所有可能的值.5.平面上给出4点,其中任意3点不共线,这4点组成4个三角形.请判断;这4个三角形中最多有几个锐角三角形?证明你的结论.6.已知一个凸n边形各内角度数均相等,且度数是奇数.问这样的多边形有几种?证明你的结论.()。
七年级数学下册第9章多边形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG2、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°3、下列多边形中,内角和与外角和相等的是( )A.B.C.D.4、如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于()A.56°B.34°C.44°D.46°5、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为()A.60°B.120°C.135°D.150°6、在下列长度的四根木棒中,能与3cm ,9cm 的两根木棒首尾顺次相接钉成一个三角形的是( )A .3cmB .6cmC .10cmD .12cm7、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°8、已知a b ∥,一块含30°角的直角三角板如图所示放置,250∠=︒,则1∠等于( )A .140°B .150°C .160°D .170°9、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )A .三角形B .四边形C .五边形D .六边形10、下列图形中,不具有稳定性的是( )A .等腰三角形B .平行四边形C .锐角三角形D .等边三角形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,E 为△ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,∠B =46°,∠C =30°,∠EFC =70°,则∠D =______.2、在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.3、一个三角形的两边分别是3和7,如果第三边长为整数,那么第三边可取的最大整数是___.4、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.5、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)三、解答题(5小题,每小题10分,共计50分)1、如图所示,在一副三角板ABC 和三角板DEC 中,90ACB CDE ∠=∠=︒,60BAC ∠=︒,∠B =30°,∠DEC =∠DCE =45°.(1)当AB∥DC时,如图①,DCB∠的度数为°;(2)当CD与CB重合时,如图②,判断DE与AC的位置关系并说明理由;(3)如图③,当DCB∠=°时,AB∥EC;(4)当AB∥ED时,如图④、图⑤,分别求出DCB∠的度数.2、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.3、如图,在△ABC中,∠C=30°,∠B=58°,AD平分∠CAB.求∠CAD和∠1的度数.4、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C =∠DGC.(1)求证:AB//CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.5、求下列图中的x的值(1)(2)-参考答案-一、单选题1、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设所求多边形的边数为n,根据题意得:(n-2)•180°=360°,解得n=4.故选:B.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.4、C【解析】【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【详解】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.5、B【解析】【分析】观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.【详解】∠α=6218061()20-⨯︒÷=︒故选:B .【点睛】本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.6、C【解析】【分析】设第三根木棒的长度为x cm ,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm ,则9393,x612,x所以A ,B ,D 不符合题意,C 符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.7、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.8、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C =90°,∠2=∠CDE =50°,∠3=∠C +∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.故选:D.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.9、A【解析】【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,∴多边形的内角和是180度,∴这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.10、B【解析】【分析】根据三角形具有稳定性,四边形不具有稳定性即可作出选择.【详解】解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;故选:B.【点睛】本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.二、填空题1、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.2、1cm2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D是BC的中点,S△ABC=4cm2∴S△ABD=12S△ABC=12×4=2cm2∵E是AD的中点,∴S△ABE=12S△ABD=12×2=1cm2故答案为:1cm2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解.3、9【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得第三边长的最大值.【详解】解:设第三边为a ,根据三角形的三边关系,得:7﹣3<a <3+7,即4<a <10,∵a 为整数,∴a 的最大值为9.故答案为:9.【点睛】此题考查了三角形的三边关系.注意第三边是整数的已知条件.4、6【解析】【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.5、180°-α【解析】【分析】根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∠=,∴∠AEO=∠ADO=90°,又BACα∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.三、解答题1、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.2、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=11804022ACB∠=⨯︒=︒,∵AD是△ABC边BC上的高,AD⊥BC,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.3、∠CAD=46°,∠1=76°.【解析】【分析】利用三角形内角和求出∠BAC,根据角平分线定义求出∠CAD,然后根据三角形外角性质∠1=∠C+∠CAD即可求解.【详解】解:∵∠C=30°,∠B=58°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣58°=92°.又∵AD平分∠BAC,∠BAC=46°,∴∠CAD=12∵∠1是△ACD的外角,∴∠1=∠C+∠CAD=30°+46°=76°.【点睛】本题考查了三角形内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、(1)见解析;(2)见解析;(3)108°【解析】(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.【详解】证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF∴∠B=∠AEG由(1)得∠AEG=∠C∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C∴∠C=36°∴∠DGC=36°∵∠C+∠DGC+∠D=180°∴∠D=108°此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.5、(1)65;(2)60.【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x的值.【详解】解:(1)∵四边形内角和等于360°,∴x+x+140+90=360,解得:x=65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x+2x+150+120+90=540,解得:x=60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n边形的内角和等于(n-2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n边形的内角和等于(n-2)⨯180°”这一隐含的条件.。
A
B
C
D
E
D
CB
A
三角形的两个内(外)角平分线所夹的角与第三个角之间的数量关系
当这两个角为内角时:这个夹角等于90°与第三个角一半的和
例1、 如图1,△ABC中,BD、CD为两个内角平分线,
试说明:∠D=90°+21∠A。
(方法一)解:∵BD、CD为角平分线
∴∠CBD=21∠ABC, ∠BCD=21∠ACB。
在△BCD中:∠D=180°-(∠CBD+∠BCD)
=180°-21(∠ABC+∠ACB)
=180°-21(180°-∠A)
=180°-21×180°+21∠A
=90°+21∠A
(方法二)解:连接AD并延长交BC于点E
解:∵BD、CD为角平分线
∴∠CBD=21∠ABC, ∠BCD=21∠ACB。
∵∠BDE是△ABD的外角
∴∠BDE=∠BAD+∠ABD
=∠BAD+21∠ABC
同理可得∠CDE=∠CAD+21∠ACB
又∵∠BDC=∠BDE+∠CDE
∴∠BDC=∠BAD+21∠ABC+∠CAD+21∠ACB
=∠BAC+21(∠ABC+∠ACB)
=∠BAC+21(180°-∠BAC)
=90°+21∠BAC
当这两个角为外角时:这个夹角等于90°与第三个角一半的差
如图,BD、CD为△ABC的两条外角平分线,
试说明:∠D=90°-21∠A。
解:∵BD、CD为角平分线
∴∠CBD=21∠CBE
∠BCD=21∠BCF
又∵∠CBE、∠BCD为△ABC的外角
∴∠CBE=∠A+∠ACB
∠BCF=∠A+∠ABC
∴∠CBE+∠BCF=∠A+∠ACB+∠A+∠ABC
=∠A+180°
在△BCD中:∠D=180°-(∠CBD+∠BCD)
=180°-(21∠CBE+21∠BCF)
=180°-21(∠CBE+∠BCF)
=180°-21(∠A+180°)
=90°-21∠A
【小结】通过对模型1、2的分析和证明,我们还能发现三角形两内角平分线的夹
角和两外角平分线的夹角互补,即和为180°。
当这两个角为一内角、一外角时:这个夹角等于第三个角一半
例3:如图,在△ABC中,BD为∠ABC的平分线,CD为∠ACE的平分线,试说明:∠D=21∠A; 解:∵BD为角平分线, ∴∠CBD=21∠ABC, 又∵CD为∠ACE的平分线 ∴∠DCE=21∠ACE, 而∠DCE为△BCD的一个外角 ∴∠DCE=∠D+∠DBC, 即∠D=∠DCE-∠DBC ∴∠D=21∠ACE-21∠ABC =21(∠ACE-∠ABC) =21∠A。 一、 运用模型揭秘画图题
例5、小明用下面的方法画出了45°角:作两条互相垂直的直线MN、PQ,点A、B分
别是MN、PQ上任意一点,作∠ABP的平分线BD,BD的反向延长线交∠OAB的平
分线于点C,则∠C就是所求的45°角.你认为对吗?请给出证明.
【思路分析】通过对两条角平分线的分析,可以发现AC、BD分别是△AOB的内角平
分线和外角平分线的夹角。根据图3的结论:这个夹角等于第三个角一半,可知∠C=
2
1
∠AOB。
解:先模仿图3证明∠C=21∠AOB
又∵∠AOB=90°
∴∠C=21∠AOB=45°
1、如图1,共有三角形的个数是( )
A、5个 B、6个 C、7个 D、8个
2、在△ABC中,∠A+∠B=∠C,则△ABC是 三角形。
3、具备下列条件的三角形中,不是直角三角形的是( )
A、∠A+∠B=∠C B、∠A=∠B=12∠C
C、∠A=90°-∠B D、∠A-∠B=90°
4、如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( )
A、钝角三角形 B、锐角三角形 C、直角三角形 D、斜三角形
一、 三角形中三条重要线段(高、中线、角平分线)
5、钝角三角形三条高所在的直线交于( )。
A、三角形内 B、三角形外 C、三角形的边上 D、不能确定
6、下列说法正确的个数是( )
①钝角三角形有两条高在三角形内部;
②三角形三条高至多有两条不在三角形内部;
③三角形三条高的交点不在三角形内部,就在三角形外部;
④钝角三角形三内角的平分线的交点一定不在三角形内部.
A、1个 B、2个 C、3个 D、4个
7、如果一个三角形的三条高的交点恰好是该三角形的一个顶点,则该三角形的形状是______.
8、要组成一个三角形,三条线段的长度可取( )
A、9,6,13 B、2,3,5 C、18,9,8 D、3,5,9
B
A
C
E
D
图1
B
G
A
C
F
D
E
D
C
B
A
B
ACED
O
E
D
C
B
A
9、以下长度的线段为边,可以作一个三角形的是( ) A、10㎝,20㎝,30㎝ B、10㎝,20㎝,40㎝ C、20㎝,30㎝,40㎝ D、10㎝,40㎝,50㎝ 10、有四根木条,长度分别为12㎝,10㎝,8㎝,4㎝,选其中三根组成三角形,则选择方法共有( ) A、1种 B、2种 C、3种 D、4种 11、如图,木工师傅做好门框后,常用木条EF、EG来固定门框ABCD, 使其不变形,这种做法的依据是( ) A、两点之间线段最短 B、矩形的对称性 C、矩形的四个角都是直角 D、三角形的稳定性 12、六边形的内角和为 ,外角和为 。 13、一个多边形的每个外角都是36°,则这个多边形是 边形;一个多边形的每个内角都是135°,则这个多边形是 边形。 14、从一个多边形的一个顶点出发,作了15条对角线,则这个多边形的内角和为 。 15、一个n边形除一个内角外,其余所有内角的和等于1290°,那么n= 。 16、某人到瓷砖商店去购买一种..正多边形形状的瓷砖,铺设无缝地板,他购买的瓷砖形状不.可以是( ) A、正三角形 B、正四边形 C、正六边形 D、正八边形 17、下列组合能够铺满地面的是( ) A、正五边形和正方形 B、正方形和正六边形 C、正方形,正三角形和正十二边形 D、正三角形和正五边形 18、已知一个等腰三角形的两边长分别为8㎝和3㎝,那么它的周长为 ㎝。 19、若等腰三角形的两边长分别为8㎝和5㎝,则它的周长为 ; 20、若等腰三角形的周长为18㎝,其中一边的长为4㎝,则另外两边的长分别是 。 思考题:一个多边形每个内角相等,并且每一个外角等于一个内角的32,求此多边形的边数。 21、如图,在ABC中,BD是ABC的角平分线,DE//BC,交AB于E,∠A=450, ∠BDC=600,求ΔBDE各内角的度数.
二、 其他综合题目
22、如图,某工人在加工如图所示的零件时,规定∠A=90°,∠B=32°,∠C=21°,在加工过程中,
他量得∠BDC=148°,就断定该零件不合格,你能运用三角形的有关知识说明不合格的理由吗?
B
A
C
D
23、如图,在ΔABC中,∠ACB=90°,CD⊥AB,点E在CB的延长线上,已知∠ACD=55°,求∠ABE
的度数。
24、已知:ABC中, ABC和ACB的平分线BD,CE相交于点O,060A,求BOC的度数.
思考:你能说明BOC=90°+12A吗?
25、如果一个四边形的四个内角的度数比是2∶2∶3∶5,那么这个四边形的四个内角分别是多少?
B
A
C
D
27、如图,在ΔABC中,AB=AC,BD是AC边上的中线,已知ΔABD的周长比ΔBCD的周长大8㎝,且
腰长是底边长的3倍,你能求出ΔABC的周长吗?