苏教版:锐角三角函数 经典基础题型归类复习
- 格式:doc
- 大小:245.92 KB
- 文档页数:3
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的Ca b记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.要点二、特殊角的三角函数值(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【课程名称:锐角三角函数395948:例1(1)-(2)】【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=,cosA=,sinB=,cosB=.a【答案】c = 5 ,sinA = 35 , cosA =45,sinB =45, cosB =35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟) sin60°﹣4cos 230°+sin45°•tan60°;(3)(2015•宝山区一模) +tan60°﹣.【答案与解析】 解:(1)原式==12(2) 原式=×﹣4×()2+×=﹣3+3;(3) 原式=+﹣=2+﹣=3﹣2+2【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【课程名称: 锐角三角函数 395948 :例1(3)-(4)】 【变式】在Rt ΔABC 中,∠C =90°,若∠A=45°,则∠B = ,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=,cosA=,sinB=cosB=.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC,∵ AB是⊙O的直径,∴∠ACP=90°,又∵∠B=∠D,∠PAB=∠PCD,∴△PCD∽△PAB,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a ,∴ 4AC a ==,∴ CD =5a-4a =a ,BD ==,∴ sadA BD AD == 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。
锐角三角函数知识要点回顾及考题复习一、知识框图二、知识要点 1.锐角三角函数 (1)正弦,sin ca A A =∠=斜边的对边 (2)余弦,cos cb A A =∠=斜边的邻边 (3)正切,tan ba A A A =∠∠=的邻边的对边2. 特殊角的三角函数值3锐角三角函数的范围及增减性A 为锐角:0<sinA <1;0<cosA <1;tanA >0,锐角A 的正弦、正切值随角度的增大(或减小)而增大(或减小);锐角A 的余弦值随角度的增大(或减小)而减小(或增大).若∠A 、B 为锐角,且A >B ,则sinA >sinB ,cosA <cosB ,tanA >tanB.4解直角三角形(1)直角三角形中的边角关系: ①三边关系:222c b a =+; ②两锐角关系:∠A +∠B =90°; ③边、角间的关系:sinA =cosB =ca ;.cos sin tan ;sin cos ba AA cb B A ====(2)解直角三角形的方法:可概括为:“有斜(斜边)用弦(正、余弦),无斜用切(正切),宁乘毋除,取原避中.” (3)实际问题中有关名词、术语的意义:①仰角与俯角:在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.如图1.②坡角与坡度:坡面与水平面的夹角叫做坡角,图2中的α是坡角;坡面的垂直高度h 和水平距离l l 的比叫做坡度.即坡度αtan ==lh i考点一、锐角三角函数的概念例1在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( )A .215 B .25 C .212 D .52例2P 是∠α的边O A 上一点,且点P 的坐标为(3,4), 则sin α= ( ) A . 35 B . 45 C .34D .43例3如图3,在R t ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .考点二、特殊角的三角函数值的计算例4如果a ∠是等腰直角三角形的一个锐角,则tan α的值是( ) A.12B.2C.1例5计算45tan 30cos 60sin -的值是 。
锐角三角函数一、知识要点:锐角三角函数的定义,特殊角的三角函数值,锐角三角函数的应用。
二、例题选讲:1、一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为________.2、如图所示,△ABC 中,∠ACB=90°,CD⊥AB 于点D ,若BD :AD=1:4,则tan∠BCD 的值是3、如图所示,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P•是AB•延长线上一点,•BP=2cm ,则tan∠OPA 等于4、如图,在ABC 中,AD 是边BC 上的高,E 为边AC 的中点,BC =14,AD=12, SinB=45.求:(1)线段DC 的长; (2)t an ∠EDC 的值。
5、已知,如图△ABC 中,∠ C=90°,A D 平分∠BAC,CD= 3 ,BD=2 3 ,求平分线AD 的长,AB ,AC 的长,△ABC 的外接圆的面积,内切圆的面积。
6.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号)。
EDCBA开放式训练:1、在Rt△ABC 中,∠C=90°,下列各式中一定正确的是( ) (A)sinA =sinB (B)sinA =cosB (C)tanA =tanB (D) )cosA =cosB2、如图,菱形ABCD 中,点E 、F 在对角线BD 上,BE =DF =14BD ,若四边形AECF 为正方形,则tan∠ABE =_________. 3、在Rt△ABC 中,∠C=90°,cosB=23 ,则a:b:c= .4、若 3 tan 2α-4tan α+ 3 =0,则α= 5、已知sina=1213 , a 为锐角,则cosa = ,tana = ,6、等腰三角形的腰长为2cm ,面积为1 cm 2,则顶角的度数为 7、已知正六边形的面积为3 3 cm 2,则它的外接圆半径为 8、在Rt△ABC 中,∠C=900,∠A、∠B 的对边分别是a 、b ,且满足022=--b ab a ,则tanA 等于 。
锐角三角函数复习题1. 锐角三角函数的概念- 锐角三角函数包括正弦(sin)、余弦(cos)和正切(tan)。
- 锐角三角函数是直角三角形中锐角的三角比。
2. 锐角三角函数的定义- 正弦函数定义为直角三角形中,锐角的对边与斜边的比值。
- 余弦函数定义为直角三角形中,锐角的邻边与斜边的比值。
- 正切函数定义为直角三角形中,锐角的对边与邻边的比值。
3. 特殊角的三角函数值- 30°角的正弦值为1/2,余弦值为√3/2,正切值为√3/3。
- 45°角的正弦值和余弦值均为√2/2,正切值为1。
- 60°角的正弦值为√3/2,余弦值为1/2,正切值为√3。
4. 锐角三角函数的增减性- 正弦函数在第一象限内随着角度的增大而增大。
- 余弦函数在第一象限内随着角度的增大而减小。
- 正切函数在第一象限内随着角度的增大而增大。
5. 锐角三角函数的周期性- 正弦函数和余弦函数的周期为360°。
- 正切函数的周期为180°。
6. 锐角三角函数的互余关系- 两个互余角的正弦值互为倒数。
- 两个互余角的余弦值互为倒数。
- 两个互余角的正切值互为相反数。
7. 锐角三角函数的和差公式- sin(A + B) = sinAcosB + cosAsinB- sin(A - B) = sinAcosB - cosAsinB- cos(A + B) = cosAcosB - sinAsinB- cos(A - B) = cosAcosB + sinAsinB- tan(A + B) = (tanA + tanB) / (1 - tanAtanB)- tan(A - B) = (tanA - tanB) / (1 + tanAtanB)8. 锐角三角函数的倍角公式- sin2A = 2sinAcosA- cos2A = cos² A - sin² A = 2cos² A - 1 = 1 - 2sin² A- tan2A = (2tanA) / (1 - tan²A)9. 锐角三角函数的应用- 在解决实际问题中,如测量、建筑、航海等领域,锐角三角函数有着广泛的应用。
锐角三角函数综合复习—知识结构讲解及例题解析【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.BCabc锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小),②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、锐角三角函数的概念与性质1.如图,在4×4的正方形网格中,tanα=( )(A)1 (B)2 (C) 12(D)52【思路点拨】把∠α放在一个直角三角形中,根据网格的长度计算出∠α的对边和邻边的长度.【答案】B;【解析】根据网格的特点:设每一小正方形的边长为1,可以确定∠α的对边为2,邻边为1,然后利用正切的定义tan∠αα=∠α的对边的邻边,故选B.【总结升华】本题考查锐角三角函数的定义及运用,可将其转化到直角三角形中解答,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.举一反三:【变式】在Rt △ABC 中,∠C=90°,若AC=2BC ,则sinA 的值是( ) (A) 12 (B)2 (C) 55 (D) 52 【答案】选C.因为∠C=90°,522AB=AC+BC =BC ,所以BC BC 5sin A AB 55BC ===.类型二、特殊角的三角函数值2.已知a =3,且21(4tan 45)302b bc -++-=°,以a 、b 、c 为边长组成的三角形面积等于( ). A .6 B .7 C .8 D .9【思路点拨】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩°求出b 、c 的值,再求三角形面积. 【答案】A ;【解析】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩° 解得 4,5.b c =⎧⎨=⎩ 所以a =3,b =4,c =5,即222a b c +=,其构成的三角形为直角三角形,且∠C =90°,所以162S ab ==. 【总结升华】利用非负数之和等于0的性质,求出b 、c 的值,再利用勾股定理的逆定理判断三角形是直角三角形,注意tan45°的值不要记错.举一反三:【变式】 计算:.【答案】原式.3.如图所示,在△ABC 中,∠BAC =120°,AB =10,AC =5,求sinB ·sinC 的值.【思路点拨】为求sin B ,sin C ,需将∠B ,∠C 分别置于直角三角形之中,另外已知∠A 的邻补角是60°,若要使其充分发挥作用,也需要将其置于直角三角形中,所以应分别过点B 、C 向CA 、BA 的延长线作垂线,即可顺利求解.【答案与解析】解:过点B 作BD ⊥CA 的延长线于点D ,过点C 作CE ⊥BA 的延长线于点E .∵∠BAC =120°,∴∠BAD =60°.∴AD =AB ·cos60°=10×12=5; BD =AB ·sin60°=10×32=53. 又∵CD =CA+AD =10, ∴2257BC BD CD =+=,∴21sin 7BD BCD BC ∠==. 同理,可求得21sin ABC ∠=. ∴21213sin sin 71414ABC BCD ∠∠=⨯=g . 【总结升华】由于锐角的三角函数是在直角三角形中定义的,因此若要求某个角的三角函数值,一般可以通过作垂线等方法将其置于直角三角形中.举一反三:【变式】如图,机器人从A 点,沿着西南方向,行了个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为__________.(结果保留根号).【答案】类型三、解直角三角形及应用4.在△ABC中,∠A=30°,BC=3,AB=33,求∠BCA的度数和AC的长.【思路点拨】由于∠A是一个特殊角,且已知AB,故可以作AC边上的高BD(如图所示),可求得33BD=.由于此题的条件是“两边一对角”,且已知角的对边小于邻边,因此需要判断此题的解是否唯一,要考虑对边BC与AC边上的高BD的大小,而33332BC<<,所以此题有两解.【答案与解析】解:作BD⊥AC于D.(1)C1点在AD的延长线上.在△ABC1中,13BC=,332 BD=,∴13sin2C=.∴∠C1=60°.由勾股定理,可分别求得13 2DC=,92 AD=.∴AC1=AD+DC1=936 22+=.(2)C2点在AD上.由对称性可得,∠BC2D=∠C1=60°,213 2C D C D==.∴∠BC2A=120°,2933 22AC=-=.综上所述,当∠BCA=60°时,AC=6;当∠BCA=120°时,AC=3.【总结升华】由条件“两边一对角”确定的三角形可能不是唯一的,需要考虑第三边上的高的大小判断解是否唯一.5.如图,一条输电线路从A地到B地需要经过C地,图中AC=20千米,∠CAB=30°,∠CBA=45°,因线路整改需要,将从A地到B地之间铺设一条笔直的输电线路.(1)求新铺设的输电线路AB的长度;(结果保留根号)(2)问整改后从A地到B地的输电线路比原来缩短了多少千米?(结果保留根号)【思路点拨】(1)过C作CD⊥AB,交AB于点D,在直角三角形ACD中,利用锐角三角函数定义求出CD与AD的长,在直角三角形BCD中,利用锐角三角函数定义求出BD的长,由AD+DB求出AB的长即可;(2)在直角三角形BCD中,利用勾股定理求出BC的长,由AC+CB﹣AB即可求出输电线路比原来缩短的千米数.【答案与解析】解:(1)过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=20×=10(千米),AD=AC•cos∠CAD=20×=10(千米),在Rt△BCD中,BD===10(千米),∴AB=AD+DB=10+10=10(+1)(千米),则新铺设的输电线路AB的长度10(+1)(千米);(2)在Rt△BCD中,根据勾股定理得:BC==10(千米),∴AC+CB﹣AB=20+10﹣(10+10)=10(1+﹣)(千米),则整改后从A地到B地的输电线路比原来缩短了10(1+﹣)千米.【总结升华】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.已知斜三角形中的SSS,SAS,ASA,AAS以及SSA条件,求三角形中的其他元素是常见问题,注意划归为常见的两个基本图形(高在三角形内或高在三角形外)(如图所示):举一反三:【变式】坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖砌八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高.下图为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶(M)的仰角α=35°,在点A 和塔之间选择一点B ,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A ,B 两点间的距离为18.6m ,量出自身的高度为1.6m .请你利用上述数据帮助小华计算出塔的高度(tan35°≈0.7,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为am(如图所示),你能否利用这一数据设计一个测量方案?如果能,请回答下列问题:①在你设计的测量方案中,选用的测量工具是:________________________;②要计算出塔的高,你还需要测量哪些数据?________________________________________________________.【答案】解:(1)设CD 的延长线交MN 于E 点,MN 长为x m ,则ME =(x-1.6)m .∵β=45°,∴DE =ME =x-1.6.∴CE =x-1.6+18.6=x+17.∵tan tan 35ME CEα==°, ∴ 1.60.717x x -=+,解得x =45. ∴太子灵踪塔MN 的高度为45m .(2)①测角仪、皮尺;②站在P点看塔顶的仰角、自身的高度(注:答案不唯一).6.如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:≈1.414,结果精确到0.1)【思路点拨】过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中求出BD=AB=20,在R t△BDP中求出PB即可.【答案与解析】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40,∠P=75°﹣30°=45°,在Rt△ABD中,∵AB=40,∠A=30,∴BD=AB=20,在R t△BDP中,∵∠P=45°,∴PB=BD=20≈28.3(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【总结升华】此题主要考查解直角三角形的有关知识.通过数学建模把实际问题转化为解直角三角形问题.。
学习必备精品知识点第七章:锐角三角函数知识点总结一、锐角三角函数的意义:(1)一个锐角的正弦、余弦、正切就叫做这个角的三角函数。
①锐角 A 的对边与邻边的比叫做∠ A 的正切,记作tanA。
(即直角三角形中两条直角边的比)②锐角 A 的对边与斜边的比叫做∠ A 的正弦,记作 sinA。
(即直角三角形中锐角 A 所对的直角边与斜边的比)③锐角 A 的邻边与斜边的比叫做∠ A 的余弦,记作 cosA。
(即直角三角形中锐角 A 相邻的直角边与斜边的比)(2)如图,在△ ABC中 ,∠c=900tanA A的对边A的邻边sinAA的对边斜边cosAA的邻边斜边0<sin A <1,0<cos A < 1二、锐角三角函数之间的关系:(1)等角(锐角)的三角函数之间的关系:如果几个锐角相等,则其三角函数值对应相等;反之,如果几个锐角的三角函数值对应相等,则这几个锐角相等。
即锐角的三角函数值只与角的度数有关;若度数相等,则其三角函数值则对应相等。
(2)同一个锐角的三角函数之间的关系①sin2A+cos2 A=1(即同一个锐角的正弦值和余弦值的平方和为1。
)sinA②tanAcosA(即同一个锐角的正切值=这个角的正弦值与该角余弦值的商。
)(3)互余两锐角之间的三角函数之间的关系①若∠ A与∠ B互为余角,则sin A= cos(90 - A ) = cosB②若∠ A与∠ B互为余角,则tan A×tan ( 90 - A )=1即tanA×tanB= 1即:若∠ A 与∠ B 互为余角,则①∠ A 的正弦值 =∠B 的余弦值;∠ A 的余弦值 =∠B 的正弦值。
②∠ A 的正切值与∠ B 的正切值互为倒数。
三、锐角三角函数值的变化规律(或增减性)①当角度在 0---90 之间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小)。
②当角度在 0---90 之间变化时,余弦值随着角度的增大(或减小)而减小(或增大)。
《锐角三角函数》全章复习【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cos A、tanA表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角;2.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;3.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.【知识网络】【要点梳理】一、锐角三角函数1.正弦、余弦、正切的定义如右图、在Rt△ABC中,∠C=900,如果锐角A确定:(1)sinA=,这个比叫做∠A的正弦.(2)cosA=,这个比叫做∠A的余弦.(3)tanA=,这个比叫做∠A的正切.要点诠释:(1)正弦、余弦、正切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA、cosA、tanA是一个整体符号,即表示∠A三个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin·A,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin∠BAC,而不能写出sinBAC.(3)sin2A表示(sinA)2,而不能写成sinA2.(4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.要点诠释:1. 函数值的取值范围对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是∠A的函数.同样,cosA、tanA也是∠A的函数,其中∠A是自变量,sinA、cosA、tanA分别是对应的函数.其中自变量∠A的取值范围是0°<∠A<90°,函数值的取值范围是0<sinA<1,0<cosA<1,tanA>0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式”若∠A+∠B=90°,那么:sinA=cosB; cosA=sinB;同角三角函数关系:sin2A+cos2A=1;tanA=3.30二、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.角角关系:两锐角互余,即∠A+∠B=90°;边边关系:勾股定理,即;边角关系:锐角三角函数,即三、解直角三角形的应用1.解这类问题的一般过程(1)弄清仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见应用问题(1)坡度:;坡角:.(2)方位角:(3)仰角与俯角:注:1求∠【典型例题】类型一、锐角三角函数1.(1)如图所示,P是角α的边上一点,且点P的坐标为(-3,4),则sinα=( ). A.35B.45C.45D.2例1(1)图例1(2)图(2)在正方形网格中,∠AOB如图所示放置,则cos∠AOB的值为( ).A.5512D.2【答案】(1)C; (2)A;【解析】(1)由图象知OA=3,PA=4,在Rt△PAO中5 OP==.∴4sin5PAOPα==.所以选C.(2)由格点三角形知如图中存在一个格点三有形Rt△OCD,且OC=1,CD=2,则OD=因此cosOCAOBOD∠===.所以选A.2.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的2倍,则∠A的正弦值是( ). A.扩大2倍 B.缩小2倍 C.扩大4倍 D.不变【答案】 D;【解析】根据Asin A∠∠=的对边斜边知sin∠A的值与∠A的大小有关,与A∠的对边斜边的比值有关.当各边长度都扩大为原来的2倍时,其A∠的对边斜边的比值不变.故选D.举一反三:1、已知,如图,D是ABC∆中BC边的中点,90BAD∠=︒,2tan3B=,求sin DAC∠.B C2、已知,如图,ABC∆中,CE AB⊥,BD AC⊥,25DEBC=,求cos A及tan A.B3、如图所示,已知△ABC 是⊙O 的内接三角形,AB =c ,AC =b ,BC =a ,请你证明sin sin sin a b cA B C==.【答案】1、过D 作DE ∥AB 交AC 于E ,则∠ADE=∠BAD=90°,由2tan 3B =,得2,3AD AB = 设AD=2k,AB =3k,∵D 是ABC ∆中BC 边的中点,∴DE =3,2k 在Rt △ADE 中,5,2AE k =332sin .552kDE DAC AE k ∠===2、易证点B 、C 、D 、E 四点共圆,△ADE ∽△ABC ,cos A=2,5AD DE AB BC == tanA=2BD AD =3、 证明:⊙O 是△ABC 的外接圆,设圆的半径为R ,连结AO 并延长交⊙O 于点D ,连结CD ,则∠B =∠D .∵AD 是⊙O 的直径,∴∠ACD =90°.即△ADC 为直角三角形.∴sin sin 2AC bB D AD R===,∴2sin b R B =. 同理可证:2sin a R A =,2sin cR C=.∴2sin sin sin a b cR A B C===.类型二、 特殊角三角函数值的计算3.先化简,再求代数式231122x x x -⎛⎫-÷⎪++⎝⎭的值,其中4sin 452cos 60x =-°°. 【答案】原式1212(1)(1)1x x x x x x -+=⨯=+-++.而14sin 452cos604212x =-=-⨯=°°. ∴=.4.已知a =3,且2(4t an45)b -+°,则以a 、b 、c 为边长的三角形面积等于( ).A .6B .7C .8D .9【答案】A ;【解析】根据题意知4tan 450,130,2b bc -=⎧⎪⎨+-=⎪⎩° 解得 4,5.b c =⎧⎨=⎩ 所以a =3,b =4,c =5,即222a b c +=,其构成的三角形为直角三角形,且∠C =90°, 所以162S ab ==. 举一反三:计算:1、tan 230°+cos 230°-sin 245°tan45° 2、 tan 60tan 45tan 60tan 45︒-︒︒︒+2sin 60°【答案】1、原式=2221-⨯=131+342-=7122、原式22+⨯=33类型三、 解直角三角形5.如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,3sin 5A =,则下列结论正确的个( ).①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD=.A .1个B .2个C .3个D .4个 【答案】C ;【解析】由菱形的周长为20 cm 知菱形边长是5 cm .在Rt △ADE 中,∵ AD =5 cm ,sin A =35,∴ DE =AD ·sinA =3535⨯=(cm). ∴4AE =(cm).∴ BE =AB -AE =5-4=1(cm). 菱形的面积为AB ·DE =5×3=15(cm 2). 在Rt △DEB中,BD ==.综上所述①②③正确.故选C .举一反三:如图所示,在等腰Rt △ABC 中,∠C =90°,AC =6,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为( ).A .2 B.1【答案】 A ;【解析】 作DE ⊥AB 于点E .因为△ABC 为等腰直角三角形,所以∠A =45°,所以AE =DE .又设DE =x ,则AE =x ,由1tan 5DE DBA EB ∠==. 知BE =5x ,所以AB =6x ,由勾股定理知AC 2+BC 2=AB 2,所以62+62=(6x)2,x =AD 2=.类型四 、锐角三角函数与相关知识的综合6.如图所示,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点, 且∠AED =45°.(1)试判断CD 与⊙O 的关系,并说明理由. (2)若⊙O 的半径为3 cm ,,AE =5 cm .求∠ADE 的正弦值. 【答案】(1)CD 与⊙O 相切.理由:如图所示,连接OD ,则∠AOD =2∠AED =2×45°=90°.∵ 四边形ABCD 是平行四边形,∴ AB ∥DC , ∴ ∠CDO =∠AOD =90°, ∴ OD ⊥CD ,∴CD 与⊙O 相切.(2)如图所示,连接BE ,则∠ADE =∠ABE . ∵AB 是⊙O 的直径,∴∠AEB =90°,AB =2×3=6(cm).在Rt △ABE 中,5sin 6AE ABE AB ∠==.∴sin ∠ADE =sin ∠ABE 56AE AB ==.7.如图所示,直角△ABC 中,∠C =90°,AB =sin B P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连接AP , (1)求AC ,BC 的长;(2)设PC 的长为x ,△ADP 的面积为y ,当x 为何值时,y 最大,并求出最大值.【答案】(1)在Rt △ABC 中,由sin B =,∴AC =2,由勾股定理得BC =4.(2)∵PD ∥AB ,∴△ABC ∽△DPC ,∴12DC AC PC BC ==. ∵PC =x ,则2211112(2)12244y x x x x x ⎛⎫=-⨯=-+=--+ ⎪⎝⎭, ∴当x =2时,y 有最大值,最大值是1.举一反三:1、如图,C 、D 是半圆O 上两点,511CD AB =,求cos CEB ∠和tan CEB ∠.【答案】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA , ∴CE CD 5==EB AB 11,cos ∠CEB=5.11CE =EB tan ∠CEB=BC CE类型五、三角函数与实际问题8.如图所示,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,求此时轮船所在的B 处与灯塔P 的距离(结果保留根号).【答案】过点P 作PC ⊥AB 垂足为C ,则∠APC =30°,∠BPC =45°,AP =80, 在Rt △APC 中,cos PC APC PA ∠=.∴PC =PA ·cos ∠APC=在Rt △PCB 中,cos PC BPC PB ∠=,∴cos PC PB BPC ===∠∴当轮船位于灯塔P 南偏东45°方向时,轮船与灯塔P 的距离是海里.9.为倡导“低碳生活”,常选择以自行车作为代步工具,如图所示是一辆自行车的实物图,车架档AC 与CD 的长分别为45cm ,60cm ,且它们相互垂直,座杆CE 的长为20cm ,点A 、C 、E 在同一条直线上,且∠CAB =75°,如图所示.(1)求车架档AD 的长;(2)求车座点E 到车架档AB 的距离.(结果精确到1cm ,参考数据:sin75°≈0.959,cos75°≈0.2588,tan75°≈3.7321) 【答案】(1)在Rt △ACD 中,75AD == ∴车架档AD 的长为75cm .(2)过点E 作EF ⊥AB 于F ,∴sin ∠EAF =EFAE ,∴ EF =AE ·sin ∠EAF =(45+20)·sin75°≈63cm , ∴ 车座点E 到车档架AB 的距离是63cm .【点评】考查解直角三角形的应用,勾股定理,锐角三角函数定义.巩固练习(一)一、选择题1.如图1,已知点P的坐标是(a,b),则sinα等于()A.abB.baCD2.如图2,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A.34B.43C.35D.453.在Rt△ABC中,∠C=90°,sinA=513,则sinB等于()A.1213B.1312C.512D.5134.在Rt△ABC中,∠C=90°,a=1,c=4,则sinA的值是().A.11..15434B C D5.如图,在Rt△ABC中,∠C=90°,AB=10,sinB=25,BC的长是().A..450B C D6.已知sin a + cos a=m,sin a·cos a=n,则m,n的关系是().A.m=n B.m=2n+1 C.m2=2n+1 D.m2=1-2n7.在直角三角形ABC中,∠A为锐角,且cosA=14,那么().A.0°<∠A≤30° B.30°≤∠A≤45°C.45°<∠A≤60° D.60°<∠A<90°8.如右图,在四边形ABCD中,∠BAD=∠BDC=90°,且AD=3,sin∠ABD=35,sin∠DBC=1213,则AB,BC,CD长分别为().A.4,12,13 B.4,13,12 C.5,12,13 D.5,13,12DCBACBACBA图(2)αDCBA9.如图,菱形ABCD中,对角线AC=6,BD=8,∠ABD=a,则下列结论正确的是().A.sina=45B.cosa=35C.tana=43D.tana=3410如果a是锐角,且cos a=45,那么sin(90°— a)的值等于().A.94316 (255525)B C D11.在△ABC中,∠C=90°,且AC>BC,CD⊥AB于D,DE⊥AC于E,EF⊥AB于F,•若CD=•4,AB=10,则EF:AF等于().A.12BD12.已知:Rt△ABC中,∠C=90°,cosA=35,AB=15,则AC的长是().A.3 B.6 C.9 D.12 13.下列各式中不正确的是().A.sin260°+cos260°=1 B.sin30°+cos30°=1 C.sin35°=cos55° D.tan45°>sin45°14.计算2sin30°-2cos60°+tan45°的结果是().A.2 B.115.已知∠A为锐角,且cosA≤12,那么()A.0°<∠A≤60° B.60°≤∠A<90° C.0°<∠A≤30° D.30°≤∠A<90°16.在△ABC中,∠A、∠B都是锐角,且sinA=12,cosB=2,则△ABC的形状是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定17.当锐角a>60°时,cosa的值().A.小于12B.大于12C.大于D.大于118.已知梯形ABCD中,腰BC长为2,梯形对角线BD垂直平分AC,•则∠CAB等于()A.30°B.60°C.45°D.以上都不对二、解答题19.已知△ABC等腰三角形的一条腰长为20cm,底边长为30cm,求底角的正切值.20.已知sinα,cosα是方程4x2-2(的两根,求sin2α+cos2α的值.答案:一、选择题1.D2.A3.A4.B5.B6.C7.D8.B9.D 10.B 11.A 12.C 13.B 14.D15.B 16.B 17.A 18.B二、解答题19.如图,设△ABC为等腰三角形,AB=AC=20,BC=30,过A作AD⊥BC于D,则D•为BC中点.∴BD=15,在Rt△ABD中,∴tanB=153ADDB==.20.∵sinα+cosα=12(,cosα·sinα,∴sin2α+cos2α=(sinα+cosα)2-2sinα·cosα152020 D C BA=[12(] 2- =1.巩固练习(二)一、选择题1.如图所示,在Rt △ABC 中,tan B =,BC =AC 等于( ).A .3B .4C ..6 2.已知α为锐角,则sin cos m αα=+的值( ). A .m ≥1 B .m =1 C .m <1D .m >13.如图所示,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的值是( ). A .3 B .6 C .8 D .9第1题图 第3题图 第4题图 4.如图所示,在菱形ABCD 中,DE ⊥AB ,3cos 5A =, tan ∠DBE 的值是( ).A.12 5.如图所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( ).A .34 B .43 C .35 D .45第5题图 第7题图6.已知Rt △ABC 中,∠C =90°,sin B =,则cosA 的值为( ).A .12 B .2 C .2 D .37.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( ).A .5cos α米B .5cos α米 C .5sin α米 D .5sin α米 8.等腰三角形一腰上的高与腰长之比是1:2,则等腰三角形顶角的度数为( ).A .30°B .50°C .60°或120°D .30°或150°二、填空题9.计算:101|245| 1.41)3-⎛⎫--++= ⎪⎝⎭°________.10.如图所示,已知Rt △ABC 中,斜边BC 上的高AD =4,4cos 5B =,则AC =________. 11.如图所示,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到A B C '''△,使点B '与C 重合,连接A B ',则tan ∠A BC ''的值为________.第10题图 第11题图 第12题图12.如图所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子 长AB =_______米. 13.如图所示,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ' 处,那么tan ∠BAD ′等于________.第13题图 第15题图 14.一次函数经过(tan 45°,tan 60°)和(-cos 60°,-6tan30°),则此一次函数的解析式为________. 15.如图所示,在△ABC 中,∠ACB =90°,CD 是AB 边的中线,AC =6,CD =5,则sinA 等于________. 161是方程2(3tan )0x x θ-=的一个根,θ是三角形的一个内角,那么cos θ的值 为________.三、解答题17. 为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图所示).已知立杆AB 高度是3 m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.18.如图所示,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.19.如图所示,点E、C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB ME CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.20. 如图所示,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.(1)求证:∠CDE=2∠B;(2)若BD:AB,求⊙O的半径及DF的长.【答案与解析】 一、选择题 1.【答案】A ;【解析】由tan AC B BC =知tan 32AC BC B ===. 2.【答案】D ;【解析】在Rt △ABC 中,设α所对的边为a ,斜边为c ,邻边为b .则sin a c α=,cos bcα=, ∴ sin cos a b a bm c c cαα+=+=+=,而a b c +>,∴ m >1. 3.【答案】B ;【解析】因为AD =DC ,所以∠DAC =∠DCA ,又∵ AD ∥BC ,∴ ∠DAC =∠ACB ,所以∠DCA =∠ACB .在Rt △ACB 中,AC =BC ·cos ∠BCA =41085⨯=,则6AB ==. 4.【答案】B ;【解析】∵DE ⊥AB ,∴在Rt △ADE 中,cosA =35. ∴设AD =5k ,则AE =3k ,DE =4k ,又AD =AB , ∴BE =2k , ∴tan ∠DBE =422DE kBE k==. 5.【答案】B ;【解析】如图所示,连结BD ,由三角形中位线定理得BD =2EF =2×2=4,又BC =5,CD =3,∴ CD 2+BD 2=BC 2.∴ △BDC 是直角三角形.且∠BDC =90°,∴ 4tan 3BD C CD ==.6.【答案】C ;【解析】∵sin B =,∴ ∠B =60°,∠A =90°-60°=30°,∴cos 2A =. 7.【答案】B ;【解析】由上图知ABC α∠=,在Rt △ABC 中,cos BC ABα=.∴5cos AB α=.8.【答案】D ;【解析】有两种情况:当∠A 为锐角时,如图(1),sin A =12,∠A =30°; 当∠A 为钝角时,如图(2),sin(180°-∠BAC)=12,180°-∠BAC =30°,∠BAC =150°.二、填空题9.【答案】2【解析】原式=3|21422--+=- 10.【答案】5;【解析】在Rt △ABC 中,.AD ⊥BC ,所以∠CAD =∠B .∴cos cos ADCAD B AC=∠=,∴45AD AC =, 又∵ AD =4,∴AC =5..11.【答案】13; 【解析】过A '作A D BC ''⊥于点D ,在Rt △A B D ''中,设A D x '=,则B D x '=,BC=2x,BD=3x.12.【答案】4 ; 【解析】由3cos 4AC BAC AB ∠==,知334AB =,AB =4米.13.【解析】由题意知BD BD '==Rt △ABD ′中,tan BD BAD AB ''∠===14.【答案】y =【解析】tan 45°=1, tan60-cos60°=12-,-6tan30°=-.设y =kx+b 经过点、1,2⎛-- ⎝,则用待定系数法可求出k =,b =.15.【答案】45; 【解析】∵CD 是Rt △ABC 斜边上的中线,∴AB =2CD =2×5=10,BC 8==,∴84sin 105BC A AB ===.16.【答案】2;【解析】由方程解的意义,知21)3tan (21)0θ-+=,故tan 1θ=,从而45θ=°,则cos cos 452θ==°三、解答题17.【答案与解析】∵在R △ADB 中,∠BDA =45°,AB =3,∴ DA =3.在Rt △ADC 中,∠CDA =60°,∴tan 60CAAD=°,∴CA =BC =CA -BA =(3)m .答:路况显示牌BC 的高度是(3)m .18.【答案与解析】(1)如图所示,作AE ⊥BC 于E ,则BE =AB ·cos B =8cos 60°=1842⨯=.AE =AB ·sin B =8sin 60°=82⨯= ∴EC =BC -BE =12—4=8.∴在Rt △ACE 中,tan ∠ACB =AE EC == (2)作DF ⊥BC 于F ,则AE ∥DF ,∵ AD ∥EF ,∴ 四边形AEFD 是矩形.AD =EF . ∵ AB =DC ,∴ ∠B =∠DCF .又∵∠AEB =∠DFC =90°,∴△ABE △≌△DCF(AAS). ∴FC =BE =4,∴EF =BC -BE —FC =4.∴AD =4.∴MN =12(AD+BC)=12×(4+12)=8.19.【答案与解析】(1)证明:∵BE =FC ,∴BC =EF . 又∵∠ABC =∠DEF ,∠A =∠D , ∴△ABC ≌△DEF .∴AB =DE .(2)解:∵∠DEF =∠B =45°,∴DE ∥AB .∴∠CME =∠A =90°.∴AC =AB MC =ME CG =CE =2.在Rt △CAG 中,cos AC ACG CG ∠==ACG =30°. ∴∠ECG =∠ACB -∠ACB =45°-30°=15°.20.【答案与解析】(1)连接OD ,∵直线CD 与⊙O 相切于点D ,∴OD ⊥CD ,∴∠CD0=90°,∴∠CDE+∠ODE =90°.又∵DF ⊥AB ,∴∠DEO =∠DEC =90°,∴∠EOD+∠ODE =90°. ∴∠CDE =∠EOD .又∵∠EOD =2∠B ; ∴∠CDE =2∠B .(2)连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵BD:AB ,∴在Rt △ADB 中,cos 2BD B AB ==, ∴∠B =30°,∵∠AOD =2∠B =60°.又∵∠CDO =90°,∴∠C =30°,∵在Rt △CDO 中,CD =10,∴ OD =10tan 30O 在Rt △CDE 中,CD =10,∠C =30°,∴DE =CDsin 30°=5. ∵ 弦DF ⊥直径AB 于点E ,∴ DE =EF =12DF ,∴ DF =2DE =10.巩固练习(三)一、选择题1. 计算tan 60°+2sin 45°-2cos 30°的结果是( ).A .2B .12.如图所示,△ABC 中,AC =5,cos 2B =,3sin 5C =,则△ABC 的面积是( )A .212B .12C .14D .21 3.如图所示,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC B '', 则tan B '的值为( )A .12 B .13 C .14 D .4第2题图 第3题图 第4题图4.如图所示,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得∠BAD =30°,在C 点测 得∠BCD =60°,又测得AC =50米,那么小岛B 到公路l 的距离为( ).A .25米B .CD .25+米 5.如图所示,将圆桶中的水倒入一个直径为40 cm ,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ). A .10 cm B .20 cm C .30 cm D .35 cm6.如图所示,已知坡面的坡度1i =α为( ). A .15° B .20° C .30° D .45°第5题图第6题图第7题图7.如图所示,在高为2 m,坡角为30°的楼梯上铺地毯,则地毯的长度至少应为( ).A.4 m B.6 m C..(2+8.因为1sin302=°,1sin2102=-°,所以sin210sin(18030)sin30=+=-°°°°;因为sin45=°,sin2252=-°,所以sin225sin(18045)sin45=+=-°°°°,由此猜想,推理知:一般地,当α为锐角时有sin(180°+α)=-sinα,由此可知:sin240°=( ).A.1-2B. C. D.二、填空题9.如图,若AC、BD的延长线交于点E,511CDAB=,则cos CEB∠= ;tan CEB∠= .10.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,则AD的长为;CD的长为.A B第9题图第10题图第11题图11.如图所示,已知直线1l∥2l∥3l∥4l,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则sinα=________.12.如果方程2430x x-+=的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为__ ______.13.1sin2α=-,则锐角α的取值范围是____ ____.14. 在△ABC中,AB=8,∠ABC=30°,AC=5,则BC=____ ____.15. 如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为.第15题图 第16题图16. 如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45°,翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E ,若AD=2,BC=8.则(1)BE 的长为 . (2)∠CDE 的正切值为 .三、解答题17.如图所示,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE 的中点,OM 交AC 于点D ,∠BOE =60°,cos C =12,BC = (1)求∠A 的度数;(2)求证:BC 是⊙O 的切线;(3)求MD 的长度.18. 如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区?为什么?( 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?19.如图所示,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P 在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.20. 如图所示,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P 停止运动.设BQ=x,QR=y.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.【答案与解析】 一、选择题 1.【答案】C ;【解析】tan 60°+2sin 45°-2cos 3022-== 2.【答案】A ;【解析】过A 作AD ⊥BC 于D ,因为cos 2B =,所以∠B =45°,所以AD =BD ,因为3sin 5AD C AC ==,所以3535AD =⨯=,∴ BD =AD =3,所以4DC ==,所以BC =BD+DC =7, 112173222ABCS BC AD ==⨯⨯=△.3.【答案】B ;【解析】旋转后的三角形与原三角形全等,得∠B ′=∠B ,然后将∠B 放在以BC 为斜边,直角边在网格线上的直角三角形中,∠B 的对边为1,邻边为3,tan B ′=tanB =13. 4.【答案】B ;【解析】依题意知BC =AC =50米,小岛B 到公路l 的距离,就是过B 作l 的垂线,即是BE 的长,在Rt △BCE 中,sin 60BE BC =°,BE =BC ·sin 60°=50=米),因此选B .5.【答案】D ;【解析】如图,△ABD 是等腰直角三角形,过A 点作AC ⊥BD 于C ,则∠ABC =45°,AC =BC =140202⨯=,则所求深度为55-20=35(cm).6.【答案】C ;【解析】tanBC AC α===,∴ 30α=°. 7.【答案】D ;【解析】地毯长度等于两直角边长之和,高为2 m ,宽为2tan 30=°,则地毯的总长至少为(2+m .8.【答案】C ;【解析】sin 240°=sin(180°+60°)=-sin 60°=二、填空题9.【答案】cos ∠CEB=511;tan ∠ 【解析】如图,连结BC ,则∠ACB=90°,易证△ECD ∽△EBA ,∴CE CD 5=EB AB 11=,cos ∠CEB=5.11CE =EB tan ∠CEB=BC CE第9题答案图 第10题答案图 10.【答案】5+10;10+5.【解析】过B 点分别作BE ⊥AD ,BF ⊥CD ,垂足分别为E 、F ,则得BF=ED ,BE=DF. ∵在Rt △AEB 中,∠A=30°,AB=10, ∴AE=AB ·cos30°=10×=5,BE=AB ·sin30°=10×=5.又∵在Rt △BFC 中,∠C=30°,BC=20, ∴BF=BC=×20=10,CF=BC ·cos30°=20×=10.∴AD=AE+ED=5+10, CD=CF+FD=10+5.11. 【解析】设AB 边与直线2l 的交点为E ,∵ 1l ∥2l ∥3l ∥4l ,且相邻两条平行直线间的距离都是1,则E 为AB 的中点,在Rt △AED 中,∠ADE =α,AD =2AE .设AE =k ,则AD =2k ,DE =.∴ sin sinAE ADE ED α=∠===12.【答案】13或; 【解析】由2430x x -+=得x 1=1,x 2=3.①当1,3为直角边时,则tan A =13;②当3=.∴ tanA ==. 13.【答案】0<α≤30°; 【解析】由题意知1sin 02α-≥,故sin α≤12,即sin α≤sin 30°,由正弦函数是增函数.知0<α≤30°.14.【答案】3或3;【解析】因△ABC 的形状不是唯一的,当△ABC 是锐角三角形时,如图所示,作AH ⊥BC 于H ,在Rt △ABH 中.AH =AB ·sin ∠ABC =8×sin30°=4,BH =在Rt △AHC 中,HC 3==.∴ BC =3.当△ABC 是钝角三角形时,如图所示,同上可求得BC =3.15.;16.【答案】(1)BE=5;(2)tan∠CDE=【解析】(1)由题意得△BFE≌△DFE,∴DE=BE.又∵在△BDE中,∠DBE=45°,∴∠BDE=∠DBE=45°,即DE⊥BC.∵在等腰梯形ABCD中,AD=2,BC=8,∴EC=(BC-AD)=3,BE=5.(2)由(1)得DE=BE=5,在△DEC中,∠DEC=90°,DE=5,EC=3,∴tan∠CDE==.三、解答题17.【答案与解析】(1)∵∠BOE=60°,∴∠A=12∠BOE=30°.(2)在△ABC中,∵cos C=12,∴∠C=60°,又∵∠A=30°,∴∠ABC=90°,∠ABC=90°,∴AB⊥BC,∴ BC是⊙O的切线.(3)∵点M是AE的中点,∴OM⊥AE,在Rt△ABC中,∵BC=AB=BC tan 60°=6=,∴OA=32AB=,∴OD=12OA=32,∴MD=32.18.【答案与解析】(1)过C点作CH⊥AB于H.设CH⊥AB.由已知有∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x,在Rt△HBC中,tan∠HBC=CH HB.∴tan30CHHB===°,∵AH+HB=AB,∴600x=,解得x=≈220(米)>200(米).∴ MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要(y-5)天.根据题意得:11(125%)5y y=+⨯-,解得:y=25.经检验知:y=25是原方程的根.答:原计划完成这项工程需要25天.19.【答案与解析】(1)∵AB为直径,∴∠ACB=90°.又∵ PC⊥CD,∴∠PCD=90°.而∠CAB=∠CPD,∴△ABC∽△PDC.∴AC BCCP CD=.∴AC·CD=PC·BC.(2)当点P运动到AB弧中点时,过点B作BE⊥PC于点E.∵P是AB中点,∴∠PCB=45°,CE=BEBC=又∠CAB=∠CPB,∴tan∠CPB=tan∠CAB=43.∴3tan 4BE PE CPB ⎫===⎪⎪∠⎝⎭. 从而PC =PE+EC=2.由(1)得CD=433PC = (3)当点P 在AB 上运动时,12PCD S PC CD =△. 由(1)可知,CD =43PC . ∴223PCD S PC =△.故PC 最大时,PCD S △取得最大值; 而PC 为直径时最大,∴PCD S △的最大;∴PCD S △的最大值2250533S =⨯=.20.【答案与解析】(1)∵∠A =90°,AB =6,AC =8,∴BC =10.∵点D 为AB 中点,∴BD =12AB =3.∵∠DHB =∠A =90°,∠B =∠B . ∴△BHD ∽△BAC ,∴DH BD AC BC =,∴3128105BD DH AC BC ==⨯=. (2)∵QR ∥AB ,∴△RQC ∽△ABC ,∴RQ QC AB BC =,∴10610y x -=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ =PR时,过点P 作PM ⊥QR 于M ,如图所示,则QM =RM .∵∠1+∠2=90°.∠C+∠2=90°,∴∠1=∠C .∴84cos 1cos 105C ∠===,∴45QM QP =,∴1425QR DH =, ∴1364251255x ⎛⎫-+ ⎪⎝⎭=,∴185x =.②当PQ =RQ 时,如图28—46所示,则有312655x -+=,∴x =6.③当PR =QR 时,则R 为PQ 中垂线上的点,如图所示.于是点R 为EC 的中点,∴11224CR CE AC ===. ∵tan QR BA C CR CA ==,∴366528x -+=,∴152x =. 综上所述,当x 为185或6或152时,△PQR 为等腰三角形.。
同学个性化教学设计 年 级: 教 师: 科 目: 班 主 任: 日 期: 时 段: 教学内容
锐角三角函数 经典基础题型归类复习 教学目标
重难点透视
薄弱点分析
考点分析
教学过程 反馈、反思 知识考点:
本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 、cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。
精典例题:
【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。
(1)求AB 的长;
(2)求sinA 、cosA 的值;
(3)求A A 22cos sin +的值;
(4)比较sinA 、cosB 的大小。
变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。
(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。
【例2】计算:020045sin 30cot 60sin +⋅
注意:熟记00、300、450、600、900角的三角函数值,并能熟练进行运算。
【例3】已知,在Rt △ABC 中,∠C =900,2
5tan =B ,那么cosA ( ) A 、
25 B 、35 C 、5
52 D 、32 变式:已知α为锐角,且5
4cos =
α,则ααcot sin += 。
【例4】已知3cot tan =+αα,α为锐角,则αα22cot tan += 。
变式:【问题】已知009030<<<βα,则αβαβcos 12
3cos )cos (cos 2-+---= 。
变式:若太阳光线与地面成α角,300<α<450,一棵树的影子长为10米,则树高h 的范围是( )(取7.13=)
A 、3<h <5
B 、5<h <10
C 、10<h <15
D 、h >15
【例5】某市正在进行商业街改造, 商业街起点在古民居P 的南偏西60度方向上的A 处, 现已改造至古民居P 的南偏西30度方向上的B 处,A 与B 相距150米, 且B 在A 的正东方向 .为了不破坏古民居的风貌,按有关规定,在古民居的周围100 米内不得修建现代化商业街,若工程队继续向正东方向修建200米商业街到C 处, 则 对于从B 到
C 的商业街改造是否违反有关规定?
专项训练:
一、选择题:
1、在Rt △ABC 中,∠C =900,若4
3tan =
A ,则sinA =( ) A 、34
B 、43
C 、35
D 、53 2、已知cos α<0.5,那么锐角α的取值范围是( )
A 、600<α<900
B 、00<α<600
C 、300<α<900
D 、00<α<300
3、若1)10tan(30=+α,则锐角α的度数是( )
A 、200
B 、300
C 、400
D 、500
4、在Rt △ABC 中,∠C =900,下列式子不一定成立的是( )
A 、cosA =cos
B B 、cosA =sinB
C 、cotA =tanB
D 、2cos 2sin
B A
C += 5、在Rt △ABC 中,∠C =900,3
1tan =A ,AC =6,则BC 的长为( ) A 、6 B 、5 C 、4 D 、2
6、某人沿倾斜角为β的斜坡前进100米,则他上升的最大高度为( )
A 、βsin 100米
B 、βsin 100米
C 、β
cos 100米 D 、βcos 100米 7、计算0030cot 3
360cos +的值是( )
A 、27
B 、65
C 、23
D 、2
23+ 二、填空题:
1、若α为锐角,化简αα2sin sin 21+-= 。
2、已知135cot cot 0=⋅β,则锐角β= ;若tan α=1(00≤α≤900)则)90cos(0α-= 。
3、计算020*******sin 21cot 90cos 48tan 42tan 27sin +⋅-⋅+= 。
4、在Rt △ABC 中,∠C =900,若AC ∶AB =1∶3,则cotB = 。
5、△ABC 中,AB =AC =3,BC =2,则cosB = 。
6、已知,在△ABC 中,∠A =600,∠B =450,AC =2,则AB 的长为 。
三、计算与解答题:
1、000000090cot 0cos 45tan 60cos 0tan 30sin 90sin ⋅-⋅+++;
2、△ABC 中,∠A 、∠B 均为锐角,且0)3sin 2(3tan 2=-+-A B ,试确定△ABC 的形状。
3、已知060sin =a ,045cos =b ,求
a b b b a b a -+-+2的值。
四、探索题:
1、△ABC 中,∠ACB =900,CD 是AB 边上的高,则CB
CD 等于( ) A 、cotA B 、tanA C 、cosA D 、sinA
2、如图,两条宽度都是1的纸条交叉叠在一起,且它们的夹角为α,则它们重叠部分(图中阴影部分)的面积是( )
A 、αsin 1;
B 、α
cos 1;C 、αsin ; D 、1。
3、已知m =+ααcos sin ,n =⋅ααcos sin ,则m 与n 的关系是
( )
A 、n m =
B 、12+=n m
C 、122+=n m
D 、n m 212
-= 4、在Rt △ABC 中,∠C =900,∠A 、∠B 的对边分别是a 、b ,且满足022=--b ab a ,则tanA 等于( )
A 、1
B 、251+
C 、251-
D 、2
51±
总监签字: ___________ 日期
α。