2019精品二章自然界的物质数学
- 格式:ppt
- 大小:1.50 MB
- 文档页数:108
第 1 页 共 24 页2020年北师大版数学一年级下册重难点题型同步训练第二章《观察物体》 章节常考题集锦一、单选题1.你知道下图是从物体的哪面看到的吗?( )A.前面 B. 后面 2.你知道下图是从物体的哪面看到的吗?( )A. 前面B. 后面C. 侧面 3.哪一个是小红从正上方看到的小轿车的形状?( )A. B. C.4.哪一幅图是方方看到的()A. B. C.5.笑笑看到的是()。
A. B. C.6.小军看到的是()。
第2 页共24 页A. B. C.二、判断题7.两个人拍同一景点,站在不同的位置所拍到的照片是不同的。
8.从上面看小药箱,应该是。
9.(2018二上·麒麟期末)从不同的位置看同一个物体,会看到不同的样子。
10.下面两幅图中,小霞看到的图片不一样。
11.从A 和B 两个方向观察到的物体形状是否一样?()12.这个立体从右面看,看到的形状是。
()三、填空题13.视图——从不同的方向看到的图它们是从房子的哪一个方向看到的?("上面"""左面""右面""正面填写)第3 页共24 页第 4 页 共24 页________14.站在不同的位置观察,最多能看到下图的________个面。
15.下面的四幅图分别是在哪个位置看到的?________16.下面这些图分别是谁看到的?________ ________17.(2019三上·龙华)站在不同的位置观察物体,最多能看到________个面。
第 5 页 共 24 页18.小明在游船上连续拍摄到桂林漓江景色的一组照片.下面四幅照片按拍摄时间的先后顺序是:________,________,________,________.19.在四幅图下面的括号中写上小朋友的名字。
四、解答题20.小鸽子从半空中低头往下一看,正好看见一辆小轿车,它看到的是哪一幅图呢?在( )里画“△”。
2.2 圆的一般方程填一填二元二次方程x 2+y 2+Dx +Ey +F =0表示的图形(1)变形:把方程x 2+y 2+Dx +Ey +F =0配方可得⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4.(2)结论:①当D 2+E 2-4F >0时,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,以12D 2+E 2-4F 为半径的圆.②当D 2+E 2-4F =0时,方程只有一组解⎩⎪⎨⎪⎧x =-D 2,y =-E2,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E2.③当D 2+E 2-4F <0时,方程无实数解,所以不表示任何图形.当D 2+E 2-4F >0时,称二元二次方程x 2+y 2+Dx +Ey +F =0为圆的一般方程.判一判1.2.圆的一般方程和圆的标准方程可以互化.(√)3.若方程x 2+y 2-2x +Ey +1=0表示圆,则E ≠0.(√)4.二元二次方程x 2+y 2+Dx +Ey +F =0一定是某个圆的方程.(×)5.圆x 2+y 2+ax -2ay =0过原点.(√)6.圆x 2+y 2-Dx -Ey +F =0的圆心是⎝ ⎛⎭⎪⎫-D 2,-E 2.(×)7.若D 2+E 2-4F <0,则方程x 2+y 2+Dx +Ey +F =0不表示任何图形.(√)8.若直线l 将圆x 221).(√)想一想1.提示:x 2+y 2+F =02.若二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆,需满足什么条件?提示:①A =C ≠0;②B =0;③D 2+E 2-4AF >0. 3.待定系数法求圆的一般方程的步骤是什么?提示:(1)根据题意设所求的圆的一般方程为x 2+y 2+Dx +Ey +F =0. (2)根据已知条件,建立关于D ,E ,F 的方程组. (3)解此方程组,求出D ,E ,F 的值.(4)将所得的值代回所设的圆的方程中,就得到所求的圆的一般方程. 4.求与圆有关的轨迹问题的方法有哪些?提示:(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等. 思考感悟:练一练1.若方程x 2+y 2+x -y +m =0表示的曲线是一个圆,则m 的取值范围是( )A .m ≤12B .m =12C .m >12D .m <12答案:D2.圆x 2+y 2+2x -3y =0的圆心坐标为( )A.⎝ ⎛⎭⎪⎫-1,32B.⎝ ⎛⎭⎪⎫1,32 C .(2,3) D.⎝⎛⎭⎪⎫1,-32 答案:A 3.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53 B.213 C.253 D.43 答案:B4.圆x 2+y 2-2x +2y =0的周长为________. 答案:22π5.圆心在y 轴上,半径为1,且过点(1,2)的圆的一般方程为________.答案:x 2+y 2-4y +3=0知识点一 二元二次方程与圆的关系1.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0).解析:(1)D =1,E =0,F =1,D 2+E 2-4F =1-4=-3<0,所以方程(1)不表示任何图形.(2)D =2a ,E =0,F =a 2,D 2+E 2-4F =4a 2-4a 2=0,所以方程(2)表示点(-a,0). 2.下列方程能表示圆吗?若能表示圆,求出圆心坐标和半径.(1)2x 2+y 2-7x +5=0;(2)x 2-xy +y 2+6x +yt =0.解析:(1)不能表示圆,因为方程中x 2,y 2的系数不相同. (2)知识点二 求圆的一般方程3.与圆x 2A .x 2+y 2-4x +6y -8=0B .x 2+y 2-4x +6y +8=0C .x 2+y 2+4x -6y -8=0D .x 2+y 2+4x -6y +8=0解析:设所求圆的方程为x 2+y 2-4x +6y +m =0,由该圆过点(1,-1),得m =8,所以所求圆的方程为x 2+y 2-4x +6y +8=0.答案:B4.已知圆过A (2,2),C (3,-1),且圆关于直线y =x 对称,求圆的一般方程.解析:设所求的圆的方程为x 2+y 2+Dx +Ey +F =0,由题意得⎩⎪⎨⎪⎧22+22+2D +2E +F =0,9+1+3D -E +F =0,-D 2=-E 2,得⎩⎪⎨⎪⎧D =1,E =1,F =-12.所以所求的圆的方程为x 2+y 2+x +y -12=0.知识点三 求动点的轨迹方程(或轨迹)5.已知圆C :(x -a )2+(y -b )2=1过点A (1,0),则圆C 的圆心的轨迹是( ) A .点 B .直线 C .线段 D .圆解析:∵圆C :(x -a )2+(y -b )2=1过点A (1,0),∴(1-a )2+(0-b )2=1,即(a -1)2+b 2=1,∴圆C 的圆心的轨迹是以(1,0)为圆心,1为半径长的圆. 答案:D 6.如图,经过圆x 2+y 2=4上任意一点P 作x 轴的垂线,垂足为Q .求线段PQ 的中点M 的轨迹方程.解析:设M (x ,y ),P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4.所以x 2+2综合知识 圆的一般方程7.已知A 解析:方法一 设所求的圆的方程为x 2+y 2+Dx +Ey +F =0,由题意得⎩⎪⎨⎪⎧2D +2E +F +8=0,5D +3E +F +34=0,3D -E +F +10=0,解得⎩⎪⎨⎪⎧D =-8,E =-2,F =12.所以△ABC 外接圆的方程为x 2+y 2-8x -2y +12=0. 方法二 设所求的圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧2-a 2+2-b 2=r 2,5-a2+3-b2=r 2,3-a2+-1-b 2=r 2,解得⎩⎪⎨⎪⎧a =4,b =1,r 2=5.故所求的圆的方程为(x -4)2+(y -1)2=5.8.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解析:如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分, 故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4.又点N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 当点P 在直线OM 上时,有x =-95,y =125或x =-215,y =285.因此所求轨迹为圆(x +3)2+(y -4)2=4,除去点⎝ ⎛⎭⎪⎫-95,125和点⎝ ⎛⎭⎪⎫-215,285.基础达标一、选择题1.圆2x 2+2y 2+6x -4y -3=0的圆心坐标和半径分别为( )A.⎝ ⎛⎭⎪⎫-32,1和4 B .(3,2)和4 C.⎝ ⎛⎭⎪⎫-32,1和192 D.⎝ ⎛⎭⎪⎫-32,1和19解析:由一般方程的圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =12D 2+E 2-4F ,易知圆心的坐标为⎝ ⎛⎭⎪⎫-32,1,半径为192.答案:C2.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( ) A .圆内 B .圆外C .圆上D .圆上或圆外解析:先化成标准方程(x -a )2+(y -1)2=2a ,因为0<a <1,所以(0-a )2+(0-1)2=a 2+1>2a ,即原点在圆外.答案:B3.若动圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( ) A .x -y =0 B .x +y =0C .x 2+y 2=0D .x 2-y 2=0解析:圆心M 的坐标(x ,y )应满足y =x 或y =-x ,等价于x 2-y 2=0. 答案:D4.已知点P (2,1)在圆C :x 2+y 2+ax -2y +b =0上,点P 关于直线x +y -1=0的对称点也在圆C 上,则圆C 的圆心坐标为( )A .(0,1)B .(1,0)C .(2,1)D .(1,2) 解析:由题意圆心C ⎝ ⎛⎭⎪⎫-a2,1在直线x +y -1=0上,从而有-a2+1-1=0,所以a =0,所以圆C 的圆心坐标为(0,1),故选A.答案:A5.下列四条直线中,将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0解析:由题意,知圆心是(1,2),将圆平分的直线必过圆心,所以将圆心的坐标代入各选项验证知选C.答案:C6.若圆x 2+y 2+Dx +Ey +F =0关于直线l 1:x -y +4=0和直线l 2:x +3y =0都对称,则D +E 的值为( )A .-4B .-2C .2D .4解析:由题知直线l 1,l 2过已知圆的圆心,所以⎩⎪⎨⎪⎧-D 2-⎝ ⎛⎭⎪⎫-E 2+4=0,-D 2+3⎝ ⎛⎭⎪⎫-E 2=0,所以⎩⎪⎨⎪⎧D =6,E =-2,所以D +E =4.答案:D7.已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:设圆心为C (m,0)(m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2, 整理,得|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,故选A. 答案:A 二、填空题8.圆x 2+y 2+2ax =0(a ≠0)的圆心为________,半径为________.解析:圆x 2+y 2+2ax =0(a ≠0)化为(x +a )2+y 2=a 2其圆心为(-a,0),半径为|a |. 答案:(-a,0) |a |9.已知圆x 2+y 2-2x -8y +1=0的圆心到直线ax -y +1=0的距离为1,则a =________.解析:圆x 2+y 2-2x -8y +1=0的圆心C (1,4),因为圆x 2+y 2-2x -8y +1=0的圆心到直线ax -y +1=0的距离为1,所以d =|a -4+1|a 2+1=1,解得a =43.答案:4310.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x +2y =0上任意一点,则△ABC 面积的最小值为________.解析:圆x 2+y 2-2x +2y =0化为(x 2-2x +1)+(y 2+2y +1)=2,即(x -1)2+(y +1)2=2,由题意即为在圆上找一点到线段AB 的距离最小即可,k AB =2-00--2=1,直线AB :y -2=x ,所以线段AB :y =x +2(-2≤x ≤0),圆心(1,-1)到其距离d =|1+2--1|12+12=22, 所以圆上某点到线段AB 的距离最小值为22-2=2,因为|AB |=-2-02+0-22=22,所以S △ABC min =12|AB |×2=12×22×2=2.答案:211.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为________.解析:由题意,得直线l 过圆心M (-2,-1),则-2a -b +1=0,则b =-2a +1,所以(a -2)2+(b -2)2=(a -2)2+(-2a +1-2)2=5a 2+5≥5,所以(a -2)2+(b -2)2的最小值为5.答案:512.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程为________.解析:设动圆圆心为(x ,y ),由题意得⎩⎪⎨⎪⎧x =4m +22=2m +1,y =2m2=m ,整理得x -2y -1=0.答案:x -2y -1=0三、解答题13.判断下列方程是否表示圆,若是,求出圆心和半径.(1)x 2+y 2-x +14=0;(2)x 2+y 2+2ax =0(a ≠0);(3)x 2+y 2+2ay -1=0.解析:方程x 2+y 2+Dx +Ey +F =0是否表示圆,关键看将该方程配方转化为圆的标准方程的形式⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4后,D 2+E 2-4F 是否大于0,若大于0则表示圆,否则不表示圆.方法一 (1)将原方程转化为⎝ ⎛⎭⎪⎫x -122+y 2=0,表示一个点,坐标为⎝ ⎛⎭⎪⎫12,0.(2)将原方程转化为(x +a )2+y 2=a 2(a ≠0), 表示圆,圆心为(-a,0),半径r =|a |.(3)将原方程转化为x 2+(y +a )2=1+a 2,表示圆,圆心为(0,-a ),半径r =1+a 2.方法二 (1)因为D 2+E 2-4F =(-1)2+02-4×14=0,所以表示一个点,其坐标为⎝ ⎛⎭⎪⎫12,0. (2)因为D 2+E 2-4F =4a 2+0-0=4a 2>0(a ≠0),所以表示圆.又因为-D 2=-a ,-E 2=0,12D 2+E 2-4F =12·4a 2=|a |,所以圆心为(-a,0),半径r =|a |.(3)因为D 2+E 2-4F =02+(2a )2+4=4(1+a )2>0, 所以表示圆.又因为-D 2=0,-E2=-a ,12D 2+E 2-4F =1+a 2, 所以圆心为(0,-a ),半径r =1+a 2.14.一个等腰三角形底边上的高等于5,底边两端点的坐标分别是(-4,0),(4,0),求它的外接圆的方程.解析:由题意得,等腰三角形顶点的坐标为(0,5)或(0,-5).当顶点坐标为(0,5)时,设三角形外接圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧25+5E +F =0,16-4D +F =0,16+4D +F =0,解得⎩⎪⎨⎪⎧D =0,E =-95,F =-16.所以圆的方程为x 2+y 2-95y -16=0.当顶点坐标是(0,-5)时,同理可得圆的方程为x 2+y 2+95y -16=0.综上,它的外接圆的方程为x 2+y 2-95y -16=0或x 2+y 2+95y -16=0.能力提升15.已知曲线C :(1+a )x (1)当a 取何值时,方程表示圆;(2)求证:不论a 为何值,曲线C 必过两定点; (3)当曲线C 表示圆时,求圆面积最小时a 的值.解析:(1)当a =-1时,方程为x +2y =0,为一条直线;当a ≠-1时,⎝ ⎛⎭⎪⎫x -21+a 2+⎝ ⎛⎭⎪⎫y +4a 1+a 2=4+16a 21+a 2表示圆. (2)证明:方程变形为x 2+y 2-4x +a (x 2+y 2+8y )=0.令⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+8y =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =165,y =-85.故C 过定点A (0,0),B ⎝ ⎛⎭⎪⎫165,-85.(3)因为圆恒过点A ,B ,所以以AB 为直径的圆面积最小,则圆心为⎝ ⎛⎭⎪⎫85,-45.所以21+a =85,解得a =14.16.已知直角△ABC 的斜边为AB ,且A (-1,0),B (3,0),求: (1)直角顶点C 的轨迹方程;(2)直角边BC 中点M 的轨迹方程.解析:(1)方法一 设顶点C (x ,y ),因为AC ⊥BC ,且A ,B ,C 三点不共线,所以x ≠3且x ≠-1.又k AC =y x +1,k BC =yx -3,且k AC ·k BC =-1, 所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0. 因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1). 方法二 同方法一得x ≠3且x ≠-1.由勾股定理得|AC |2+|BC |2=|AB |2,即(x +1)2+y 2+(x -3)2+y 2=16,化简得x 2+y 2-2x-3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(x ≠3且x ≠-1).方法三 设AB 中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知,|CD |=12|AB |=2,由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,以2为半径长的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).设C (x ,y ),则直角顶点C 的轨迹方程为(x -1)2+y 2=4(x ≠3且x ≠-1).(2)设点M (x ,y ),点C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32(x ≠3且x ≠1),y =y 0+02,于是有x 0=2x -3,y 0=2y .由(1)知,点C 在圆(x -1)2+y 2=4(x ≠3且x ≠-1)上运动,将x 0,y 0代入该方程得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(x ≠3且x ≠1).。
2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是()A.B. C.D.答案:C2.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换. 在自然界和日常生活中,大量地存在这种图形变换(如图(1)). 结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图(2))的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行答案:B3.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5,则另一个三角形的周长是()A.23 B.27 C.29 D.33答案:B4.小明的运动衣号在镜子中的像是,则小明的运动衣号码是()A. B. C. D.答案:A5.如图两个图形可以分别通过旋转()度与自身重合?A.120°,45°B.60°,45°C.30°,60°D.45°,30°答案:A6.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5,则另一个三角形的周长是()A.18 B.23 C.27 D.29答案:C7.将如图①所示的火柴棒房子变成如图②所示的火柴棒房子,需要旋转两根火柴,请你指出按逆时针旋转的火柴棒是()A.a,b B.b,c C. b,d D.C,d答案:B8.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是()A.60 B.90 C.120 D.180答案:C9.如图,①、③、④、⑤、⑥中可以通过平移图案②得到的是()A.②B.④C.⑤D.⑥答案:C10.在平面镜里看到其对面墙上电子钟示数如图所示,那么实际时间是()A.21:O5 B..21:50 C.20:l5 D.20:51答案:A11.如图所示,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠EAF的度数为()A.50°B.45°C.40°D.20°答案:D12.下列选项中的两个图形成轴对称的是()答案:C13.下列说法中正确的是()A.圆是轴对称图形,对称轴是圆的直径B.正方形有两条对称轴C.线段的对称轴是线段的中点D.任意一个图形,若沿某直线对折能重合,则此图形就是轴对称图形答案:D14.如图是条跳棋棋盘.其中格点上的黑色为棋子.剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行.跳行一次称为一步.已知点A为乙方一枚棋子.欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为()A.2步B.3步C.4步D.5步答案:B二、填空题15.如图,曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在横线上填上恰当的图形.解析:略16.长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.解析:2,4,无数17.计算机软件中,大部分都有“复制”、“粘贴”功能,如在“Word”中,可以把一个图形复制后粘贴在同一个文件上,通过“复制”、“粘贴”得到的图形可以看作原图经过变换得到的.解析:平移变换18.ΔA′B′C′是ΔABC经相似变换所得的像,AB=1, A′B′=3,△ABC的周长是ΔA′B′C′的周长的倍,ΔABC的面积是ΔA′B′C′面积的倍.解析:3,919.如图所示,请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.解析:20.如图,在6个图形中,图形①与图形可经过平移变换得到,图形①与图形可经过旋转变换得到,图形①与图形可经过轴对称变换得到,图形⑤与图形可经过相似变换得到(填序号).解析:③,②,④,⑥21.如图,当半径为30 cm的转动轮转过l80°角时,传送带上的物体A平移的距离为cm.解析:3022.如图所示,在图②、③中画出由图①所示的阴影部分图形绕点P按顺时针方向旋转90°和l80°后所成的图形.解析:图略23.如图所示,如果四边一形CDEF旋转后能与正方形ABCD重合.那么图形所在的平面上可作为旋转中心的点共有个.解析:324.如图所示的五家银行行标中,是轴对称图形的有 (填序号).解析:①②③三、解答题25.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形.解析:略26.如图所示,点E,F是△ABC边AC,AB上的点,请问在BC边上是否存在一点N,使△ENF的周长最小?解析:图的画法是:作点E关于BC所在直线的对称点E′,连结FE′,交BC于N,即得△NEF的周长最小27.在如图所示的6个箭头中,哪几个箭头是可以通过平移得到的,请你们指出它们的序号.解析:①与⑤可以通过平移得到28.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L明一挥羽扇.军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?解析:略29.如图,大正方形的边长为9 cm,阴影部分的宽为1 cm,试用平移的方法求出空白部分的面积.解析:49 cm230.如图所示,A,B两地之间有一条小河,现在想在河岸搭一座桥(桥与河岸垂直),搭在什么地方才能使A点过桥到B点的路程最短?请你在图中画出示意图.解析:略31.木匠张师傅在做家具时遇到一块不规则的木板(如图①),现需要将这块木板锯开后胶合成一正方形,张师傅已锯开了一条线(如图②),请你帮他再锯一线,然后拼成正方形,想想看,在锯拼过程中用到了什么变换?解析:略32.数学兴趣小组的同学想利用树影测树高,在阳光下他们测得一根长为1 m的竹竿的影长为0.9 m.此刻测量树影,发现树的影子不全落在地上,有一部分影子落在墙壁上,如图所示,同学们测得地面上的影子长为3.6 m,墙壁上的影子长为0.9 m.又知以树和地面上的树影为边的三角形与同一时刻以竹竿和地面上的影子为边的三角形是一个相似变换,求这棵树的实际高度.解析:4.9m33.如图,请你用三种方法把左边的小正方形分别平移到右边的三个图形中,使它成为轴对称图形.解析:如图:34.如图所示,有三个正方形的花坛,准备把每个花坛都分成形状、大小相同的四块,种不同的花草.现向大家征集设计图案,图①是某同学设计的图案,请你在图②、③中再设计两种不同的图案.解析:略35.用四块如图①所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图②).请你分别在图③、图④中各画一种与图②不同的拼法,要求两种拼法各不相同,且是轴对称图形.解析:略36.如图所示,在方格纸中如何通过平移或旋转这两种变换,由图形A得到图形B,再由图形B得到图形C?(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度)解析:将图形A向上平移4个单位长度,得到图形B;将图形B以点P1为旋转中心顺时针旋转90°,再向右平移4个单位长度得到图形C或将图形B向右平移4个单位长度,再以P2为旋转中心顺时针旋转90°得到图形C37.在如图的方格纸中,画出图中的△ABC向右平移5格后的△A′B′C′,然后再画出将△A′B′C′向上平移2格后的△A″B″C″.解析:略.38.分析图中△ABC经过怎样的变换得到△BCG, △CDE和△CEF.解析:△ABC 以BC为对称轴作轴对称变换得到△BCG,△ABC 向右平移BC的长度得到△CDE,再以CE的中点为旋转中心旋转180度得到△CEF.39.(1)按要求在网格中画图:画出图形“”关于直线l的对称图形,再将所画图形与原图形组成的图案向右平移2格;(2)根据以上构成的图案,请写一句简短、贴切的解说词:解析:(1)如图:(2)解说合理即可,如爱心传递或我们心连心等.40.如图所示,可以看做是以一个什么图案为“基本图案”形成的?请用两种方法分析它的形成过程.解析:略。
2.1.1 平面1.文字语言叙述:“平面内有一条直线,则这条直线上的点必在这个平面内”改成符号语言是( B )(A)a∈α,A⊂a⇒A⊂α(B)a⊂α,A∈a⇒A∈α(C)a∈α,A∈a⇒A⊂α(D)a∈α,A∈a⇒A∈α解析:直线在平面内用“⊂”,点在直线上和点在平面内用“∈”,故选B.2.若点A在直线b上,b在平面β内,则A,b,β之间的关系可以记作( B )(A)A∈b,b∈β(B)A∈b,b⊂β(C)A⊂b,b⊂β(D)A⊂b,b∈β解析:点与直线是属于关系,直线与平面是包含关系,故选B.3.下列图形中不一定是平面图形的是( D )(A)三角形(B)平行四边形(C)梯形 (D)四边相等的四边形解析:利用公理2可知:三角形、平行四边形、梯形一定是平面图形,而四边相等的四边形不一定是平面图形,故选D.4.空间不共线的四点,可以确定平面的个数是( C )(A)0 (B)1(C)1或4 (D)无法确定解析:四点可以确定平面的个数为1个;四点不共面,可以确定平面的个数是4,故空间不共线的四点,可以确定平面的个数是1或4个.5.如图平面α∩平面β=直线l,点A,B∈α,点C∈β,C∉l,直线AB∩l=D,过A,B,C三点确定平面γ,则γ与β的交线必过( D )(A)点A(B)点B(C)点C但不过点D(D)点C和点D解析:因为C∈β,D∈β,且C∈γ,D∈γ,所以γ与β的交线必过点C和D.6.下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是( D )解析:在选项A,B,C中,由棱柱、正六边形、中位线的性质,知均有PS∥QR,即在此三个图形中P,Q,R,S共面,故选D.7.以下三个命题:①不共面的四点中,其中任意三点不共线;②若A,B,C,D共面,A,B,C,E共面,则A,B,C,D,E共面;③依次首尾相接的四条线段一定共面,其中正确命题的个数是( B ) (A)0 (B)1 (C)2 (D)3解析:①正确;对于②,当A,B,C三点共线,如图(1)所示,A,B,C,D,E不一定共面,故②不正确;对于③,如图(2)所示的AB,BC,CD,DA依次首尾相连,但四条线段不共面,故③不正确.8.(2017·金华九校联考)长方体的12条棱所能确定的平面个数为( C )(A)8 (B)10(C)12 (D)14解析:在长方体中由12条棱可构成长方体的6个面和6个对角面,共12个面.9.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α;(2)α∩β=a,P∉α且P∉β;(3)a⊄α,a∩α=A ;(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O .解析:考查识图能力及“图形语言与符号语言”相互转化能力,要注意点线面的表示.习惯上常用大写字母表示点,小写字母表示线,希腊字母表示平面.答案:(1)C (2)D (3)A (4)B10.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是.解析:空间中和一条直线都相交的两条直线不一定在同一平面内,故①错;若三条直线相交于一点时,不一定在同一平面内,如长方体一角的三条线,故②错;若两平面相交时,也可有三个不同的公共点,故③错;若三条直线两两平行且在同一平面内,则只有一个平面,故④错.答案:011.已知α,β为不重合的平面,A,B,M,N为不同的点,a为直线,下列推理中错误的是(填序号).①A∈a,A∈β,B∈a,B∈β⇒a⊂β;②M∈α,M∈β,N∈α,N∈β⇒α∩β=MN;③A∈α,A∈β⇒α∩β=A.解析:由公理1知①正确;②中,易知M,N为平面α与β交线上的点,故②正确;易知③错误. 答案:③12.如图,正方体ABCDA1B1C1D1中,若E,F,G分别为棱BC,C1C,B1C1的中点,O1,O2分别为四边形ADD1A1,A1B1C1D1的中心,则下列各组中的四个点在同一个平面上的是.①A,C,O1,D1;②D,E,G,F;③A,E,F,D1;④G,E,O1,O2.解析:①O1是AD1的中点,所以O1在平面ACD1内,即A,C,O,D四点共面;②因为E,G,F在平面BCC1B1内,D不在平面BCC1B1内,所以D,E,G,F不共面;③由已知可得EF∥AD1,所以A,E,F,D1共面;④连接GO2,交A1D1于H,则H为A1D1的中点,连接HO1,则HO1∥GE,所以G,E,O1,O2四点共面.答案:①③④13.如图,在正方体ABCDA1B1C1D1中,E,F为所在棱的中点,求证:D1,E,F,B四点共面.证明:如图,在BB1上取中点M,则BM=AE,连接EM,C1M,因为ABCDA1B1C1D1是正方体,所以ME∥AB且ME=AB,所以ME∥C1D1且ME=C1D1,所以四边形C1D1EM是平行四边形,所以D1E∥C1M.同理可得C1M∥FB且C1M=FB,所以D1E∥FB且D1E=FB,所以四边形EBFD1是平行四边形.所以D1,E,F,B四点共面.14.如图,空间四边形ABCD中,E,H分别是AB,AD中点,F,G分别是BC,CD上的点,且==.求证:三条直线EF,GH,AC交于一点.证明:因为E,H分别是AB,AD中点,所以EHBD,因为==,所以GF∥BD,GF=BD,所以EH∥GF且EH≠GF,所以四边形EFGH为梯形,所以两腰EF,GH交于一点,记为P.因为EF⊂平面ABC,所以P∈平面ABC,同理P∈平面ADC,所以P在平面ADC和平面ABC的交线AC上,所以三条直线EF,GH,AC交于一点.15.在正方体ABCDA1B1C1D1中,点Q是棱DD1上的动点,判断过A,Q,B1三点的截面图形的形状. 解:由于点Q是线段DD1上的动点,故当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图1所示.当点Q与点D重合时,截面图形为矩形AB1C1D,如图2所示.当点Q不与点D,D1重合时,截面图形为梯形AQRB1,如图3所示.图1 图2 图316.下列各图是正方体,A,B,C,D分别是所在棱的中点,这四个点中共面的图有( C )(A)①②③(B)①③④(C)①③ (D)①②④解析:如图所示,正方体中A,B,C,D分别是所在棱的中点.图①中,因为AD∥EF,BC∥EF,所以AD∥BC,所以A,B,C,D四点共面.图②中,因为CD∥EF,EF∥MN,所以A,B,C,D四点不共面.图③中,因为CD∥EF,EF∥AB,所以CD∥AB,所以A,B,C,D四点共面.图④中,因为CD∥EF,所以A,B,C,D四点不共面.所以这四个点中共面的图有①③.故选C.17.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与GH交于点M,则( A )(A)M一定在直线AC上(B)M一定在直线BD上(C)M可能在AC上,也可能在BD上(D)M既不在AC上,也不在BD上解析:如图所示,HG∩EF=M,HG⊂平面ACD,EF⊂平面ACB,所以M∈平面ACD,M∈平面ACB.又平面ACD∩平面ACB=AC,所以M∈AC.故选A.18.如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是.①A,M,O三点共线;②A,M,O,A1四点共面;③A,O,C,M四点共面;④B,B1,O,M四点共面.解析:因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知①②③均正确.答案:④19.如图,正方体ABCDA1B1C1D1棱长为1,P为BC中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得截面记为S.当CQ=时,S的面积为,若S为五边形,则此时CQ的取值范围为.解析:如图1所示,当CQ=时,截面S为等腰梯形,易求得上、下底边长分别为, ,腰为,所以底边上的高为,所以S的面积为.当CQ=时,可知截面是等腰梯形,当CQ=1时,易得截面是一个菱形.所以,只有<CQ<1时,截面是一个五边形,如图2所示.答案: (,1)20.如图,在正方体ABCDA1B1C1D1中,棱长为2,M,N,P分别是A1B1,AD,BB1的中点.(1)画出过M,N,P三点的平面与平面ABCD,平面BB1C1C的交线;(2)设过M,N,P三点的平面与BC交于点Q,求PQ的长.解:(1)如图,连接MP并延长交AB的延长线于R,连接NR交BC于点Q,则NQ就是过M,N,P三点的平面与平面ABCD的交线,连接PQ,则过M,N,P三点的平面与平面BB1C1C的交线是PQ.(2)易知Rt△MPB1≌Rt△RPB,所以MB1=RB=1.因为BQ∥AN,所以△BQR∽△ANR,所以==,可得BQ=.在Rt△PBQ中,PQ===.。
精品2.2.1 第1课时 对 数[课时作业][A 组 基础巩固]1.已知log x 8=3,则x 的值为( )A.12B .2C .3D .4解析:∵log x 8=3,∴x 3=8,∴x =2.答案:B 2.⎝ ⎛⎭⎪⎫13-2=9写成对数式,正确的是( ) A .log 913=-2 B.log 139=-2 C .log 13 (-2)=9D .log 9(-2)=13解析:a x =N ⇔x =log a N .答案:B3.有以下四个结论:①lg(lg 10)=0,②ln(ln e)=0,③若lg x =10,则x =100,④若ln x =e ,则x =e 2.其中正确的是( )A .①③B.②④ C .①② D .③④解析:①lg(lg 10)=0,正确.②ln(ln e)=0,正确.若lg x =10,则x =1010,③不正确.若ln x =e ,则x =e e ,故④不正确.所以选C.答案:C4.若对数log (x -1)(4x -5)有意义,则x 的取值范围( )A.54≤x <2 B.54<x <2 C.54<x <2或x >2 D .x >54解析:由log (x -1)(4x -5)有意义得 ⎩⎪⎨⎪⎧x -1>0,x -1≠1,4x -5>0,⇒⎩⎪⎨⎪⎧ x >54,x ≠2. 答案:C 5.如果f (10x )=x ,则f (3)=( )A .log 310B.lg 3精品 C .103 D .310解析:设10x =3,则x =lg 3,∴f (3)=f (10lg 3)=lg 3.答案:B6.lg 1 000=________,ln 1=________.解析:∵103=1 000,∴lg 1 000=3;e 0=1,∴ln 1=0.答案:3 07.方程log 2(5-x )=2,则x =________.解析:5-x =22=4,∴x =1.答案:18.已知log 2[log 3(log 5x )]=0,则x =________.解析:令log 3(log 5x )=t 1,则t 1=20=1.令log 5x =t 2,则t 2=31=3.∴log 5x =3,∴x =53=125.答案:1259.求下列各式x 的取值范围.(1)log (x -1)(x +2);(2)log (x +3)(x +3).解析:(1)由题意知⎩⎪⎨⎪⎧x +2>0,x -1>0,x -1≠1.解得x >1且x ≠2,故x 的取值范围是(1,2)∪(2,+∞).(2)由题意知⎩⎪⎨⎪⎧ x +x +3≠1,解得x >-3且x ≠-2.故x 的取值范围是(-3,-2)∪(-2,+∞).10.若log 12x =m ,log 14y =m +2,求x 2y 的值.解析:log 12x =m ,∴⎝ ⎛⎭⎪⎫12m =x ,x 2=⎝ ⎛⎭⎪⎫122m . log 14y =m +2,∴⎝ ⎛⎭⎪⎫14m +2=y,y =⎝ ⎛⎭⎪⎫122m +4.∴x 2y =⎝ ⎛⎭⎪⎫122m ⎝ ⎛⎭⎪⎫122m +4=⎝ ⎛⎭⎪⎫122m -(2m +4)=⎝ ⎛⎭⎪⎫12-4=16. [B 组 能力提升]1.若a >0,a 23=49,则log 23a 等于( )A .2B .3C .4D .5解析:∵a 23=49,a >0,∴a =⎝ ⎛⎭⎪⎫4932=⎝ ⎛⎭⎪⎫233,设log 23a =x ,∴(23)x=a .∴x =3.答案:B2.已知log x y =2,则y -x 的最小值为( )A .0 B.14 C .-14 D .1解析:∵log x y =2,∴y =x 2(x >0且x ≠1),∴y -x =x 2-x =(x -12)2-14,∴x =12时,y -x 有最小值-14.答案:C3.若f (2x +1)=log 213x +4,则f (17)=________.解析:f (17)=f (24+1)=log 213×4+4=log 2116=-8.答案:-84.方程4x -6×2x -7=0的解是________.解析:原方程可化为(2x )2-6×2x -7=0.设t =2x (t >0),则原方程可化为:t 2-6t -7=0.解得:t =7或t =-1(舍),∴2x =7,∴x =log 27,∴原方程的解为: x =log 27.答案:x =log 27 5.计算下列各式:(1)10lg 3-10log 41+2log 26;(2)22+log 23+32-log 39.解析:(1)10lg 3-10log 41+2log 26=3-0+6=9.(2)22+log 23+32-log 39=22×2log 23+323log 39=4×3+99=12+1=13.6.已知二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值. 解析:原函数式可化为f (x )=lg a (x +1lg a )2-1lg a +4lg a .∵f (x )有最大值3,∴lg a <0,且-1lg a +4lg a =3,整理得4(lg a )2-3lg a -1=0,解之得lg a =1或lg a =-14.又∵l g a <0,∴lg a =-14.∴a =1014 .。
第二章讲义 物质性质的初步认识 第一部分:物体的尺度1、长度的国际单位:米10 13 103 nm 101 Á大单位 小单位:乘正指数小单位 大单位:乘负指数2、 单位换算格式:由大到小:480m =480×102 cm =4.8×104 cm480m =480×100 cm =4.8×104 cm由小到大:240mm =240×10-2 dm =2.4dm240mm =240×1001dm =2.4dm 240mm =240×0.01 dm =2.4dm3、记住自己身体上的“尺子”:成人腰部以下1米 自己的手掌约宽1分米 手指宽最接近1厘米正常人两手平举,左右中指尖间距离等于头顶到足底距离×106×10-54、单位练习:乒乓球直径为3.5 ()一支新粉笔长10 ()一支铅笔长18 ()一根头发约100 ()一层楼高3.5 ()一枚硬币厚度约2.5 ()5、测量长度的基本工具:刻度尺(2)辅助工具:皮尺,卷尺,螺旋测微器,游标卡尺量程:仪器的最大测量范围分度值:仪器上最小一格所代表的值。
零刻度线:0所对的刻度线刻度尺按分度值分类。
例:毫米刻度尺:分度值为1mm厘米刻度尺:分度值为1cm6、正确使用刻度尺(1)会看(看对):零刻线,量程,最小分度值(2)会放(放对):放正,贴近。
即测量时只要沿着所测长度,不利用磨损的零刻线,若刻度尺较厚,则让刻度贴近被测物。
(3)会读(读对):读数时,视线要与尺面垂直,在精确测量时,要估读倒最小刻度的下一位。
(4)会记(记对):测量结果由数字和单位组成,测量结果=准确值+估计值+单位7、测量能够达到的准确程度由刻度尺的分度值决定。
例如用最小刻度是厘米的刻度尺来测量,只能准确到厘米,但是测量测量需要达到的准确程度则与实际需要有关,即由测量要求来决定。
例如给门窗安玻璃,要准确到毫米。