锐角三角函数《复习与小结》(湘教版)
- 格式:ppt
- 大小:1.26 MB
- 文档页数:49
第四章锐角三角函数教学目标【知识与技能】1.了解锐角三角函数的概念,熟记30°、45°、60°的正弦、余弦和正切的函数值.2.能够正确地使用计算器,由已知锐角的度数求出它的三角函数值,由已知三角函数值求出相应的锐角的度数.3.会用解直角三角形的有关知识解决简单的实际问题.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想.【情感态度】通过解直角三角形的学习,体会数学在解决实际问题中的作用.【教学重点】会用解直角三角形的有关知识解决简单的实际问题.【教学难点】会用解直角三角形的有关知识解决简单的实际问题.教学过程【布置作业】完成本课时对应练习,并提醒学生预习下一节的内容。
一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.正弦的概念:在直角三角形中,我们把锐角α的对边与斜边的比叫作角α的正弦.记作sinα,即:sinα=角α的对边/斜边.2.余弦的概念:在直角三角形中,我们把锐角α的邻边与斜边的比叫作角α的余弦.记作cosα.即cosα=角α的邻边/斜边.3.正切的概念:在直角三角形中,我们把锐角α的对边与邻边的比叫作角α的正切.记作tanα,即:tanα=角α的对边/角α的邻边4.特殊角的三角函数值:5.三角函数的概念:我们把锐角α的正弦、余弦、正切统称为角α的锐角三角函数.6.解直角三角形的概念:在直角三角形中,利用已知元素求其余未知元素的过程,叫作解直角三角形.7.仰角、俯角的概念:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫作仰角,在水平线下方的角叫作俯角.8.坡度的概念:坡面的铅垂高度与水平前进的距离的比叫作坡度(或坡比);记作i,坡度通常用l∶m 的形式;坡面与水平面的夹角叫作坡角,记作α.坡度越大,坡角越大,坡面就越陡.【教学说明】引导学生回忆本章所学的有关概念,知识点.加深学生的印象.三、运用新知,深化理解1.已知,如图,D是△ABC中BC边的中点,∠BAD=90°,tanB=2/3,求sin∠DAC.解:过D作DE∥AB交AC于E,则∠ADE=∠BAD=90°,由tanB=2/3,得ADAB=2/3,设AD=2k,AB=3k,∵D是△ABC中BC边的中点,∴DE=3/2k∴在Rt△ADE中,AE=5/2k,2.计算:tan230°+cos230°-sin245°tan45°3.如图所示,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sinA=3/5,则下列结论正确的个数为()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=2 10.A.1个B.2个C.3个D.4个分析:由菱形的周长为20 cm知菱形边长是5 cm.综上所述①②③正确.【答案】 C4.如图所示,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求此时轮船所在的B处与灯塔P的距离(结果保留根号).分析:由题意知,在△ABP中∠A=60°,∠B=45°,∠APB=75°联想到两个三角板拼成的三角形.因此很自然作PC⊥AB交AB于C.解:过点P作PC⊥AB,垂足为C,则∠APC=30°,∠BPC=45°,AP=80,∴当轮船位于灯塔P南偏东45°方向时,轮船与灯塔P的距离是40 6海里.【教学说明】通过上面的解题分析,再对整个学习过程进行总结,能够促进理解,提高认知水平,从而促进数学观点的形成和发展.四、复习训练,巩固提高1.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP 的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2 B.3 C.3 D.3分析:∵△ABC是等边三角形,点P是∠ABC的平分线上一点,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF·cos30°=233.∵FQ是BP的垂直平分线,∴3.在Rt△BEP中,∵∠EBP=30°,∴3.【答案】 C2.如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高3≈1.73)解:过D作DE⊥BC于E,作DF⊥AB于F,设AB=x,在Rt△DEC中,∠DCE=30°,CD=100,∴x=50(3+3)≈236.6.答:山AB的高度约为236.6米.3.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,3≈1.732).解:根据题意得:四边形DCEF、DCBG是矩形,∴GB=EF=CD=1.5米,DF=CE=8米.设AG=x米,GF=y米,∴这棵树AB的高度约为8.4米.五、师生互动,课堂小结师生共同总结,对于本章的知识.你掌握了多少?还存在哪些疑惑?同学之间可以相互交流.课后作业布置作业:教材“复习题4”中第1、3、6、8、12、14题.教学反思根据学生掌握的情况,对掌握不够好的知识点、题型多加练习、讲解.力争更多的学生学好本章内容.。
九上数学第4单元锐角三角函数小结与复习导学案(新湘教版)湘教版九年级上册数学导学案第四章小结与复习【学习目标】1.掌握锐角三角函数(正弦.余弦.正切)的概念.掌握30°.45°.60°角的三角函数值.会使用计算器求锐角三角函数值,及求三角函数值对应的角度(锐角)..2.会利用锐角三角函数解决实际问题.3.梳理知识,融汇贯通.重点:梳理知识,融汇贯通.难点:灵活运用锐角三角函数解决实际问题.【预习导学】学生通过自主预习、回顾教材第四章内容完成下列问题。
1.在直角三角形中,锐角的正弦、余弦、正切分别是哪两条边的比?2.200,450,600角的正弦值、余弦值、正切值分别是多少?3.在直角三角形中,已知几个元素就可以解直角三角形?4.锐角三角函数在生活中有着广泛的应用,试结合实例谈谈如何将实际问题转化为解直角三角形的问题。
【探究展示】1.在Rt△ABC中,∠C=90°,a.b.c.∠A.∠B这五个元素间有哪些等量关系呢?(1)边角之间关系:sinA=cosA=tanA=(2)三边之间关系:(勾股定理)(3)锐角之间关系:∠A+∠B=.2.特殊角度的三角函数值0<sinA<1,0<cosA<13.我们可以利用计算器计算任意一个锐角的三角函数值,反过来,已知一个三角函数值,我们也可以利用计算器求出相应的锐角的大小. 1.在Rt∆ABC中,∠C=900,AB=12cm,BC=10cm,分别求∠A.∠B的正弦.余弦和正切值.2.求下列各式的值(1);(2);(3);(4)3.在Rt∆ABC中,∠C=900,∠A=300,c=12cm,求∠B,a,b.4.如图示,△ABC中,∠A=30°,AB=8,AC=6,求△ABC的面积S及A到BC边的距离d.此题由小组合作完成,然后小组派代表上台展示.要求面积,先作高.过点B作BD⊥AC于D点.在Rt∆ABD中,根据锐角三角函数可以求得BD=,AD=△ABC的面积S=CD=AC-AD=在Rt∆BCD中,根据勾股定理可求得BC=由△ABC的面积S=,可得d=5.在锐角∆ABC中,∠A,∠B,∠C的对边分别为a,b,c(1)∆ABC的面积S与∠A,b,c之间有什么关系?解:过点C作∆ABC的高CD.在Rt∆ACD中,sinA=,得出CD=所以,S=(2)求证:【学后反思】通过本节课的学习,1.你学到了什么?2.你还有什么样的困惑?3.你对自己本节课的表现满意的地方在哪儿?哪些地方还需改进?。
湘教版数学九年级上册第三章《锐角三角函数》复习说课稿一. 教材分析湘教版数学九年级上册第三章《锐角三角函数》复习说课稿,主要涵盖了锐角三角函数的定义、性质以及应用。
本章内容是初中的重要知识点,也是高考的考点之一。
通过本章的学习,使学生掌握锐角三角函数的定义、性质,能够运用锐角三角函数解决实际问题,为高中阶段的学习打下基础。
二. 学情分析九年级的学生已经学习了锐角三角函数的基本知识,对本章内容有一定的了解。
但学生在理解和运用锐角三角函数解决实际问题方面还存在一定的困难。
因此,在教学过程中,要注重引导学生理解和运用锐角三角函数,提高学生的解题能力。
三. 说教学目标1.知识与技能:掌握锐角三角函数的定义、性质,能够运用锐角三角函数解决实际问题。
2.过程与方法:通过自主学习、合作探究的方式,提高学生分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习锐角三角函数的兴趣,培养学生的自信心,使学生体验到数学的价值。
四. 说教学重难点1.教学重点:锐角三角函数的定义、性质。
2.教学难点:运用锐角三角函数解决实际问题。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探究、讲解演示、练习巩固的方法进行教学。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助教学。
六. 说教学过程1.引入新课:通过复习锐角三角函数的定义、性质,引导学生进入学习状态。
2.自主学习:让学生自主探究锐角三角函数的运用,引导学生发现问题、解决问题。
3.合作探究:学生分组讨论,共同解决问题,提高学生的合作能力。
4.讲解演示:教师对学生的解题方法进行讲解,引导学生正确理解锐角三角函数的运用。
5.练习巩固:布置课后练习题,让学生巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出重点。
可以采用流程图、图示、等形式,展示锐角三角函数的定义、性质及运用。
八. 说教学评价教学评价可以从以下几个方面进行:1.学生对锐角三角函数的定义、性质的掌握程度。
《锐角三角函数复习》学案考标要求:1、了解锐角三角函数(正弦、余弦、正切)的概念和性质。
2、熟记特殊角(30°45°60°)的三角函数值。
3、掌握使用计算器求已知锐角三角函数的值,由已知三角函数值求对应的锐角。
4、掌握锐角三角函数的简单应用——解直角三角形。
重点、难点:1、重点:锐角三角函数的概念和性质的熟练应用。
2、难点:综合运用锐角三角函数的知识解决有关问题。
一、基础知识的复习:(一)锐角三角函数1、三角函数的定义:如图:在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别是a,b,c (1)正弦sinA=()()(2)余弦:cosA=()()(3)正切:tanA=()()2、特殊角(30°、45°、60°)的三角函数值:由上表可知:(1)当0°<α<90°时,锐角三角函数的增减性:sin α、tan α的值随角度的增大而 ,cos α的值随角度的增大而 。
(2)任意锐角的正弦、余弦的取值范围:BCab<sin α< , <cos α< . 3、互为余角的三角函数间的关系若∠A+∠B=90°,则sinA= cosA= tanA · =1 4、同角三角函数间关系(1)平方关系:sin 2 α+ =1 (2)商的关系:tan α= (二)解直角三角形1.直角三角形中边、角间的关系(1)三边关系: (2)两锐角之间的关系: (3)边角之间的关系: 2.相关概念:方位角、坡度(坡比)i= tan α、坡角、仰角、俯角等 仰角、俯角:如图①,在测量时,视线与水平线所成的角中,视线在水平线上方的角叫 ,在水平线下方的角叫 .坡度:坡面的垂直高度h 与水平宽度l 之比叫做坡度(或叫做坡比),记作i= =tan α方位角:指南或指北的方向线与目标方向线所成的小于90°的水平角,叫做方位角.如图③,表示北偏东60°方向的一个角.二、考题解析1、在Rt △ABC 中,∠C=90°,sinA= 则cosA= _____ tanA=_____ 2. 若tan(β+20°)= β为锐角 ,则β=_______3.计算4. 一渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时到B 处.在B 处看见灯塔M 在北偏东15°方向,求此时灯塔M 与渔船的距离 ?60tan 45cos 30sin )1(2⋅-22)145(sin 230tan 3121)2(-+-- 331三、巩固训练: 1、填空题(1)、在Rt △ABC 中,∠C=90°,3a=3b ,则tanA=(2)、在△ABC 中,∠A 、∠B 为锐角,sinA=12,cosB=则△ABC 的形状是 。
锐角三角函数(2015新湘教版中考总复习)一、复习目标:1、理解锐角三角函数的定义,掌握特殊锐角的三角函数值,并会进行计算;2、掌握直角三角形边角之间的关系,会解直角三角形;3、利用解直角三角形的知识解决简单的实际问题。
二、 复习重点与难点:(一)复习重点:1、掌握特殊锐角的三角函数值,并会进行计算;2、掌握直角三角形边角之间的关系,会解直角三角形;3、利用解直角三角形的知识解决简单的实际问题。
(二)复习难点:利用解直角三角形的知识解决简单的实际问题,是中考必考内容。
三、复习过程:(一)知识梳理:1、直角三角形的边角关系(如图)(1)边的关系(勾股定理):a 2+b 2=c 2;(2)角的关系:∠A+∠B=∠C=900;(3)边角关系: ①:00901230C BC AB A ⎫∠=⎪⇒=⎬∠=⎪⎭②:锐角三角函数:∠A 的正弦=A a sin A=c∠的对边,即斜边; ∠A 的余弦=A b cos A=c∠的邻边,即斜边 , ∠A 的正切=A a tan=A b∠的对边,即∠的邻边 注:三角函数值是一个比值.2、特殊角的三角函数值:3、三角函数的关系:(1) 互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A(2) 同角的三角函数关系.①平方关系:sin 2 A+cos 2A=l②商数关系:AA A cos sin tan; 4、三角函数的大小比较:(1) 同名三角函数的大小比较:①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(2) 异名三角函数的大小比较:①tanA >SinA ,由定义,知tanA=a b ,sinA=a c ;因为b <c ,所以tanA >sinA②若0○ <A <45○,则cosA >sinA ;若45○<A <90○,则cosA <sinA ,5、解直角三角形解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.6、解直角三角形的应用:(1)仰角、俯角:测量时,在视线与水平线所成的角中,规定:视线在水平线上方的叫做仰角.视线在水平线下方的叫做俯角.(2)坡度(坡比)、坡角:在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
课题:《锐角三角函数》小结与复习教学目标:1、全面,系统地掌握锐角三角函数的知识。
2、使学生巩固新知识并在平时所学知识的基础上有所提高。
3、培养学生归纳总结的能力。
教学难点:知识的记忆和应用方法。
教学重点:知识的归类整理。
教学过程:一、知识结构(出示ppt 课件)阅读教科书p134。
搞清楚知识结构,系统掌握本章的主要内容,提醒学生在学习锐角三角函数时,值得注意的问题。
二、知识要点(出示ppt 课件)(一)锐角三角函数1. 在直角三角形中,锐角的正弦、余弦、正切定义。
在Rt △ABC 中,一个锐角为α,则 sinα= ,cosα= ,tanα= 。
锐角的正弦、余弦、正切统称为锐角三角函数.应该注意的几个问题:(1)sinA 、cosA 、tanA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
(2)sinA 、 cosA 、tanA 是一个比值(数值)。
(3)sinA 、 cosA 、tanA 的大小与∠A 的大小有关,与直角三角形的边长无关。
2. 熟记特殊角( 30°,45°,60°)的三角函数值.(填表),3、自变量锐角α与函数的变化关系:锐角α 的正弦、正切值随α 的增大而增大。
余弦值随α 的增大而减小。
0°<α< 90°,0<sinα<1;0<cosα<1;0<tanα< 1;tanα=1或tanα>1;4、互为余角的正弦、余弦的关系.cos α=sin (90°-α);sin α=cos (90°-α)5、 同一个锐角的正弦、余弦和正切的关系.平方关系:sin 2α+cos 2α=1;商的关系:tan α=sin cos αα;倒数关系:tan A∙ tan B =1 6、 用计算器求锐角的三角函数值.已知三角函数值,用计算器求相应的锐角.(二)解直角三角形及其应用1. 在直角三角形中,除直角外的5个元素,只要知道其中的2个元素(至少有一个是边),就可以求出其余的3个未知元素,这叫作解直角三角形.2、解直角三角形依据: (1) 三边之间的关系:勾股定理:a 2+b 2=c 2(2) 锐角之间的关系:两锐角互余。