2019-2020年高中数学第一册(上)多面体欧拉定理的发现(1)
- 格式:doc
- 大小:110.00 KB
- 文档页数:2
多面体欧拉公式的发现欧拉公式是数学中的一项重要发现,它描述了多面体的顶点、边和面之间的关系。
发现这个公式的历史可以追溯到18世纪,当时瑞士数学家欧拉在研究多面体时首次提出了这个公式。
多面体是由平面面构成的立体,它可以是凸多面体(所有面都凸),也可以是非凸多面体(至少有一个面是凹的)。
欧拉公式适用于任何类型的多面体,它给出了多面体中顶点、边和面的数量之间的关系。
欧拉公式的数学表达式为:V-E+F=2,其中V表示多面体的顶点数,E 表示边数,F表示面数。
这个公式很简洁,却能揭示多面体的基本性质。
让我们来探索一下欧拉公式的发现过程。
首先,我们从最简单的多面体开始,即立方体。
立方体有8个顶点,12条边和6个面。
代入欧拉公式:8-12+6=2,等号左边的结果与右边的结果相等。
这意味着欧拉公式在立方体上成立。
接下来,让我们考虑一个更复杂的多面体,例如八面体。
八面体有6个顶点、12条边和8个面。
再次代入欧拉公式:6-12+8=2,等号左边的结果与右边的结果相等。
欧拉公式在八面体上同样成立。
通过反复尝试,我们可以发现,无论是简单的立方体还是复杂的八面体,欧拉公式都成立。
这提示我们欧拉公式可能是普适的。
更进一步,我们可以通过归纳法来证明欧拉公式对于任意多面体都成立。
假设对n-1个面的多面体,欧拉公式成立。
现在考虑多面体增加一个面的情况。
如果我们在新面上加上一个新顶点,那么顶点数V将增加1,边数E将增加至少3(因为每个新面至少有3条边相邻),面数F将增加1、根据归纳法的假设,对于n-1个面的多面体,欧拉公式成立,即V-E+F=2(V+1)-(E+3)+(F+1)=V-E+F+2=2+2=4所以对于n个面的多面体,欧拉公式仍然成立。
通过归纳法的推理,我们可以证明欧拉公式对于任意多面体都成立。
总结起来,欧拉公式的发现是通过观察不同形状的多面体并尝试找到它们之间的共同点。
通过代入不同的数值并观察等式的平衡,欧拉发现了顶点、边和面的数量之间的关系,并提出了著名的欧拉公式。
§9.10 研究性课题:多面体欧拉定理的发现(1)教学目标: 1. 通过探索发现欧拉公式的过程,学会提出问题和明确探索方向,体验数学活动的过程,培养创新精神和应用能力;2. 体会数学家的创造性工作,掌握“实验-归纳-猜想-证明”的研究方法;3. 通过介绍数学家欧拉的业绩,激发学生献身科学、勇于探索创新的精神.教学重点:如何发现欧拉公式教学难点:怎样证明欧拉公式教学过程:1.创设情境,提出问题1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.如图,C60 是由60个C原子构成的分子,它是一个形如足球的多面体. 这个多面体有60个顶点,以每一顶点为一端点都有三条棱,面的形状只有五边形和六边形,你能计算出C60 中有多少个五边形和六边形吗?要解决上述问题,就必须弄清多面体的顶点数、棱数和面数的关系. 我们知道,在平面多边形中,多边形的边数b,顶点数d之间有关系b=d;而多面体是多边形在空间的类似,那么在多面体中,它的顶点数、棱数和面数之间有类似的规律吗?2. 实验探索,归纳猜想让我们先观察几个简单的多面体,填写下表:多面体 F V E四面体 4 4 6正方体 6 8 12五棱柱7 10 15四棱锥 5 5 8非凸多面体 6 6 10正八面体8 6 12“屋顶”体9 9 16截顶立方体7 10 15(电脑显示各多面体,学生数数填表)问题1:你能从增减性的角度揭示顶点数、棱数和面数的关系吗?(1)由表中数据,当我们把正方体和八面体对比时,不难发现,面数增加,顶点数反而减少,而棱数未变。
并且五棱柱与八面体对比时,面数增加,顶点数和棱都减少,即V、E并不随F增大而增大,同时指出:V与E同增减的结论也不对;(2)对比正方体与八面体时,发现E未变,但F与V的数值互换,即:立方体:F=6,V=8,E=12 正八面体:F=8,V=6,E=12。
这说明了什么?好像隐约透露出某种联系. 为了弄清这个问题,整理资料,将上表按E 增加的顺序重排,得:多面体 F V E四面体 4 4 6四棱锥 5 5 8 非凸多面体 6 6 10正方体 6 8 12正八面体8 6 12五棱柱7 10 15 截顶立方体7 10 15“屋顶”体9 9 16 观察上表可知:F、V单个看,虽不总是因E的增加而增加,但“总体”看来,却是F+V 随E的增加而增加。
芯衣州星海市涌泉学校多面体欧拉定理的发现〔2〕一、课题:多面体欧拉定理的发现〔2〕二、教学目的:欧拉定理的应用.三、教学重、难点:欧拉定理的应用.四、教学过程:〔一〕复习:1.简单多面体的定义;2.欧拉定理;3.正多面体的种类.〔二〕新课讲解:例1.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种. 证明:设正多面体的每个面的边数为n ,每个顶点连有m 条棱,令这个多面体的面数为F ,每个面有n 条边,故一一共有nF 条边,由于每条边都是两个面的公一一共边,故多面体棱数2nFE =〔1〕令这个多面体有V 个顶点,每一个顶点处有m 条棱,故一一共有mV 条棱。
由于每条棱有两个顶点,故多面体棱数2mVE =〔2〕 由〔1〕〔2〕得:2E Fn =,2E V m =代入欧拉公式:222E E E m n +-=. ∴11112m n E+-=〔3〕,∵又3m ≥,3n ≥,但m ,n 不能同时大于3,〔假设3m >,3n >,那么有11102m n +-≤,即10E≤这是不可能的〕∴m ,n 中至少有一个等于3.令3n =,那么1111032m E +-=>, ∴116m >,∴5m ≤,∴35m ≤≤.同样假设3m =可得35n ≤≤. 例2.欧拉定理在研究化学分子构造中的应用:1996年诺贝尔化学奖授予对发现60C 有重大奉献的三位科学家。
60C 是由60个C 原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算60C 分子中五边形和六边形的数目.解:设60C 分子中有五边形x 个,六边形y 个。
60C 分子这个多面体的顶点数60V =,面数F x y =+,棱数1(360)2E =⨯⨯,由欧拉定理得:160()(360)22x y ++-⨯=〔1〕,另一方面棱数可由多边形的边数和来表示,得11(56)(360)22x y +=⨯〔2〕,由〔1〕〔2〕得:12x =,20y = ∴60C 分子中五边形有12个,六边形有20个.例3.一个正多面体各个面的内角和为20π,求它的面数、顶点数和棱数.解:由题意设每一个面的边数为m ,那么(2)20F m ππ-=,∴(2)20F m -=, ∵2mF E =,∴10E F =+,将其代入欧拉公式2V F E +-=,得12V =,设过每一个顶点的棱数为n ,那么62n E V n ==,12n F m =得121262n n m +-=,即5213n m+=〔1〕, ∵3m ≥,∴5n ≤,又3n ≥,∴n 的可能取值为3,4,5,当3n =或者者4n =时〔1〕中m 无整数解;当5n =,由〔1〕得3m =,∴30E =,∴20F =,综上可知:30E=,12V =,20F =.五、小结:1.欧拉定理的应用;2.会用欧拉公式2V F E +-=解决简单多面体的顶点数、面数和棱数的计算问题.六、作业:课本第69页习题9.10第2,3题.。
多面体欧拉定理的发现(1)【教学目的】1.理解简单多面体的定义2.理解并熟记欧拉公式3.会运用欧拉公式及相关知识进行计算及推理【教学思路】正多面体5种→认识欧拉→拓扑变形→简单多面体概念→研究正多面体V、F、E的关系→欧拉定理→证明→欧拉定理的意义【教学过程】1.(1) 什么叫正多面体?特征?正多面体是一种特殊的凸多面体,它包括两个特征:①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。
(2) 正多面体有哪几种?展示5种正多面体的模型。
为什么只有5种正多面体?著名数学家欧拉进行了研究,发现了多面体的顶点数、面数、棱数间的关系。
2. 介绍数学家欧拉欧拉(1707~1783)瑞士数学家,大部分时间在俄国和法国度过。
他16岁获硕士学位,早年在数学天才贝努里赏识下开始学习数学,并毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文。
他的研究论著几涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉还是数学符号发明者,如用f (x)表示函数、∑表示连加、i表示虚数单位、π、e等。
在多面体研究中首先发现并证明了欧拉公式,今天我们沿着他的足迹探索这个公式。
3.发现关系:V+F-E=2。
是不是所有多面体都有这样的关系呢?如何去研究呢?需要观念和方法上的创新。
4.多面体拓扑变形与简单多面体的概念考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它会连续(不破裂)变形,最后可变成一个球面。
像这样,表面经过连续变形可变为球面的多面体,叫做简单多面体。
5. 欧拉定理定理 简单多面体的顶点数V 、棱数E 及面数F 间有关系V+F-E=2公式描述了简单多面体中顶点数、面数、棱数之间特有的规律6. 定理的证明分析:以四面体ABCD 为例。
将它的一个面BCD 去掉,再使它变为平面图 形,四面体的顶点数V 、棱数V 与剩下的面数F 1变形后都没有变(这里F 1=F-1)。
●教学时间第九课时●课题§9.9.1 研究性课题:多面体欧拉公式的发现(一)●教学目标(一)教学知识点1.简单多面体的V、E、F关系的发现.2.欧拉公式的猜想.3.欧拉公式的证明.(二)能力训练要求1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律.2.使学生能通过进一步观察验证所得的规律.3.使学生能从拓扑的角度认识简单多面体的本质.4.使学生能通过归纳得出关于欧拉公式的猜想.5.使学生了解欧拉公式的一种证明思路.(三)德育渗透目标1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求.2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力.●教学重点欧拉公式的发现.●教学难点使学生从中体会和学习数学大师研究数学的方法.●教学方法指导学生自学法首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明.以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法.●教具准备投影片三张第一张:课本P56的问题1及表1(记作§9.9.1 A)第二张:课本P57的问题2及表2(记作§9.9.1 B)第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C)●教学过程Ⅰ.课题导入瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别代表一简单多面体的顶点、棱和面的数目,今天我们就去体验当年的数学大师是如何运用数学思想和方法发现欧拉公式并给予理论上的推理证明等研究活动,希望大家在活动中要充分展开自己的想象,展开热烈的讨论互相进行数学交流.Ⅱ.讲授新课[师]我们先从一些常见的多面体出发,对它们的顶点数V、面数F、棱数E列出表,请大家观察后填写表1(打出投影片§9.9.1 A)(学生观察,数它们的顶点数V、面数F、棱数E,填入表1)[师]好,大家填的快速而准确,继续观察表1的各组数据,找出顶点数V、面数F及棱数E的关系如何?(学生寻找,可能一时不易得到,教师应给予适当点拨提问)[师]表1中多面体的面数F都随顶点数目V的增大而增大吗?[生]不一定.[师]请举例说明.[生]如八面体和立方体的顶点数由6增大到8,而面数由8减小到6.[师]此时棱的数目呢?[生]棱数都是一样的.[师]所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.[生]当多面体的棱数增加时,它的顶点与面数的变化也有一定规律.[师]举例说明.[生甲]如图中(1)和(2)的棱数由6增大到12,面数由4增大到6,此时的顶点数也在随棱数的增加而增加,即由4增大到8.[师]生甲叙述得严格吗?有不同意见吗?[生乙]顶点数和面数并不是严格按棱数的增大而增大的.[师]请试说说你归纳出来的规律.[生乙]我发现并认为:当顶点数随棱数的增加而减小时,它的面数一定是随棱数的增加而增加的;当面数随棱数的增加而减小时,它的顶点数却是随棱数的增加而增加.[师]生乙归纳得如何?大家对他的叙述同意吗?(可能会有其他想法,教师应给学生充分的时间,让他们畅所欲言,表达他们的新发现,并予以一一指导)[师]上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.[生](积极验证,得出)V+F-E=2[师]以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.[生](许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)[生]一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.[师]好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?[生]所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n个,因2n+(2+n )-3n =2,故满足V +F -E =2这个关系式.[师]请继续来观察一些其他图形的情况.(打出投影片§9.9.1 B )请同学们观察后,将所得数据填入表2中.(学生观察,数它们的顶点数V 、面数F 、棱数E ,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)[师]观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形 符合?[生](1)符合,(2)、(3)不符合.[师]一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?(打出投影片§9.9.1 C )[生]问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.[师]请同学们继续设想问题2中(2)(3)在连续变形中,其表面最后将变成什么图形?[生]问题2中第(2)个图形;表面经过连续变形能变为环面.问题2中第(3)个图形;表面经过连续变形能变为两个对接球面.[师]像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?[生]棱柱、棱锥、正多面体、凸多面体是简单多面体.[师]至此,在问题1、2、3的基础上,我们是否可以得到什么猜想?怎样用式子表达? (有了前面积极地认真解决了问题1、2、3后学生不难归纳出)[生]简单多面体的顶点数V 、面数F 的和与棱数E 之间存在规律V +F -E =2.[师]我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V +F -E =2的过程.那么如何证明欧拉公式呢?请大家打开课本P 58的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)Ⅲ.课堂练习课本P 61练习1、2.1.用三棱柱、四棱锥验证欧拉公式.解:在三棱柱中:V =6,F =5,E =9∵6+5-9=2,∴V +F -E =2在四棱锥中:V =5,F =5,E =8∵5+5-8=2,∴V +F -E =22.一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有F =2V -4的关系. 解:∵V +F -E =2又∵E =23F ,∴V +F -23F =0,∴F =2V -4 Ⅳ.课时小结本节课,我们一起体验了数学家欧拉运用数学思想与方法去发现公式V +F -E =2的过程;体会到数学家献身科学、勇于探索的科学研究精神;并通过大家自学了解证明欧拉公式成立的一种方法,希望同学们仔细阅读研究,从中提出一些新问题,待我们下节课一起讨论解决.Ⅴ.课后作业(一)课本P61习题9.9 1、2(二)1.预习内容预习课本P59的问题52.预习提纲(1)请尝试叙述欧拉公式的证明思路.(2)如何用欧拉公式解决“有没有棱数是7的简单多面体?”(3)为什么正多面体只有五种呢?。
多面体欧拉定理的发现我们知道,平面多边形由它的边围成,它的顶点数与边数相等,按边数可以对多边形进行分类,同类的多边形具有某些相同的性质。
多面体是由它的面围成立体图形,这些面的交线形成棱,棱与棱相交形成顶点。
在研究多面体的分类等问题中,人们逐步发现它的顶点数,面数和棱数之间有特定的关系。
以下我们将体验这种关系的发现及证明过程。
探索研究问题1:下列共有五个正多面体,分别数出它们的顶点数V、面数F和棱数E,并填表1观察表中填出的数据,请找出顶点数V、面数F及棱数E之间的规律。
教师巡视指导,如正十二面体,先定面数E=12;再定棱数,每个面有5条棱,共有12×5=60条,由于每条棱都是两个面的公共边,所以上面的计算每条棱被算过两次,于是棱数E=60/2=30;最后算顶点数,每个顶点处连有三条棱,所以它共有3V条棱,又因为每条棱连着两个顶点,所以上面的计算每条棱被算过两次,因此实际上只有3V/2条棱,即E=3V/2,所以V=20。
表1中多面体的面数F都随顶点数目V的增大而增大吗?(不一定).请举例说明.(如八面体和立方体的顶点数由6增大到8,而面数由8减小到6).此时棱的数目呢?(棱数都是一样的).所以我们得到:棱的数目也并不随顶点数目的增大而增大.大家从表中还发现了其他的什么规律,请积极观察,勇于发言.(当多面体的棱数增加时,它的顶点与面数的变化也有一定规律).上面的归纳引导去猜想,棱数与顶点数+面数即E与V+F是否有某种关系,请大家按这个方向考察表中的数据,发现并归纳出它们都满足的关系.(积极验证,得出)V+F-E=2以上同学们得到的V+F-E=2这个关系式是由表1中的五种多面体得到,那么这个关系式对于其他的多面体是否也成立吗?请大家尽可能的画出多个其他多面体去验证.(许多同学可能举出前面学过的图形)四棱锥、五棱锥、六棱柱等.(教师应启发学生展开想象,举出更多的例子)一个三棱锥截去含3条棱的一个顶得到的图形、一个立方体截去一个角所得的图形等.好,同学们现在想象,例如:n棱锥在它的n边形面上增加一个“屋顶”或截去含n条棱的一个顶后,刚才的猜想是否成立?能证明吗?所得的多面体的棱数E为3n条,顶点数V为2n个,面数V为2+n 个,因2n +(2+n )-3n =2,故满足V +F -E =2这个关系式.请继续来观察下面的图形,填表2,并验证得出的公式工V +F -E =2_A(学生观察,数它们的顶点数V、面数F、棱数E,并填入表2,可能有些同学出错,教师在巡视时要及时给予指导,帮助学生填完)观察你们的数据,请验证这些图形是否符合前面找出的规律吗?其中哪些图形符合?一起来设想问题1和问题2中的图形.在某个橡皮膜上,当橡皮膜变形后,有的地方伸长、有的地方压缩,但不能破裂或折叠,橡皮膜上的图形的形状也跟着改变,这种图形的变化过程我们称之为连续变形.那么请大家试想这些图形中的哪些在连续变形中最后其表面可变为一个球面?问题1中的(1)~(5)和问题2中的(1)个图形表面经过连续变形能变为一个球面.请同学们继续设想问题2中⑴~⑻在连续变形中,其表面最后将变成什么图形?问题2中第⑻个图形;表面经过连续变形能变为环面像以上那些在连续变形中,表面能变为一个球面的多面体叫简单多面体.请大家判断我们前面所学的图哪些是简单多面体?棱柱、棱锥、正多面体、凸多面体是简单多面体.简单多面体的顶点数V、面数F的和与棱数E之间存在规律V+F -E=2.我们将它叫做欧拉公式,以上3个问题的解决让我们体会到了数学家欧拉发现V+F-E=2的过程.那么如何证明欧拉公式呢?请大家打开课本P65的欧拉公式证明方法中的一种,认真体会它的证明思路和其间用到的数学思想.(学生自学、教师查看,发现问题,收集问题下节课处理)在欧拉公式中,令f(p)=V+F-E。
1《多面体欧拉定理的发现(1)》教学设计温州第51中学 谢尚鸽教学设计前记: 1.教学实践:前年我上过该课,发现该课有下面几个地方比较难处理.(1)引入课题时怎样更好地激发学生的求知欲及探索欲.(2)课堂上如何省时,准确地数出多面体的顶点数,面数与棱数.(3)怎样引导学生构造反例(4)如何自然地提出简单多面体地概念(5)如何更生动地介绍欧拉(6)如何构造平台,让学生自然地证明欧拉公式 (7)课堂上如何有效地促进学生参与(8)如何完整地展现 “发现—猜想—证明”的探索过程. 2.教育理论:美国著名心理学家布鲁纳针对传统的讲授式教学,提出了发现学习的基本模式。
其主要环节是:⑴创设问题情景⑵提出假设⑶检验假设针对以上教学实际中碰到的8个问题,再结合布鲁纳的发现学习理论,下面我谈谈《多面体欧拉定理的发现》第1课时的教学设计. 一.教学目标 (1)知识目标识记欧拉公式,了解公式的发现过程。
(2)能力目标① 培养学生动手、观察、发现、归纳、猜想、探索、解决数学问题的能力。
② 培养学生的空间想象能力、逻辑思维能力. ③ 培养学生的团结协作能力、创新意识和创新能力. (3)德育与美育目标① 以多面体欧拉公式的探索为载体,体验数学研究的过程和创造的激情。
② 通过数学家业绩的介绍,培养学生学习数学大师严谨的科学态度和不怕困难的顽强精神,从而促进学生非智力因素的发展.③ 体验数学的简洁美(2=-+E F V )和对称美,激发学生学习数学的兴趣。
二.教学的重点与难点重点是组织全体学生积极地参与多面体欧拉公式的发现。
难点是欧拉公式的证明 三.教学过程 课前准备:课前先把学生分成8个学习小组,确定组长,负责组织讨论及收集数据.上课时把有关多面体顶点数,棱数,面数的数据统计表发给每位同学,同时发给每组一个足球。
1.创设情境:让学生观察足球,提问足球表面有哪些图形?你们知道足球表面有几个顶点,几条棱,几个面? 以小组为单位,要求学生数一数足球的顶点数、面数及边数,填入数据统计表内。
多面体欧拉定理的发现【新课引入】让学生观察足球,提问:足球表面有哪些图形?足球表面有几个顶点,几条棱,几个面?以小组为单位,要求学生数一数足球的顶点数、面数及边数,填入数据统计表内。
看一看能否找到一些规律.【设计意图】从生活的实际问题引入,可以调节课堂气氛,激发学生的学习兴趣, 培养学生的观察能力和动手操作的能力,同时可以自然地过渡到数多面体的顶点数,面数,棱数.【新课讲解】1.尝试猜想:以小组为单位,要求学生自己再举一些多面体,数一数它们的面数,棱数,顶点数,把数据填入统计表内,看一看能否找出规律。
多面体顶点数面数棱数规律在个人思考、分组讨论的基础上,由小组的组长总结归纳规律:顶点数+面数-棱数=2教师指出这就是有名的欧拉公式:V+F E=2【设计意图】让学生学会分析、总结,从现象看到本质,掌握从特殊到一般的规律.同时可以培养学生的动手,创新能力和交流协作的能力。
2.介绍欧拉(利用电脑制作一段有关欧拉生平的录像)(大约1-2分钟)欧拉,瑞士数学家,16岁获硕士学位,毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文.欧拉的成功不是偶然,而是靠他那顽强的毅力和孜孜不倦的治学精神。
既使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。
他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉还是数学符号发明者,如用 f ( x )表示.函数、∑表示连加、i表示虚数单位、π、e等。
【注】更多介绍见最后【阅读材料】。
【设计意图】通过录像,声情并茂介绍大数学家欧拉,使学生能够更好地了解欧拉的科学精神与顽强地毅力,促进学生非智力因素地发展.3.构造反例先让学生举反例,如果学生举不出,教师用几何画板进行引导演示过程中,要求学生计算这些多面体的顶点数,面数,棱数,然后将数据填入下表中情况1:正方体挖去一个四棱锥(可以动画展示)如下图1图1情况2:拖动O点使之下移(可以动画展示)如下图2图3图2情况3:拖动O点使之上移(可以动画展示)如上图3情况4:侧面两个四棱锥挖掉多面体顶点数棱数面数顶点数+面数 棱数图1图2图3图4【设计意图】深入探究,完善猜想. 可以培养学生空间想象能力,表达能力及创造能力。
一、课题:多面体欧拉定理的发现三、教学重、难点:欧拉定理的应用.四、教学过程:(一)复习:1.简单多面体的定义;2.欧拉定理;3.正多面体的种类.(二)新课讲解:例1.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种. 证明:设正多面体的每个面的边数为,每个顶点连有条棱,令这个多面体的面数为,每个面有条边,故共有条边,由于每条边都是两个面的公共边,故多面体棱数 (1)令这个多面体有个顶点,每一个顶点处有条棱,故共有条棱。
由于每条棱有两个顶点,故多面体棱数 (2)由(1)(2)得:,代入欧拉公式:.∴ (3),∵又,,但,不能同时大于,(若,,则有,即这是不可能的)∴,中至少有一个等于.令,则,∴,∴,∴.同样若可得.例2.欧拉定理在研究化学分子结构中的应用:1996年诺贝尔化学奖授予对发现有重大贡献的三位科学家。
是由60个原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算分子中五边形和六边形的数目. 解:设分子中有五边形个,六边形个。
分子这个多面体的顶点数,面数,棱数,由欧拉定理得:160()(360)22x y ++-⨯= (1),另一方面棱数可由多边形的边数和来表示,得 (2),由(1)(2)得:, ∴分子中五边形有12个,六边形有20个.例3.一个正多面体各个面的内角和为,求它的面数、顶点数和棱数.解:由题意设每一个面的边数为,则,∴,∵,∴,将其代入欧拉公式,得,设过每一个顶点的棱数为,则,得,即(1),∵,∴,又,∴的可能取值为,,,当或时(1)中无整数解;当,由(1)得,∴, ∴,综上可知:,,.五、小结:1.欧拉定理的应用;2.会用欧拉公式解决简单多面体的顶点数、面数和棱数的计算问题.六、作业:课本第69页 习题9.10第2,3题.一、课题:多面体欧拉定理的发现阅读材料:走近欧拉欧拉(Euler),瑞士数学家及自然科学家。
2019-2020年高中数学第一册(上)多面体欧拉定理的发现(1)
一、课题:多面体欧拉定理的发现
二、教学目标:1.了解简单多面体的概念;
2.掌握欧拉定理.
三、教学重、难点:欧拉定义及其证明.
四、教学过程:
(一)欧拉生平事迹简说:欧拉(Euler),瑞士数学家及自然科学家。
1707年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝.
(二)新课讲解:
1.简单多面体:
考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么
它就会连续(不破裂)变形,最后可变为一个球面.如图:
象这样,表面经过连续变形可变为球面的多面
体,叫做简单多面体.
说明:棱柱、棱锥、正多面体等一切凸多面体都
是简单多面体.
2.填表:
将五种正多面体的顶点数、面数及棱数分别填表:
发现:它们的顶点数、面数及棱数有共同的关系式:.
上述关系式对简单多面体都成立.
3.欧拉定理:
简单多面体的顶点数、面数及棱数有关系式:.(欧拉公式)
4.定理的证明:
(方法一)以四面体为例来说明:
将它的一个面去掉,并使其变为平面图形,
四面体的顶点数、棱数与剩下的面数变形
后都没有变。
因此,要研究、和的关系,
只要去掉一个面,将它变形为平面图形即可.
对平面图形,我们来研究:
(1)去掉一条棱,就减少一个面。
例如去掉,就减少一个面.
同理,去掉棱、,也就各减少一个面
、.
由于、的值都不变,因此
的值也不变.
(2)再从剩下的树枝形中,去掉一条棱,就减少
一个顶点。
例如去掉,就减少一个顶点. 同理,去掉就减少一个顶点,最后剩下 (如图).
在此过程中的值不变,但这时面数是,所以的值也不变。
由于最后只剩下,所以, 最后加上去掉的一个面,就得到. (方法二)
把“立体图”的面煎掉后,其余各面铺开。
展开后,各面的棱数和顶点数没有变,而多边形内角和 只与边数有关,所以多面体各个面内角总和不变。
设多面体个面,各面边数分别为,,…,, 则内角总和为12()1802180
F n n n F ++
⋅-⋅+,
设多面体有个顶点,底面是边形,则“展开图”有个顶点在中间, 则内角总和为()180(2)180(2)180(2)360V m m m V -⋅+-⋅+-⋅=-⋅,
∴12()1802180(2)360
F n n n F V ++⋅-⋅=-⋅+, 又∵, ∴. 5.欧拉示性数:
在欧拉公式中令,叫欧拉示性数。
说明:(1)简单多面体的欧拉示性数.
(2)带一个洞的多面体的欧拉示性数.例如:长方体挖去一个洞连结底面相应顶点得到的多面体. 6.例题分析:
例1.一个面体共有8条棱,5个顶点,求? 解:∵,∴,∴.
例2.一个正面体共有8个顶点,每个顶点处共有三条棱,求? 解:∵,, ∴, ∴.
五、课堂练习:课本第69页 习题 第4题. 六、小结:欧拉定理及其证明.
七、作业:课本第69页 习题9.10第1题.。