高一数学期中模拟试卷
- 格式:doc
- 大小:306.50 KB
- 文档页数:7
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
高一数学期中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()。
A. m>4B. m<4C. m≥4D. m≤42. 已知函数f(x)=3x-2,g(x)=2x+1,若f[g(x)]=7x-1,则x的值为()。
A. 1B. 2C. 3D. 43. 已知集合A={x|x^2-5x+6=0},B={x|x^2-2x-3=0},则A∩B=()。
A. {1}B. {2}C. {1,2}D. {3}4. 若函数f(x)=x^3-3x+1,则f'(x)=()。
A. 3x^2-3B. x^2-3xC. 3x^2-9x+3D. x^3-35. 已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S5=()。
A. 25B. 26C. 27D. 286. 若函数f(x)=x^2-6x+8,g(x)=2x+3,则f[g(x)]的表达式为()。
A. 4x^2-9x+14B. 4x^2-12x+17C. 4x^2-15x+19D. 4x^2-18x+227. 已知函数f(x)=x^2-4x+3,若f(x)>0,则x的取值范围是()。
A. x<1或x>3B. x<3或x>1C. x<1或x>3D. x<-1或x>38. 已知等比数列{bn}的前n项和为Tn,若b1=2,q=2,则T4=()。
A. 30B. 32C. 34D. 369. 若函数f(x)=x^3-3x+1,则f(-x)=()。
A. -x^3+3x-1B. -x^3+3x+1C. -x^3-3x-1D. -x^3-3x+110. 已知函数f(x)=x^2-6x+8,若f(x)=0,则x的值为()。
A. 2B. 4C. 2或4D. 无解二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,若f(x)=0,则x的值为_________。
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = x + 12. 若函数f(x) = 2x + 3,则f(-1)的值为:A. 1B. -1C. -5D. 53. 等差数列{an}的首项a1=3,公差d=2,则a5的值为:A. 11B. 13C. 15D. 174. 圆的方程为(x-2)^2 + (y-3)^2 = 9,则圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)5. 函数y = 3x - 2与x轴的交点坐标为:A. (2/3, 0)B. (0, 2/3)C. (2/3, 2/3)D. (0, 0)6. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B为:A. {1, 2, 3}B. {2, 3}C. {1, 2, 4}D. {1, 3, 4}7. 函数y = sin(x)的周期为:A. 2πB. πC. 1D. 08. 抛物线y = x^2 - 4x + 3的顶点坐标为:A. (2, -1)B. (2, 1)C. (-2, -1)D. (-2, 1)9. 已知等比数列{bn}的首项b1=2,公比q=3,则b3的值为:A. 18B. 24C. 54D. 8110. 函数y = 1/x的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称二、填空题(每题4分,共20分)1. 已知等差数列的前n项和为S_n,若S_5=50,则a3的值为______。
2. 函数f(x) = x^2 - 6x + 9的最小值为______。
3. 若直线y = 2x + 1与直线y = -x + 3平行,则它们的斜率k的值为______。
4. 圆的方程(x-1)^2 + (y+2)^2 = 25的半径为______。
5. 已知集合M={x | x^2 - 5x + 6 = 0},则M中元素的个数为______。
青岛2024—2025学年第一学期期中考试高一数学试题时间:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,”的否定是()A.,B.,C.,D.,2.若,,,则,,的大小关系是()A. B. C. D.3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”,在数学学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数的图象特征.函数的图象大致为()A. B. C. D.4.已知函数,集合,,若,则()A.1B.0C.4D.5.“”是函数“在区间上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.已知函整的定义域为,则函数的定义域为()A. B. C. D.x∃∈R3||20x x+->x∃∉R3||20x x+-≤x∃∈R3||20x x+-≤x∀∈R3||20x x+-≤x∀∉R3||20x x+-≤2313a⎛⎫= ⎪⎝⎭2315b⎛⎫= ⎪⎝⎭1349c⎛⎫= ⎪⎝⎭a b ca b c<<c a b<<b c a<<b a c<<21()2xf xx-=21,1(),12x xf xx x+≤-⎧=⎨-<≤⎩{0,}A a=-{1,2,22}B a a=--A B⊆()f a=493a≤()f x=[2,)+∞()f x(4,28)-2()g x=(4,28)(6,3)(3,6)--⋃(3,6)(3,3)(2,3)--⋃7.已知函数,函数是定义在上的奇函数,若与的图象的交点分别为,……,,则( )A. B. C.0D.28.定义在上的偶函数满足,且对于任意,有,若函数,则下列说法正确的是( )A.在上单调递减 B.为偶函数C. D.在上单调递增二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,下列说法正确的是( )A. B.C.D.10.定义在实数集上的函数称为狄利克雷函数.该函数由19世纪德国数学家狄利克雷提出,在高等数学的研究中应用广泛.下列有关狄利克雷函数的说法中正确的是( )A.的值域为B.对任意,都有C.存在无理数,对任意,都有D.若,,则有11.已知的解集是,则下列说法正确的是( )A.B.不等式的解集为21()x x f x x++=()1y g x =-R ()f x ()g x ()11,x y ()88,x y ()()1818x x y y ++-++= 8-4-R ()f x (2)2f =120x x >>()()21122122x f x x f x x x ->-()2()f x g x x-=()g x (0,)+∞()g x (4)(3)g g <-()f x (2,)+∞0a b <<c d >a c b d-<-a b c d<11a b>552332a b a b a b +<+1,Q()0,Qx D x x ∈⎧=⎨∉⎩()D x ()D x []0,1x ∈R ()()D x D x =-0t x ∈R ()0()D x t D x +=0a <1b >{|()}{|()}x D x a x D x b >=<20ax bx c ++>(2,3)-30b c +>20cx bx a -+<11,32⎛⎫- ⎪⎝⎭C.的最小值是D.当时,若,的值域是,则三、填空题:本题共3小题,每小题5分,共15分.12.已知幂函数的图象关于轴对称,且,则________.13.已知函数,,记,若与的图象恰有两个不同的交点,则实数的取值范围是________.14.已知函数满足:对任意非零实数,均有,则在上的最小值为________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数的定义域为,集合.(1)求;(2)集合,若,求实数的取值范围.16.(15分)已知函数,.(1)若,且,求出的解析式;(2)解关于的不等式.17.(15分)已知函数是定义在上的奇函数.(1)求实数的值;(2)判断在上的单调性,并用单调性定义证明;(3)设,解不等式.18.(17分)萝卜快跑,作为全球领先的自动驾驶出行服务平台,是百度Apollo 的重要落地应用,它在无人驾驶领域扮演着先行者和创新者的角色,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为四段,分別为准备时间:人的反应时间、系统反应时间、制动时间,相应的距离分别为,,,,如下图所示.当车速为(米/秒),且时,通过大数据统12334a cb +++42c =2()36f x ax bx =+[]12,x n n ∈[3,1]-21[2,4]n n -∈24()()n n f x xn Z -=∈y (1)(3)f f -<n =()1f x x =-2()g x x =,max{,},a a b a b b a b≥⎧=⎨<⎩y m =max{(),()}y f x g x =(0)x ≠m ()f x x (2)()(1)2f f x f x x=⋅+-()f x (0,)+∞()f x =A {}|321B x x =->A B ⋃{|1}C x a x a =-<<R C C B ⊆a 22()23f x x ax a =--R a ∈0a =2(3)()()g x g x f x --=()g x x ()0f x <2()4x af x x +=-[1,1]-a ()f x [1,1]-()|()|g x f x =(21)(1)g t g t ->-0t 1t 2t 3t 0d 1d 2d 3d v (]0,33.3v ∈计分析得到下表给出的数据(其中系数随地面湿滑程度等路面情况而变化,)阶段①准备②人的反应③系统反应④制动时间秒秒距离米米(1)请写出报警距离(米)与车速(米/秒)之间的函数关系式;并求当,在汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间;(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少米/秒?19.(17分)对于区间,若函数同时满足:①在上是单调函数,②函数在的值域是,则称区间为函数的“保值”区间.(1)求函数的所有“保值”区间;(2)判断函数是否存在“保值”区间,并说明理由;(3)已知函数有“保值”区间,当取得最大值时求的值.k [1,2]k ∈0t 10.8t =20.2t =3t 010d =1d 2d 2320v d k=d v ()d v 2k =[,]()a b a b <()y f x =[],a b ()y f x =[],a b [],a b [],a b 2()f x x =1()1g x x =-()221()(,0)a a x h x a a a x+-=∈≠R [],m n n m -a。
19.已知函数()2
41f x x mx =++.
(1)若1m =,求()f x 在43x -≤≤上的最大值和最小值;(2)求()f x 在44x -≤≤上的最小值.
选②,因“x B ∈”是“x A ∈”的必要不充分条件,则A
B ,由(1)知,{|22}B x x =-≤≤,
因此2212a a -≥-⎧⎨+<⎩或2212
a a ->-⎧⎨+≤⎩,解得01a ≤<或01a <≤,即有01a ≤≤,
所以实数a 的取值范围是01a ≤≤.
选③,A B ⋂=∅,由(1)知,{|22}B x x =-≤≤,因此12a +<-或22a ->,解得3a <-或4a >,所以实数a 的取值范围是3a <-或4a >.
18.(1)()22
24,024,0
x x x f x x x x ⎧-+≥=⎨+<⎩(2)图象见解析,函数的单调递减区间为:(),1-∞-,()1,+∞.
【分析】(1)根据奇函数的性质,求解得出0x <时,()f x 的解析式,即可得出答案;(2)根据函数图象,即可得出函数的单调递减区间.【详解】(1)∵函数()f x 是定义在R 上的奇函数,当0x <时,有0x ->,()()2
24f x x x -=---,
∴()()2
24f x f x x x =--=+,
∴()2224,0
24,0x x x f x x x x ⎧-+≥=⎨+<⎩
.
(2)函数的图象为:
由图象可得,函数的单调递减区间为:(),1-∞-,()1,+∞.19.(1)最大值为22,最小值为-3;。
2023-2024学年山东省临沂市高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合A ={x |0≤x ≤2},B ={﹣1,1,2,4},那么阴影部分表示的集合为( )A .{﹣1,4}B .{1,2,4}C .{1,4}D .{﹣1,2,4}2.命题“∃x ∈R ,x +|x |<0”的否定是( ) A .∀x ∈R ,x +|x |<0 B .∃x ∈R ,x +|x |≥0 C .∀x ∈R ,x +|x |≥0D .∃x ∈R ,x +|x |>03.函数y =√x−2|x|−3的定义域是( ) A .{x |x >2}B .{x |x ≥2且x ≠3}C .{x |x ≠3}D .{x |x >2且x ≠3}4.已知函数f (x )=4x 2﹣kx ﹣8在区间[5,20]上单调递增,则实数k 的取值范围是( ) A .{40} B .[40,160] C .(﹣∞,40]D .[160,+∞)5.已知f (x )={x −5,(x ≥6)f(x +1),(x <6),则f (3)为( )A .3B .4C .1D .26.已知函数f(x)=ax 3+bx −cx +2,若f (2023)=6,则f (﹣2023)=( ) A .﹣8B .﹣6C .﹣4D .﹣27.已知函数f (x +1)是偶函数,当1≤x 1<x 2时,f(x 2)−f(x 1)x 2−x 1>0恒成立,设a =f(−12),b =f (1),c =f (2),则a ,b ,c 的大小关系为( ) A .b <a <cB .b <c <aC .c <a <bD .a <b <c8.在实数的原有运算法则中,定义新运算“⊕”,规定当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )•x +(2⊕x ),x ∈[﹣2,2]的最大值等于(“•”和“+”仍为通常的乘法和加法)( ) A .5B .6C .10D .12二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∀x∈R,ax2﹣ax+1>0,则命题p成立的一个充分不必要条件可以是()A.a∈[0,4)B.a∈(4,+∞)C.a∈(0,4)D.a∈{0}10.设a,b,c∈R,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,则ac2>bc2C.若a>b,则1a <1bD.若a>b>0,则a2>ab>b211.设正实数a、b满足a+b=1,则下列结论正确的是()A.1a +1b≥4B.a2+b2≥12C.√ab≤14D.√a+√b≥√212.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则f (x)=[x]称为高斯函数,例如:[﹣3.5]=﹣4,[2.1]=2,则下列命题正确的是()A.∀x∈[﹣1,0],f(x)=﹣1B.∀x∈R,f(x+1)=f(x)+1C.f(x+y)≥f(x)+f(y)D.2f2(x)﹣f(x)﹣3≥0的解集为(﹣∞,0)∪[2,+∞)三、填空题(本题共4小题,每小题5分,共20分)13.若x>﹣1,则2x+1x+1的最小值为.14.已知函数y=√x2的值域为{0,4},则它的定义域可以是.(写出其中一个即可)15.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+2,则f(﹣1)=.16.已知幂函数y=f(x)的图象过点(2,8),且满足f(mx2)+8f(4﹣3x)≥0恒成立,则实数m的取值范围为.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合A={x|3≤x≤a+5},B={x|2<x<10}.(1)当a=2时,求∁R(A∪B),(∁R A)∩B;(2)若A∩B=A,求实数a的取值范围.18.(12分)设函数f(x)=x2﹣(a+1)x+a,a∈R.(1)解关于x的不等式f(x)<0;(2)当x∈(1,+∞)时,不等式f(x)≥﹣1恒成立,求a的取值范围.19.(12分)已知x >0,y >0,且xy =x +y +3. (1)求x +y 的取值范围; (2)求xy 的取值范围. 20.(12分)已知函数f(x)=ax−b x 2−4是定义在(﹣2,2)上的奇函数,且f(1)=−13.(1)求a ,b 值;(2)用定义证明:f (x )在(﹣2,2)上单调递减; (3)解关于t 的不等式f (t ﹣1)+f (t )<0.21.(12分)某公司生产某种电子仪器的年固定成本为2000万元,当年产量为x 千件时,需另投入成本C(x )(万元).C(x)={12x 2+10x +1100,0<x <100,120x +4500x−90−5400,x ≥100每千件产品售价100万元,为了简化运算我们假设该公司生产的产品能全部售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?22.(12分)对于区间[a ,b ],a <b ,若函数y =f (x )同时满足:①f (x )在[a ,b ]上是单调函数;②函数y =f (x )在x ∈[a ,b ]的值域是[a ,b ],则称区间[a ,b ]为函数f (x )的“保值”区间. (1)求函数y =2x 2的所有“保值”区间;(2)函数y =x 2﹣2x +m (m ∈R )是否存在“保值”区间?若存在,求出m 的取值范围;若不存在,说明理由.2023-2024学年山东省临沂市高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|0≤x≤2},B={﹣1,1,2,4},那么阴影部分表示的集合为()A.{﹣1,4}B.{1,2,4}C.{1,4}D.{﹣1,2,4}解:由题意知阴影部分表示的集合为(∁U A)∩B,由集合A={x|0≤x≤2},B={﹣1,1,2,4},可得∁U A={x|x<0或x>2},则(∁U A)∩B={﹣1,4}.故选:A.2.命题“∃x∈R,x+|x|<0”的否定是()A.∀x∈R,x+|x|<0B.∃x∈R,x+|x|≥0C.∀x∈R,x+|x|≥0D.∃x∈R,x+|x|>0解:“∃x∈R,x+|x|<0”的否定是:∀x∈R,x+|x|≥0.故选:C.3.函数y=√x−2|x|−3的定义域是()A.{x|x>2}B.{x|x≥2且x≠3}C.{x|x≠3}D.{x|x>2且x≠3}解:函数y=√x−2|x|−3的定义域满足{x−2≥0|x|−3≠0,解得x≥2且x≠3,故它的解集为{x|x≥2且x≠3}.故选:B.4.已知函数f(x)=4x2﹣kx﹣8在区间[5,20]上单调递增,则实数k的取值范围是()A.{40}B.[40,160]C.(﹣∞,40]D.[160,+∞)解:函数f(x)=4x2﹣kx﹣8在[5,20]上单调递增,对称轴x=k8≤5,解得:k≤40,所以k的取值范围为(﹣∞,40],故选:C.5.已知f (x )={x −5,(x ≥6)f(x +1),(x <6),则f (3)为( )A .3B .4C .1D .2解:f (x )={x −5,(x ≥6)f(x +1),(x <6),可得f (3)=f (4)=f (5)=f (6)=6﹣5=1.故选:C .6.已知函数f(x)=ax 3+bx −cx +2,若f (2023)=6,则f (﹣2023)=( ) A .﹣8B .﹣6C .﹣4D .﹣2解:设g(x)=ax 3+bx −c x ,函数定义域为(﹣∞,0)∪(0,+∞), g(−x)=−ax 3−bx +cx =−g(x),函数为奇函数, f (2023)=g (2023)+2=6,故g (2023)=4,f (﹣2023)=g (﹣2023)+2=﹣g (2023)+2=﹣4+2=﹣2. 故选:D .7.已知函数f (x +1)是偶函数,当1≤x 1<x 2时,f(x 2)−f(x 1)x 2−x 1>0恒成立,设a =f(−12),b =f (1),c =f (2),则a ,b ,c 的大小关系为( ) A .b <a <cB .b <c <aC .c <a <bD .a <b <c解:因为函数f (x +1)为偶函数, 所以f (x +1)=f (1﹣x ), 所以f (x )的图象关于x =1对称, 所以f(−12)=f(52) 又当1≤x 1<x 2时,f(x 2)−f(x 1)x 2−x 1>0恒成立,所以函数f (x )在[1,+∞)上递增, 因为52>2>1,所以f(52)>f(2)>f(1)所以b <c <a . 故选:B .8.在实数的原有运算法则中,定义新运算“⊕”,规定当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )•x +(2⊕x ),x ∈[﹣2,2]的最大值等于(“•”和“+”仍为通常的乘法和加法)( )A.5B.6C.10D.12解:当1≤x≤2时,1⊕x=x2,2⊕x=2,故f(x)=x3+2,函数单调递增,f(x)max=f(2)=10;当﹣2≤x<1时,1⊕x=1,2⊕x=2,故f(x)=x+2,函数单调递增,f(x)max<f(1)=3;综上所述:函数f(x)的最大值为10.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∀x∈R,ax2﹣ax+1>0,则命题p成立的一个充分不必要条件可以是()A.a∈[0,4)B.a∈(4,+∞)C.a∈(0,4)D.a∈{0}解:ax2﹣ax+1>0恒成立,当a=0时,1>0,成立;当a≠0时,{a>0Δ=a2−4a<0,解得0<a<4;综上所述:0≤a<4,命题p成立的一个充分不必要条件是{a|0≤a<4}的真子集,CD满足.故选:CD.10.设a,b,c∈R,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,则ac2>bc2C.若a>b,则1a <1bD.若a>b>0,则a2>ab>b2解:对A,由ac2>bc2,显然c2>0,两边除以c2可得a>b.故A正确;对B,当c=0时显然不成立.故B错误;对C,当a=2,b=−1,1a=12,1b=−1,1a>1b,故C错误;对D,因为a>b>0,同时乘以a有a2>ab,同时乘以b有ab>b2,故a2>ab>b2.故D正确.故选:AD.11.设正实数a、b满足a+b=1,则下列结论正确的是()A.1a +1b≥4B.a2+b2≥12C .√ab ≤14D .√a +√b ≥√2解:对选项A :1a+1b=(1a+1b)(a +b)=b a+a b+2≥2√b a ⋅ab+2=4,当且仅当a =b =12时等号成立,正确;对选项B :a 2+b 2=(a +b)2−2ab ≥1−(a+b)22=12,当且仅当a =b =12时等号成立,正确;对选项C :取a =b =12,√ab =12,C 显然错误;对选项D :取a =14,b =34,D 显然错误. 故选:AB .12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则f (x )=[x ]称为高斯函数,例如:[﹣3.5]=﹣4,[2.1]=2,则下列命题正确的是( ) A .∀x ∈[﹣1,0],f (x )=﹣1B .∀x ∈R ,f (x +1)=f (x )+1C .f (x +y )≥f (x )+f (y )D .2f 2(x )﹣f (x )﹣3≥0的解集为(﹣∞,0)∪[2,+∞) 解:对选项A :f (0)=0,故错误;对选项B :x 的整数部分为a ,则x +1的整数部分为a +1,即f (x +1)=f (x )+1,故正确; 对选项C :x 的整数部分为a ,y 的整数部分为b ,则x +y 的整数部分为a +b 或a +b +1,即f (x +y )≥f (x )+f (y ),故正确; 对选项D :2f 2(x )﹣f (x )﹣3≥0,则f (x )≤﹣1或f(x)≥32, 解得x ∈(﹣∞,0)∪[2,+∞),故正确. 故选:BCD .三、填空题(本题共4小题,每小题5分,共20分) 13.若x >﹣1,则2x +1x+1的最小值为 2√2−2 .解:若x >﹣1,则2x +1x+1=2(x +1)+1x+1−2≥2√2(x +1)⋅1x+1−2=2√2−2, 当且仅当2(x +1)=1x+1,x =√22−1,取等号. 故答案为2√2−2.14.已知函数y =√x 2的值域为{0,4},则它的定义域可以是 {0,4}(答案不唯一) .(写出其中一个即可)解:y =√x 2=|x|,取|x |=0,则x =0;取|x |=4,则x =±4; 故定义域可以为:{0,4}或{0,﹣4}或{0,4,﹣4}. 故答案为:{0,4}(答案不唯一).15.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2+2,则f (﹣1)= ﹣3 . 解:根据题意,当x >0时,f (x )=x 2+2,则f (1)=3, f (x )是定义在R 上的奇函数,f (﹣1)=﹣f (1)=﹣3. 故答案为:﹣3.16.已知幂函数y =f (x )的图象过点(2,8),且满足f (mx 2)+8f (4﹣3x )≥0恒成立,则实数m 的取值范围为 [98,+∞) .解:由题设f (x )=x α,其图象过点(2,8)可得2α=8=23,故α=3,所以f (x )=x 3, 所以8f (x )=(2x )3=f (2x ), 易知f (x )为R 上的奇函数且为增函数,而f (mx 2)+8f (4﹣3x )≥0等价于f (mx 2)≥﹣8f (4﹣3x )=f (6x ﹣8), 所以mx 2≥6x ﹣8,所以mx 2﹣6x +8≥0恒成立,当m =0时,﹣6x +8≥0不恒成立,不合题意, 当m ≠0时,{Δ=36−4×m ×8≤0m >0,解得m ≥98. 所以实数m 的取值范围为[98,+∞). 故答案为:[98,+∞).四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知集合A ={x |3≤x ≤a +5},B ={x |2<x <10}. (1)当a =2时,求∁R (A ∪B ),(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.解:(1)当a =2时,A ={x |3≤x ≤7},所以A ∪B ={x |2<x <10}, ∁R A =(﹣∞,3)∪(7,+∞),所以∁R (A ∪B )=(﹣∞,2]∪[10,∞),(∁R A )∩B =(2,3)∪(7,10); (2)若A ∩B =A ,则A ⊆B , 当A =∅时,3>a +5,解得a <﹣2; 当A ≠∅时,{3≤a +5a +5<10,解得﹣2≤a <5;综上所述:a 的取值范围为{a |a <5}.18.(12分)设函数f (x )=x 2﹣(a +1)x +a ,a ∈R . (1)解关于x 的不等式f (x )<0;(2)当x ∈(1,+∞)时,不等式f (x )≥﹣1恒成立,求a 的取值范围. 解:(1)f (x )=x 2﹣(a +1)x +a =(x ﹣1)(x ﹣a )<0, 当a <1时,不等式f (x )<0的解集为(a ,1); 当a =1时,不等式f (x )<0的解集为∅; 当a >1时,不等式f (x )<0的解集为(1,a ). (2)当x ∈(1,+∞)时,不等式f (x )≥﹣1恒成立, 则x −a ≥−1x−1,即a ≤x +1x−1恒成立. 因为x +1x−1=x −1+1x−1+1≥2√(x −1)⋅1x−1+1=3, 当且仅当x −1=1x−1,即x =2时,等号成立, 所以a ≤3,即a ∈(﹣∞,3].19.(12分)已知x >0,y >0,且xy =x +y +3. (1)求x +y 的取值范围; (2)求xy 的取值范围.解:(1)因为x >0,y >0,所以xy =x +y +3≤(x+y2)2,令x +y =t >0,则t +3≤t 24,整理得(t ﹣6)(t +2)≥0,解得t ≥6,即x +y ≥6,当且仅当x =y =3时等号成立, 所以x +y 的取值范围为[6,+∞).(2)因为x >0,y >0,所以xy =x +y +3≥2√xy +3,令√xy =m >0,则m 2≥2m +3,整理得(m ﹣3)(m +1)≥0,解得m ≥3,即xy ≥9, 当且仅当x =y =3时等号成立,所以xy 的取值范围为[9,+∞). 20.(12分)已知函数f(x)=ax−b x 2−4是定义在(﹣2,2)上的奇函数,且f(1)=−13. (1)求a ,b 值;(2)用定义证明:f (x )在(﹣2,2)上单调递减; (3)解关于t 的不等式f (t ﹣1)+f (t )<0. 解:(1)因为函数f(x)=ax−b x 2−4是定义在(﹣2,2)上的奇函数,f(0)=0=−b−4,所以b =0; 又f(1)=−13,a12−4=−13,解得a =1,所以a =1,b =0,f(x)=xx 2−4, 又f(−x)=−xx 2−4=−f(x),故满足f (x )是奇函数. (2)证明:∀x 1,x 2∈(﹣2,2),且x 1<x 2,即﹣2<x 1<x 2<2,则f(x 1)−f(x 2)=x 1x 12−4−x 2x 22−4=x 1(x 22−4)−x 2(x 12−4)(x 12−4)(x 22−4)=(x 2−x 1)(x 2x 1+4)(x 1−2)(x 1+2)(x 2−2)(x 2+2), 因为x 2﹣x 1>0,x 2x 1+4>0,x 1﹣2<0,x 1+2>0,x 2﹣2<0,x 2+2>0, 故f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 所以函数y =f (x )在区间(﹣2,2)上单调递减.(3)函数y =f (x )在(﹣2,2)上单调递减,且为奇函数,由f (t ﹣1)+f (t )<0得f (t ﹣1)<﹣f (t )=f (﹣t ),所以{t −1>−t −2<t −1<2−2<t <2,解得12<t <2.所以不等式f (t ﹣1)+f (t )<0的解集为(12,2).21.(12分)某公司生产某种电子仪器的年固定成本为2000万元,当年产量为x 千件时,需另投入成本C(x )(万元).C(x)={12x 2+10x +1100,0<x <100,120x +4500x−90−5400,x ≥100每千件产品售价100万元,为了简化运算我们假设该公司生产的产品能全部售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?解:(1)当0<x <100时,L =100x −12x 2−10x −1100−2000=−12x 2+90x −3100;当x ≥100时,L =100x −(120x +4500x−90−5400)−2000=−20x −4500x−90+3400. 所以L ={−12x 2+90x −3100,0<x <100−20x −4500x−90+3400,x ≥100. (2)当0<x <100时,L =−12x 2+90x −3100=−12(x −90)2+950,当x =90时,L 取得最大值,且最大值为950,当x ≥100时,L =−20x −4500x−90+3400=−20(x −90+225x−90)+1600≤−20(2√225)+1600=1000, 当且仅当x =105时,等号成立.因为1000>950,所以当该企业年产量为105千件时,所获得利润最大,最大利润是1000万元.22.(12分)对于区间[a ,b ],a <b ,若函数y =f (x )同时满足:①f (x )在[a ,b ]上是单调函数;②函数y =f (x )在x ∈[a ,b ]的值域是[a ,b ],则称区间[a ,b ]为函数f (x )的“保值”区间.(1)求函数y =2x 2的所有“保值”区间;(2)函数y =x 2﹣2x +m (m ∈R )是否存在“保值”区间?若存在,求出m 的取值范围;若不存在,说明理由.解:(1)函数y =2x 2在R 上的值域是[0,+∞),且y =2x 2在[a ,b ]的值域是[a ,b ],所以[a ,b ]∈[0+∞),所以a ≥0,而函数y =2x 2在区间[a ,b ]上单调递增,故有{2a 2=a 2b 2=b ,又a <b ,所以{a =0b =12, 所以函数y =2x 2的“保值”区间为[0,12].(2)若函数y =x 2﹣2x +m (m ∈R )存在“保值”区间,①若a <b ≤1,此时函数y =x 2﹣2x +m (m ∈R )在区间[a ,b ]上单调递减,所以{a 2−2a +m =b b 2−2b +m =a ,消去m 得a 2﹣b 2=a ﹣b ,整理得(a ﹣b )(a +b ﹣1)=0. 因为a <b ,所以a +b ﹣1=0,即a =﹣b +1.又{b ≤1−b +1<b ,所以12<b ≤1. 因为m =−b 2+2b +a =−b 2+b +1=−(b −12)2+54,12<b ≤1,所以{m |1≤m <54}. ②若1≤a <b ,此时函数y =x 2﹣2x +m (m ∈R )在区间[a ,b ]上单调递增,所以{a 2−2a +m =a b 2−2b +m =b 消去m 得a 2﹣b 2=3(a ﹣b ),整理得(a ﹣b )(a +b ﹣3)=0,因为a <b ,所以a +b ﹣3=0,即b =﹣a +3,又{a ≥1−a +3>a,所以1≤a <32. 因为m =−a 2+3a =−(a −32)2+94,1≤a <32,所以2≤m <94综合①、②得,函数y =x 2﹣2x +m (m ∈R )存在“保值”区间, m 的取值范围是[1,54)∪[2,94).。
铁富高中2013-2014学年度第一学期高一数学期中考试考前模拟一时间:120分钟 总分:160分一、填空题(共14小题,每小题5分计70分.请把答案写在答题纸横线上.)1、设集合A ={1, 2, 3}, B ={2, 4, 5}, 则=⋃B A ______________2、函数1)1l g ()(++-=x x x f 的定义域是3、已知幂函数f(x)的图像过点(2,2,则f(4)= 4、已知f(x)是奇函数,当0x >时,1()f x x x =+,则(1)f -=_____________ 5、已知2(2)1f x x =-,则()f x =6、7log 4lg 25lg 47++=7、设220()log 0xx f x x x -⎧≤=⎨>⎩,则1(())4f f = 8、已知33442232(),(),log 323a b c ===,则,,a b c 从小到大的排列为 9、已知集合A=1{/2}2x x ≤,B=(),a -∞,若A B ⊆则实数a 的取值范围是(),c +∞,其中c =10、已知函数52)(2+-=ax x x f (1>a ),若)(x f 的定义域和值域均是[]a ,1,则实数a =11、关于x 的方程21x a -=有三个不等的实数解,则实数a 的值是12、学校举办了排球赛,某班45名同学中有12名同学参赛,后来又举办了田径赛,这个班有20名同学参赛。
已知两项都参赛的有6名同学。
两个比赛中,这个班没有参加过比赛的同学共有 人.13、设已知函数2()log f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则n m += .14、函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足))](()([2121x x x f x f --<0对定义域中的任意两个不相等的12,x x 都成立,则a 的取值范围是二、解答题(共90分)15、(14分) 设集合A ={x |03x m <-< },B ={x |230x x -≥}.分别求满足下列条件的实数m 的取值范围: (1)A B =∅ ; (2)B B A = .16、(14分)已知函数f (x )=121-x +a 是奇函数. (1)求常数a 的值; (2)判断f (x )的单调性并给出证明.17、(15分)二次函数的图像顶点为A(1,16),且图像在x 轴上截得的线段长8.(1)求这个二次函数的解析式; (2)在区间[-1,1]上,)(x f y =的图象恒在一次函数m x y +=2的图象上方,试确定实数m 的范围.18、(15分)某品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计律:每生产产品x(百台),其总成本为()xG(万元),其中固定成本为 2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本)。
销售收入()xR(万元)满足()() ()⎩⎨⎧>≤≤+-=51152.44.02xxxxxR,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数()xfy=的解析式(利润=销售收入—总成本);(2)要使工厂有盈利,求产量x的范围;(3)工厂生产多少台产品时,可使盈利最多?19、(16分)已知函数()f x,当,x y R∈时,恒有()()()f x y f x f y+=+.(1)求证: ()()0f x f x+-=;(2)若(3)f a-=试用a表示)9(f;(3)当0x>时,()0f x<且1(1)2f=-,试求()f x在区间[2,6]-上的最大值和最小值。
20. (16分) 定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0M >,都有|()|f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界. 已知函数()11124x xf x a ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭, (1)当1a =时,求函数()f x 在(),0-∞上的值域,并判断函数()f x 在(),0-∞上是否为有界函数,请说明理由;(2)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围;铁富高中2013-2014学年度第一学期高一数学期中考试考前模拟一一、填空题(每题5分,共70分)1.{1,2,3,4,5}2.[1,1)- 13.24.2-5. 2114x -6.67.48.c a b <<9.1- 10.2 11.1 12.19 13. 52 14、]41,0( 二、解答题(共90分)15.解:因为{|3}A x m x m =<<+, B ={x |30x ≥≤或x }……3分(1)当ϕ=B A 时;⎩⎨⎧≤+≥,330m m ………6分∴m =0 ………8分(2)当B B A = 时,则B A ⊆,……10分∴3≥m 或03≤+m ,……12分得3≥m 或3-≤m ………………14分16.(本题14分)已知函数f (x )=121-x +a 是奇函数. (1)求常数a 的值;12a =(2)判断f (x )的单调性并给出证明.(略)17、(本题15分)二次函数的图像顶点为A(1,16),且图像在x 轴上截得的线段长8.(1)求这个二次函数的解析式; 16)1()(2+--=x x f(2)在区间[-1,1]上,)(x f y =的图象恒在一次函数m x y +=2的图象上方,试确定实数m 的范围. 14<m18、解:(1)由题意得G (x)=2.8+x .………………………………………… 2分∴()f x =R (x )-G (x )=20.4 3.2 2.8(05)8.2(5)x x x x x ⎧-+-≤≤⎨->⎩.……………………………5分 (2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得:x 2-8x +7<0 ,解得1<x <7.所以:1< x ≤5. ……………………………………………………………………… 7分 ②当x >5时,由8.2 -x >0解得 x <8.2. 所以:5<x <8.2.…………………… 9分综上得当1<x <8.2时有y >0.答:当产量大于100台,小于820台时,能使工厂有盈利.………………………10分(3)当x >5时,∵函数()f x 递减,∴()f x <(5)f =3.2(万元).………………12分 当0≤x ≤5时,函数()f x = -0.4(x -4)2+3.6, 当x =4时,()f x 有最大值为3.6(万元). …………………………………………14分 所以当工厂生产4百台时,可使赢利最大为3.6万元.……………………………15分19.(本题满分16分)已知函数()f x ,当,x y R ∈时,恒有()()()f x y f x f y +=+.(1). 求证: ()()0f x f x +-= (2). 若(3)f a -=试用a 表示(9)f(3). 如果0x >时, ()0f x <且1(1)2f =-,试求()f x 在区间[2,6]-上的最大值和最小值证明:(1)令0,(0)2(0),x y f f ===即(0)0f = 令,y x =-()()(0)0f x f x f +-==…………………3分(2)令3,x y ==(6)2(3),f f =同理:(9)3(3)3(3)f f f a ==-=-…………………7分(3)任取12x x >令1x y x +=,2x x =,则120,y x x =->1212()()(),0,()0f x f x f x x x f x ∴-=-><12()()0f x f x ∴-<即()f x 在R 上单调递减………………12分且(2)1,(6)3,f f -==-∴()f x 在区间[2,6]-上的最大值为1和最小值为-3………………16分20. (本小题16分)定义在D 上的函数)(x f ,如果满足:对任意D x ∈,存在常数0M >,都有|()|f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知函数()11124x x f x a ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭, (1)当1a =时,求函数()f x 在(),0-∞上的值域,并判断函数()f x 在(),0-∞上是否为有界函数,请说明理由;(2)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围;解:(1)当1a =时,11()124x xf x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭1(),12x t t =>令,2213()1()24f t t t t =++=++ ()+f t ∞ 在(1,)上单调递增,()(1)f t f ∴>,即)(x f 在(),1-∞的值域为()3,+∞………5分故不存在常数0M >,使|()|f x M ≤成立所以函数()f x 在(),1-∞上不是有界函数。
……6分(2)由题意知,3)(≤x f 在[)1,+∞上恒成立。
………7分3)(3≤≤-x f , x x x a ⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛⋅≤⎪⎭⎫ ⎝⎛--41221414 ∴ x x x x a ⎪⎭⎫ ⎝⎛-⋅≤≤⎪⎭⎫ ⎝⎛-⋅-21222124在[)0,+∞上恒成立………9分 ∴ minmax 21222124⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅-x x x x a ………11分 设t x =2,t t t h 14)(--=,tt t p 12)(-=,由x ∈[)0,+∞得 t ≥1, 设121t t ≤<,()()2112121241()()0t t t t h t h t t t ---=> ()()012)()(21212121<+-=-t t t t t t t p t p 所以)(t h 在[)1,+∞上递减,)(t p 在[)1,+∞上递增,………14分(单调性不证,不扣分) )(t h 在[)1,+∞上的最大值为(1)5h =-, )(t p 在[)1,+∞上的最小值为(1)1p = 所以实数a 的取值范围为[]5,1-。