采样控制系统的分析
- 格式:docx
- 大小:2.76 MB
- 文档页数:6
如何进行PLC系统的数据采集与分析PLC系统的数据采集与分析PLC(可编程逻辑控制器)系统是目前工业自动化中最常用的控制器之一。
作为一种先进的控制设备,PLC系统不仅能够实现自动化生产,还可以提供重要的过程数据,以便进行数据采集和分析。
本文将着重介绍如何进行PLC系统的数据采集与分析。
一、数据采集的基本原理数据采集是从PLC系统中获取各种状态和数值的过程,对于数据采集,我们需要遵循以下基本原理:1. 选择适当的传感器:根据采集需求,选择合适的传感器进行数据采集。
传感器的类型和规格应根据具体应用场景来确定。
2. 连接传感器和PLC系统:将传感器与PLC系统进行连接,确保数据能够准确地传输到PLC系统中。
通常,我们会使用模拟输入通道或数字输入通道来接收传感器的信号。
3. 配置采样周期:根据需求,设置采样周期以确定数据的采集频率。
采样周期可以根据实际情况进行调整,以确保数据采集的准确性和效率。
4. 数据存储:将采集到的数据存储在PLC系统的存储介质中,如内存或SD卡。
存储介质的选择应根据采集数据的类型和容量需求来确定。
二、数据采集的实践步骤下面将简要介绍进行PLC系统数据采集的实践步骤:1. 配置输入通道:在PLC系统的配置界面上,选择适当的输入通道,并将其与传感器进行连接。
确保输入通道的设置与传感器的类型和规格相匹配。
2. 设置采样周期:在PLC系统的设置界面上,配置数据采集的采样周期。
根据数据采集的需要,设置合适的时间间隔,以确保数据能够根据需要进行采集。
3. 编写数据采集程序:使用PLC系统提供的编程软件,编写数据采集程序。
程序的设计应考虑到数据的类型和采集频率,并确保数据的准确性和稳定性。
4. 启动数据采集:将编写好的数据采集程序加载到PLC系统中,并启动数据采集功能。
确保传感器正常工作,并监控采集到的数据是否符合预期。
三、数据分析的基本原理数据采集完成后,接下来就是对采集到的数据进行分析。
数据分析的基本原理如下:1. 数据预处理:对采集到的原始数据进行预处理,包括去除噪声、异常值处理和数据插值等。
东南大学自动控制实验室之吉白夕凡创作实 验 报 告课程名称:热工过程自动控制原理实验名称:采样控制系统的阐发院(系):能源与环境学院专业:热能动力姓名:范永学学号: 03013409实验室:实验组别:同组人员:实验时间: 2015.12.15评定成绩:审阅教师:实验八采样控制系统的阐发一、实验目的1. 熟悉并掌握Simulink 的使用;2. 通过本实验进一步理解香农定理和零阶坚持器ZOH 的原理及其实现办法;3. 研究开环增益K 和采样周期T 的变更对系统动态性能的影响;二、实验原理1. 采样定理图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变成离散信号)(*t x .图2-1 连续信号的采样与恢复香农采样定理证明要使被采样后的离散信号X*(t)能不失真地恢恢复有的连续信号X(t),其充分条件为:式中S ω为采样的角频率,max ω为连续信号的最高角频率.由于T S πω2=,因而式可为T 为采样周期.2. 采样控制系统性能的研究图2-2为二阶采样控制系统的方块图.图2-2采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关.由图2-2所示系统的开环脉冲传递函数为:闭环脉冲传递函数为:按照上式,按照朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应.三、实验设备:装有Matlab 软件的PC 机一台四、实验内容1. 使用Simulink 仿真采样控制系统2. 辨别改动系统的开环增益K 和采样周期TS,研究它们对系统动态性能及稳态精度的影响.五、实验步调5-1. 验证香农采样定理利用Simulink 搭建如下对象,如图2-3.图2-3设定正弦波的输入角频率w = 5,选择采样时间T 辨别为0.01s 、0.1s 和1s,不雅察输入输出波形,并结合香农定理说明原因,感兴趣的同学可以自选正弦波频率和采样时间T 的值..5-2.采样系统的动态特性利用Simulink 搭建如下二阶系统对象,如图2-4.当系统的增益K=10,采样周期T 辨别取为0.003s,0.03s,0.3s 进行仿真实验.更改增益K的值,令K=20,重复实验一次.感兴趣的同学可以自己设定采样时间以及增益K的值,要求能够说明系统的动态特性即可.系统对象simulink仿真图:图2-4六、实验数据及阐发5-1. 验证香农采样定理Simulink所搭建对象,如上面图2-3所示.1正弦波的输入角频率w = 5,采样时间T为0.01s时,输入输出波形为由香农定理推导得,=5=0.628,此时T=0.01<0.628,由采样图可知,能够完全复现原有连续信号.2正弦波的输入角频率w = 5,采样时间T为0.1s时,输入输出波形为由香农定理推导得,=5=0.628,此时T=0.1<0.628,由采样图可知,虽然不克不及够完全复现原有连续信号,但已能够大致复现.3正弦波的输入角频率w = 5,采样时间T为1s时,输入输出波形为由香农定理推导得,=5=0.628,此时T=1>0.628,由采样图可知,完全不克不及复现原有连续信号.5-2.采样系统的动态特性系统的增益K=10时,系统对象simulink仿真图如上面图2-4所示.当系统的增益K=10,采样周期T取为0.003s时此时由于采样周期小,频率高,输入输出曲线几乎重合.当系统的增益K=10,采样周期T取为0.03s时此时由于采样周期变大,频率变小,采样器的负作用变大,减低了系统的稳定性裕量,动摇相对于理想值变大,但此时系统依旧稳定.当系统的增益K=10,采样周期T取为0.3s时此时由于采样周期很大,频率很小,使系统出现不稳定的现象.系统的增益K=20时,系统对象simulink仿真图:当系统的增益K=20,采样周期T取为0.003s时两曲线基天性够重合.当系统的增益K=20,采样周期T取为0.03s时与K=10时相比,偏差已经较为明显,采样图线需要经过很长时间才干趋于稳定.当系统的增益K=20,采样周期T取为0.3s时与K=10时相比,采样图线振荡更加剧烈.七、思考题1.采样周期T的变更对系统性能的影响?对于有采样器和坚持器的反应系统,如果采样周期很短,采样系统就很接近于连续系统,加大采样周期而不改动系统的整定参数必定会降低系统的稳定性裕量,甚至使系统变成不稳定.但是过分地缩短采样周期会受到实际设备的限制,并且也失去了采样控制系统的优点.2.为什么离散后的二阶系统在K大到某一值会产生不稳定?连续二阶线性定常系统,不管开环增益K多大,闭环系统均是稳定的,在加入采样器和零阶坚持器后,随着开环增益增大,系统稳定性也会变更.。
采样控制系统的分析试题及答案【课后自测】8-1 求下列拉氏变换式的Z 变换。
(1)1()()()E s s a s b =++ (2)21()(1)E s s s =+(3)21()s E s s += (4)21()(1)se E s s s --=+ (5)3()(1)(2)s E s s s +=++解:(1)1111()()()E s s a s b b a s a s b ⎛⎫==- ⎪++-++⎝⎭,查表知11,()()aT bTz zZ Z s a z e s b z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得11()()aTbT z z Z s a s b b a z ez e --⎛⎫⎛⎫=- ⎪ ⎪++---⎝⎭⎝⎭ (2)221111()(1)(1)1E s s s s s s ==--+++,查表知 22111,,11(1)()T T T z z Tze Z Z Z s z s z e s z e ---⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-+-+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得221(1)1()T T Tz Tze zZ s s z z e z e---⎛⎫=-- ⎪+---⎝⎭ (3)22111()s E s s s s+==+,查表知 2211,1(1)z Tz Z Z s z s z ⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得2211(1)s z Tz Z s z z +⎛⎫=+ ⎪--⎝⎭(4)()221111()1(1)1s s e E s e s s s s s ---⎛⎫==--+ ⎪++⎝⎭,查表知22111,,1(1)1Tz Tz z Z Z Z s z s z s z e -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪--+-⎝⎭⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得12211(1)(1)1s TT e Tz z z Z z s s z z z e ---⎛⎫⎛⎫⎛⎫-=--+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭ (5)311()(1)(2)12s E s s s s s +==+++++,查表知 211,12T Tz z Z Z s z e s z e --⎛⎫⎛⎫== ⎪ ⎪+-+-⎝⎭⎝⎭ 查表及由Z 变换的线性性质,可得23(1)(2)T Ts z zZ s s z ez e --⎛⎫+=+ ⎪++--⎝⎭ 8-2 求下列函数的Z 反变换。
采样质量控制总结采样质量控制总结篇3标题:采样质量控制总结报告一、引言采样是任何检测工作的基础,其质量直接影响到最终的结果。
采样质量控制的目的在于确保所采样本能够准确反映被检测对象的整体特性,从而保证检测结果的可靠性。
本报告将就采样质量控制的主要环节进行总结,并提出相应的改进措施。
二、采样环节分析1.采样目的和原则采样是为了从被检测对象中抽取一部分有代表性的样本,用于检测和评估。
采样应遵循随机、无偏、有代表性的原则,以确保所采样本能够准确反映被检测对象的整体特性。
2.采样方案设计采样方案的设计应包括采样对象、采样方法、采样数量、采样频率、采样时间等方面的内容。
方案设计应充分考虑被检测对象的特性,选择合适的采样方法,以确保样本具有足够的代表性。
3.采样实施采样实施过程中,应严格遵循采样方案,确保样本的代表性。
实施过程中,应特别注意样品的保存、运输和处理,以防止样品受到污染或破坏。
三、质量控制措施1.质量控制点的设置在采样过程中,应设置质量控制点,以确保采样工作的质量。
质量控制点包括采样前的准备工作、采样过程中的操作步骤、采样后的数据处理等方面。
2.质量控制的实施在采样过程中,应定期对质量控制点进行检查和评估。
发现问题时,应及时采取措施进行纠正,以确保采样工作的质量。
四、问题分析与改进建议1.问题分析在采样过程中,可能会出现以下问题:采样方案设计不合理、采样方法不正确、质量控制点设置不恰当等。
这些问题可能导致采样样本失去代表性,影响检测结果的准确性。
2.改进建议针对以上问题,我们提出以下改进建议:(1)加强采样方案设计的论证和培训,确保采样方案的科学性和可操作性;(2)加强对采样人员的培训和指导,提高采样操作水平;(3)完善质量控制点的设置和检查制度,确保质量控制点的有效实施。
五、结论采样质量控制是检测工作的基础,必须引起足够的重视。
通过对采样过程的分析和改进,可以提高采样工作的质量,从而保证检测结果的可靠性。
采样控制系统的分析1. 引言采样控制系统是现代自动控制系统中的一个重要组成部分。
它通过对被控对象进行采样和控制操作,实现对系统动态特性的精确控制。
本文将对采样控制系统进行深入分析,包括系统的基本原理、特点以及应用。
2. 采样控制系统的基本原理采样控制系统是基于采样周期的自动控制系统,其基本原理是通过周期性采样对被控对象的状态进行测量,并根据测量结果进行控制操作。
采样系统由采样器、控制器和执行器组成。
2.1 采样器采样器是采样控制系统中用于对被控对象进行采样的部件。
它包括传感器和采样信号处理器两部分。
传感器将被控对象的状态转换为电信号,而采样信号处理器则对传感器输出的信号进行采样和处理,获得被控对象在每个采样周期内的状态。
2.2 控制器控制器是采样控制系统中用于根据采样结果进行控制操作的部件。
它根据被控对象的状态和目标控制要求,计算并输出控制信号。
常见的控制器包括比例-积分-微分(PID)控制器、模糊控制器等。
2.3 执行器执行器是采样控制系统中用于执行控制操作的部件。
它接收控制信号并将其转换为对被控对象的操作,实现对被控对象状态的调节。
常见的执行器包括电动执行器、气动执行器等。
3. 采样控制系统的特点采样控制系统具有以下特点:3.1 时变性由于采样控制系统是周期性的,它对被控对象的控制是离散的。
这使得系统在不断变化的环境和外界干扰下,能够对被控对象的状态进行实时调节。
3.2 数字化采样控制系统使用数字技术对被控对象进行采样和控制,使得系统具有较高的精度和稳定性。
此外,数字化还使得系统易于实现自动化和远程控制。
3.3 离散性采样控制系统是离散系统,它通过周期性采样和控制操作来实现对被控对象的控制。
这种离散性使得系统具有一定的响应速度和抗干扰能力,但也会对系统的控制性能产生一定影响。
4. 采样控制系统的应用采样控制系统广泛应用于工业自动化、航空航天、电力系统等领域。
4.1 工业自动化在工业自动化中,采样控制系统用于对机械设备、生产线等进行控制。
装
订
实验报告
实验名称采样系统的稳定性分析..
系专业班
1
姓名学号授课老师
预定时间实验时间实验台号
的脉冲信号周期,此脉冲由多谐振器 (由MC1555和阻容元件构成
MC14538和阻容元件构成) 产生,改变多谐振荡器的周期,即改变采
订四、线路示图
装
1.实验对象的结构框图:
1.信号的采样保持:电路如图所示:
连续信号x(t) 经采样器采样后变为离散信号x*(t),香农 (Shannon) 采样定理指出,离散信
号x*(t)可以完满地复原为连续信号条件为:ωs≥2ωmax (5.1-1)
式中ωS 为采样角频率,且,(T 为采样周期),ωmax为连续信号x (t) 的幅频谱|
x (jω)| 的上限频率。
式 (5.1-1) 也可表示为:。
若连续信号x (t) 是角频率为ωS = 22.5 的正弦波,它经采样后变为x*(t),则x*(t) 经保
持器能复原为连续信号的条件是采样周期:,[正弦波ωmax=ωS=5 ],所以
2.闭环采样控制系统
(1) 原理方块图
装
订
上图所示闭环采样系统的开环脉冲传递函数为:
装。
热工过程自动控制原理实验报告
白思平 03015413
实验八采样控制系统的分析
一、实验目的
1. 熟悉并掌握Simulink 的使用;
2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法;
3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理
1. 采样定理
图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。
图2-1 连续信号的
采样与恢复
香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为:
max 2ωω≥S
式中S ω为采样的角频率,max ω为连续信号的最高角频率。
由于T
S π
ω2=
,因而式可为 max
ωπ≤
T T 为采样周期。
2. 采样控制系统性能的研究
图2-2为二阶采样控制系统的方块图。
图2-2
采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。
由图2-2所示系统的开环脉冲传递函数为:
]2
5
.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T
]5.015.0)1([
)1(25221T
e Z Z
Z Z Z TZ Z Z ---+----=
)
)(1()]
21()12[(5.122222T T T T e Z Z Te e Z e T --------++-=
闭环脉冲传递函数为:
)]21(]12[5.12)1()]
21(12[5.12)()(222222
222T
T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5
.12)5.1125()5.115.1325()]
21(12[5.12222
222++-+-+--++-=-----T e Z e T Z Te e Z e T T
T T T T )( 根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。
三、实验设备:
装有Matlab 软件的PC 机一台 四、实验内容
1. 使用Simulink 仿真采样控制系统
2. 分别改变系统的开环增益K 和采样周期T S ,研究它们对系统动态性能及稳态精度的影响。
五、实验步骤
5-1. 验证香农采样定理
利用Simulink 搭建如下对象,如图2-3。
图2-3
设定正弦波的输入角频率w = 5,选择采样时间T 分别为0.01s 、0.1s 和1s ,观察输入输出波形,并结合香农定理说明原因。
5-2.采样系统的动态特性
利用Simulink 搭建如下二阶系统对象,如图2-4。
当系统的增益K=10,采样周期T 分别取为0.003s ,0.03s ,0.3s 进行仿真实验。
更改增益K 的值,令K=20,重复实验一次。
系统对象simulink 仿真图:
图
2-4
六、实验报告及思考题
1.采样-保持器在各种采样频率下的波形
(1)验证香农采样定理
正弦波的输入角频率w = 5,采样时间T分别为0.01s、0.1s和1s
T=0.01S
T=0.1S
T=1s
由以上图像可知,当T=0.01s时,输入输出的波形几乎一致;当T=0. 1s,输出波形虽然大致成正弦波形,但是
明显成阶梯状,信号还原较差;当T=1s ,输出波形杂乱无章,信号几乎没有得到还原。
由T
2π
ω=s 可算出三张图对应的采样频率分别为:πω
200=s ,π20,π2,而输入正弦波的角频率为ω
=5rad/s ,符合香农定理所述,当max ωω2≥s 时,信号才可能被复现,且max 2ωωs 比值越大,复现的信号与原信号的误差才越小。
(2)采样系统的动态特性
当系统的增益K=10,采样周期T 分别取为0.003s ,0.03s ,0.3s 进行仿真实验。
T=0.003
T=0.03
T=0.3
更改增益K的值,令K=20,重复实验一次。
T=0.003
T=0.03
T=0.3
由上面的曲线图可知,当T=0.003s时,由于采样周期小,频率高,输入输出曲线几乎一致,复现较好;当T=0.03s 时,由于采样周期变大,频率变小,输入与输出曲线开始有明显的偏差,且增大开环增益系数K的值,偏差越明显;当T=0.3s时,由于采样周期过大,频率过高,对于一个原先稳定的连续系统,加入采样器和零阶保持器后,降低了系统的稳定裕量,是系统出现不稳定。
同时通过T=0.3s时的曲线,可以看出加入零阶保持器后相位会产生滞后。
增加开环增益系数,系统稳定性裕量下降的更快。
2.连续二阶线性定常系统,不论开环增益K多大,闭环系统均是稳定的,而为什么离散后的二阶系统在K大到某一值会产生不稳定?
答:连续二阶线性定常系统,不论开环增益K多大,闭环系统均是稳定的,在加入采样器和零阶保持器后,随着开环增益增大,系统稳定性也会变化。
所以有了采样器和零阶保持器后,为例保证系统稳定,K值就要受到限制,同时如果缩短采样周期,采样系统更接近于相应的连续控制系统,采样系统的稳定性将得到提高。