多面体欧拉定理
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
综合实践活动:课题多面体欧拉定理的发现研究过程一、引言多面体欧拉定理是数学中的一项重要成果,它揭示了多面体的结构特征与顶点、边和面的关系。
本文将深入探讨多面体欧拉定理的发现研究过程,从历史背景、重要人物、关键实践活动等多个角度进行分析,以期对多面体欧拉定理的研究有更全面、详细、完整的了解。
二、历史背景多面体欧拉定理最早可以追溯到18世纪,当时数学家欧拉第一次提出了这个问题并得出了规律。
然而,在欧拉之前,古希腊数学家已经开始研究多面体,比如柏拉图就研究过正多面体。
多面体欧拉定理的发现离不开这些前人的努力,他们的研究奠定了基础。
三、欧拉的贡献3.1 多面体的定义在研究多面体欧拉定理之前,欧拉首先对多面体进行了界定。
他定义多面体为一个封闭的凸多面体,其由有限个平面多边形围成。
这个定义奠定了欧拉研究的基础。
3.2 欧拉公式的提出欧拉在研究多面体时,发现了一个有趣的公式,即多面体的顶点数、边数和面数之间存在着一个固定的关系:顶点数加上面数等于边数加2。
这个公式后来被称为欧拉公式。
3.3 通过多面体实践验证为了验证欧拉公式的正确性,欧拉进行了大量的实践活动。
他通过构建各种多面体,比如立方体、四面体、正六面体等,计算它们的顶点数、边数和面数,结果都符合欧拉公式的规律。
通过实践活动,欧拉成功地验证了自己的猜想,并得出了多面体欧拉定理。
四、多面体欧拉定理的证明欧拉提出的多面体欧拉定理虽然在实践中得到了验证,但其证明却花费了许多时间。
直到1864年,数学家C.A.根特梅尔提出了一种较为简洁的证明方法,被广泛接受并被视为多面体欧拉定理的正式证明。
4.1 根特梅尔的证明思路根特梅尔的证明思路非常巧妙,他首先考虑了二面体图(dual graph)的概念,即将多面体的面变成图的顶点,将多面体的边变成图的边。
然后,通过对二面体图进行分析,运用图的性质和拓扑学的知识,他得出了多面体欧拉定理的证明。
4.2 证明的要点根特梅尔的证明主要包括以下要点: - 根据二面体图的性质,证明了二面体图的性质与多面体的结构有关。
欧拉公式:V+FE=2 (简单多面体的顶点数V、棱数E和面数F)(1)E=各面多边形边数和的一半,特别地,若每个面的边数为n的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:。
欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。
尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而 \cos和 \sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。
这一复数指数函数有时还写作 {cis}(x)(英语:cosine plus i sine,余弦加i正弦)。
由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。
莱昂哈德·欧拉出生于1707年4月15日,死于公元1783年9月18日,莱昂哈德·欧拉是一位来自于瑞士的数学家和物理学家,是近代著名的数学家之一,此外,莱昂哈德·欧拉还有力学,光学和天文学上都作出了重大的贡献。
莱昂哈德·欧拉被认为是18世纪,世界上最杰出的数学家,也是史上最伟大的数学家之一,而且莱昂哈德·欧拉还有许多的著作,他的学术著作就多达6080册。
他对微分方程理论作出了重要贡献。
他还是欧拉近似法的创始人,这些计算法被用于计算力学中。
此中最有名的被称为欧拉方法。
在数论里他引入了欧拉函数。
自然数 n的欧拉函数被定义为小于n并且与 n互质的自然数的个数。
在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。
在分析领域,是欧拉综合了戈特弗里德·威廉·莱布尼茨的微分与艾萨克·牛顿的流数。
他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:其中是黎曼函数。
欧拉定理公式
在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。
第一个欧拉公式的严格证明,由20岁的柯x给出,大致如下:从多面体去掉一面,通过把去掉的面的边互相拉远,把所有剩下的面变成点和曲线的平面网络。
不失一般性,可以假设变形的边继续保持为直线段。
正常的面不再是正常的多边形即使开始的时候它们是正常的。
但是,点,边和面的个数保持不变,和给定多面体的一样(移去的面对应网络的外部。
)
重复一系列可以简化网络却不改变其欧拉数(也是欧拉示性数)的额外变换。
立体几何经典定理概述(八大定理)立体几何经典定理概述(八大定理)本文将概述立体几何中的八大经典定理。
立体几何是研究三维空间中的图形和形体的数学学科,定理是在研究过程中得出的具有重要意义的数学命题。
1. 欧拉定理欧拉定理是立体几何中最著名的定理之一。
它规定了三维物体的面、顶点和边的关系。
具体来说,如果一个多面体满足面+顶点-边=2的关系,那么它就是一个封闭的多面体。
欧拉定理形象地描述了三维世界中多面体的特性。
2. 柯西定理柯西定理是关于立体几何中平行四边形的定理。
它指出,对于一个平行四边形,其对角线互相平分彼此。
这个定理在解决平行四边形的性质和关系时非常有用,能够帮助我们更好地理解平面几何的性质。
3. 形心定理形心定理是关于多边形形心的定理。
形心是多边形中所有顶点的连线的交点,该定理指出,任意多边形的形心一定在多边形的重心和质心连线的上面。
形心定理可以帮助我们确定多边形的形心位置,从而研究多边形的性质和变形。
4. 二等分线定理二等分线定理是关于立体几何中等分线的定理。
它规定了等分线在多面体中的特性,即等分线和相应的两个面以及它们的交点构成的平面垂直。
这个定理在解决多面体的等分线问题时非常有用,能够帮助我们进一步理解多面体的性质。
5. 范恩艾克线定理范恩艾克线定理是关于球面上切线和交角的定理。
它指出,在球面上,任意切线与相应交角的正弦值等于球心到交点的距离和切线长的比值。
这个定理在解决球面上的切线和交角问题时非常有用,能够帮助我们研究球面的性质和切线关系。
6. 斯坦纳定理斯坦纳定理是关于三维空间中图的生成树的定理。
生成树是一个无圈连通图的子图,其中包含了所有顶点并且边的数量最少。
斯坦纳定理指出,在三维空间中的图中,生成树的条数等于顶点数减去连通分量的数量。
这个定理在解决三维空间图的生成树问题时非常有用。
7. 勾股定理勾股定理是立体几何中最基础的定理之一。
它规定了直角三角形边长之间的关系,即直角三角形的两个直角边的平方和等于斜边的平方。
数学立体几何八大定理
1. 柿子定理:一个作为平面多边形底面的凸多面体的侧面积等
于这个凸多面体表面积的一半加上这个多面体面数目乘以它的底面积。
2. 欧拉定理:一个简单凸多面体的面数、顶点数和边数满足公式:面
数+顶点数=边数+2。
3. 狄利克雷定理:如果一个立体角的每个边界面都可以划分成互不相
交有限个平凡的平面角,则这个立体角为平凡的。
一个立体角被称为
平凡的,当且仅当它可以被划分成三角形。
4. 菲赫斯定理:一个多面体的每条棱所在的平面相交于一点(称为多
面体的菲赫斯点)。
5. 球冠切割定理:一个球的表面可以被三个平面分割成球冠。
6. 萨公定理:任何一个超过120度的立体角可以被切割成平凡的立体角。
7. 凸多面体的交角定理:凸多面体中任意两个面交角的余角的总和等
于360度。
8. 柯西・切比雪夫定理:如果两个凸多面体的交集不为空,则它们的
交界面至少有一点。
多面体欧拉定理
定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V-E+F=2
简单多面体即表面经过连续变形可以变为球面的多面体。
多面体
欧拉定理
式中V表示多面体的顶点数,E表示棱数,F表示面数。
定理一证
分析:以四面体ABCD为例。
将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E与剩下的面数F1变形后都没有变(这里F1=F-1)。
因此,要研究V、E和F的关系,只要去掉一个面,将它变形为平面图形即可。
只需平面图形证明:V+F1-E=1
(1)去掉一条棱,就减少一个面,V+F1-E的值不变。
例如去掉BC,就减少一个面ABC。
同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1-E的值都不变,因此V+F1-E的值不变
(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变。
例如去掉CA,就减少一个顶点C。
同理去AD就减少一个顶点D,最后剩下AB。
在以上变化过程中,V+F1-E的值不变,
V+F1-E=2-0-1=1,
所以V+F-E= V+F1-E+1=2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。
公式对任意简单多面体都是正确的。
定理意义
(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律;
(2)思想方法创新训练:在定理的发现及证明过程中,在观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;在方法上将底面剪掉,然后其余各面拉开铺平,化为平面图形(立体图→平面图)。
(3)引入拓扑新学科:“拉开图”与以前的展开图是不同的,从立体图到拉开图,各面的形状,以及长度、距离、面积、全等等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
事实上,定理在引导大家进入一个新几何学领域:拓扑学。
我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
(4)给出多面体分类方法:
在欧拉公式中,令f(p)=V+F-E,f(p)叫做欧拉示性数。
定理告诉我们,简单多面体的欧拉示性数f (p)=2。
除简单多面体外,还有不是简单多面体的多面体。
例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。
它的表面不能经过连续变形变为一个球面,而能变为一个环面,它的欧拉示性数为f (p)=16+16-32=0,所以带一个洞的多面体的欧拉示性数等于零。
定理二证
如图(1)多面体,设顶点数V,面数F,棱数E。
剪掉一个面,将其余的面拉平,使它变为平面图形,如图(2)我们在两个图中求所有面的内角总和Σα
一方面,在图(1)中利用面求内角总和。
设有F个面,各面的边数分别为n1,n2,…,nF,
各面的内角总和为:
Σα = [(n1-2)·1800+(n2-2)·1800 +…+(nF-2) ·1800]
= (n1+n2+…+nF -2F) ·1800
=(2E-2F) ·1800 = (E-F) ·3600 (1)
另一方面,在图(2)的拉开图中,利用顶点来求内角总和。
设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。
中间V-n个顶点处的内角和为(V-n)·3600,边上的n个顶点处的内角和(n-2)·1800。
所以,多面体所有各面的内角和为:Σα = (V-n)·3600+(n-2)·1800+(n-2)·1800=(V-2)·3600. (2)
由(1)(2)得
(E-F) ·3600 =(V-2)·3600
所以V+F-E=2.。