无穷小量极限运算法则
- 格式:pptx
- 大小:915.78 KB
- 文档页数:42
高中数学教案极限的运算法则与无穷小量高中数学教案:极限的运算法则与无穷小量一、引言数学中的极限是一种重要的概念,在高中数学中也是一个重要的内容。
本教案将重点介绍极限的运算法则与无穷小量的相关知识。
通过深入了解这些内容,学生将能够更好地理解和应用极限的概念。
二、极限的运算法则与无穷小量的定义1. 无穷小量的定义及性质无穷小量是指当自变量趋于某一确定值时,函数值也趋于零的量。
常见的无穷小量有极限为零的数列和极限为零的函数。
2. 极限的四则运算法则在计算极限时,可以利用四则运算法则简化计算过程。
四则运算法则包括:- 两个极限的和等于极限的和;- 两个极限的差等于极限的差;- 两个极限的积等于极限的积;- 两个极限的商等于极限的商(其中除数极限不为零)。
三、极限的运算法则的应用1. 极限的运算示例通过具体的例子来演示极限的运算法则的应用,例如计算以下极限:- lim(x→2) [3x^2 + 2x - 1]- lim(x→1) [√(2x+1) + 4]2. 极限的运算法则的推理在应用极限的运算法则时,有时需要进行推理和证明。
通过给出一些列的推理步骤和相应的证明过程,学生可以更好地理解极限的运算法则的原理。
四、极限的运算法则与函数的性质1. 连续函数的性质连续函数在定义域内具有连续性的特点,具体包括:- 在定义域内无间断点;- 函数值与自变量在定义域内的微小变化成正比。
2. 极限的运算法则与连续函数的关系利用极限的运算法则,可以更好地理解和证明连续函数的性质。
通过给出一些典型的连续函数和相应的极限运算,学生可以加深对连续函数性质的理解。
五、总结通过学习本教案,我们对极限的运算法则与无穷小量有了更深入的了解。
极限的四则运算法则为我们计算极限提供了方便,而无穷小量的概念则帮助我们更好地理解函数的趋势。
希望同学们通过本教案的学习,能够在高中数学中更加熟练地运用极限的运算法则与无穷小量的概念。
第三节无穷小与无穷大一、无穷小 二、无穷大 三、无穷小与无穷大的关系基本要求: 1. 理解无穷小与无穷大的定义。
2. 掌握无穷小与无穷大的相关关系。
一、无穷小 1. 定义 定义1 定义 如果函数 f ( x) 当 x → x0 (或 x → ∞ )时的 极限为零,那么 称函数 f ( x ) 为当 x → x0 (或 x → ∞ ) 时的无穷小。
1 x = 0 lim cos x = 0, = 0 limsin 例:lim x →0 π x →∞ x x→ 2 1 故 , sin x, cos x是相应过程的无穷小量 x注1:无穷小与极限过程分不开, 不能脱离极限 过程谈无穷小。
如:f (x)=sinx 当x →∵ lim sin == 1≠ ∵ lim sinx x 00 πx→ →0 x 2当x→0时,f (x)=sinx为无穷小π2时,f (x)=sinx不是无穷小.注2:0是任何极限过程的无穷小. 即 lim 0 = 0 注3: 由于limC = C(常数), 所以, 除0外的任何 常数不是无穷小量. 注4: 不能将无穷小与很小的数混淆; 如: 数10-10 ≈0,但不是无穷小。
定理lim f ( x ) = A ⇔ f ( x ) = A + α ( x ). 其中α ( x )是该极限过程中的无穷小量. A为常数. (省去x→xo , x→∞的极限符号“lim” 表示任一极限过程).2.无穷小的性质在自变量的同一变化过程中,无穷小具有以下的性质: 性质: 1 有限个无穷小的和是无穷小 注1:无穷多个无穷小的代数和未必是无穷小.。
1 例. 求 lim x sin x →0 x解: 因为 x → 0 时, x为无穷小, sin 1 ≤ 1 x 1 sin 为有界函数, x 1 。
由定理1.4 2 , 得到 lim x sin = 0 x →0 x2.无穷小的性质在自变量的同一变化过程中,无穷小具有以下的性质: 性质: 1 有限个无穷小的和是无穷小 2 有界函数与无穷小的乘积是无穷小。