x →0
(2) lim e
x →∞
(3) lim e
x→0
解:(1) :( )
Q lim 2 +
x→0
1 x
1 y = x
y→+∞ →+∞
lim 2 y
= +∞
x→0
lim− 2
1 x
1 y = x
1 x
y→−∞ →−∞
lim 2
y
1 t = − y lim =0 t t →+∞ 2
∴ lim 2 不存在
令δ = min{δ 1 , δ 2 }, 则当x ∈ Oδ ( x0 ) \ { x0 }时有
A+ B g( x ) < < f ( x) 2
【2-3-3】
3、推论1: 、推论 :
若 lim f ( x ) = A > B(或 < B ), 则∃δ > 0, 使得
x → x0
当x ∈ Oδ ( x0 ) \ { x0 }时, 有f ( x ) > B(或 < B )
即A − 1 < f ( x ) < A + 1, 所以f ( x )局部有界
【2-3-1】
二、局部保序性 1、定理: lim 、定理: 若
x → x0
f ( x ) = A, lim g( x ) = B , 且A > B , 则∃δ > 0,
x → x0
使得当x ∈ Oδ ( x0 ) \ { x0 }时, 有f ( x ) > g( x )
【2-3-5】
2、※证明: 、 证明:
x → x0
对 ∀ε > 0
Q lim g ( x ) = A,∴ ∃δ 1 > 0, 使当x ∈ Oδ 1 ( x0 ) \ { x0 }时,