(完整版)电磁感应中的力学问题和能量转换问题
- 格式:doc
- 大小:296.50 KB
- 文档页数:8
物理专题四 电磁感应中的力学问题与能量转化问题在物理学研究的问题中,能量是一个非常重要的课题,能量守恒是自然界的一个普遍的、重要的规律。
在电磁感应现象中,由磁生电并不是创造了电能,而只是机械能转化为电能而已。
在力学中就已经知道:功是能量转化的量度。
那么在机械能转化为电能的电磁感应现象中,是什么力在做功呢?是安培力在做功,在电学中,安培力做正功,是将电能转化为机械能(电动机),安培力做负功,是将机械能转化为电能(发电机),必须明确发生电磁感应现象中,是安培力做功导致能量的转化。
(1)由t N ∆∆=φε决定的电磁感应现象中,无论磁场发生的增强变化还是减弱变化,磁场都通过感应导体对外输出能量(指电路闭合的情况下,下同)。
磁场增强时,是其它形式的能量转化为磁场能中的一部分对外输出;磁场子削弱时,是消耗磁场自身储存的能量对外输出。
(2)由θεsin Blv =决定的电磁感应现象中,由于磁场本身不发生变化,一般认为磁场并不输出能量,而是其它形式的能量,借助安培的功(做正功、负功)来实现能量的转化。
(3)解决这类问题的基本方法:用法拉第电磁感应定律和楞次定律确定感应电动的大小和方向;画出等效电路,求出回路中电阻消耗电功率表达式;分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的变化所满足的方程。
例1. 如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。
磁感应强度为B 的匀强磁场方向垂直于纸面向外。
金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。
从静止释放后ab 保持水平而下滑。
试求ab 下滑的最大速度v m解:释放瞬间ab 只受重力,开始向下加速运动。
随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小。
当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度。
由mg R v L B F m ==22,可得22LB mgR v m = 这道题也是一个典型的习题。
D.带电微粒不可能先向 N 板运动后向M 板运动电磁感应的动力学和能量问题知识点1电磁感应的动力学问题 当导体棒切割磁感线产生感应电流时,导体棒自身也受安培力,可知安培力大小与导体棒的运动状态有关,而根据牛顿运动定律,培力大小有关。
因此要把安培力与牛顿运动定律相结合。
知识点2电磁感应的能量问题C.金属棒ab 下滑过程中M 板电势高于N 板电势安培力做功的过程是其他能变为电能的过程。
。
若是纯电阻电 路,电能再全部变为热能。
一 W F 安=Q 热,一P F 安=卩热. 例1如图所示,光滑导轨倾斜放置,其下端连接一个灯泡, 当ab 棒下滑到稳定状态时,小灯泡获得的功率为 的功率变为2P o ,下列措施正确的是: 换一个电阻为原来一半的灯泡; 把磁感应强度 B 增为原来的2倍; 换一个质量为原来的 晅倍的金属棒;匀强磁场垂直于导线 所在平面, P o ,除灯泡外,其它电阻不计,要使灯泡 ) 72 倍; 、把导轨间距离增为原来的 练习1如图甲所示,abed 为导体做成的框架,其平面与水平面成 0角, bc 接触良好,整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度 变化情况如图乙所示(设图甲中 B 的方向为正方向)•在0〜t 1时间内导体棒PQ 始终静止, 下面判断正确的是( ) A. 导体棒 B. 导体棒 C. 导体棒 D. 导体棒PQ 中电流方向由 Q 至P PQ 受安培力方向沿框架向下 PQ 受安培力大小在增大 PQ 受安培力大小在减小 练习2如图所示,电阻艮b =0.1 Q 的导体 滑导线框向右做匀速运动线框中接有电阻 线框放在磁感应强度 B=0.1T 的匀强磁场中 导体棒PQ 与ad 、 B 随时间t 4S* ab 沿光R=0.4Q, ,磁 X X X X X X X X 场方向垂直于线框平面,导体的ab 长度l=0.4m, 运动速度v=10m/s.线框的电阻不计. (1) 电路abcd 中相当于电源的部分是 , 相当于电源的正极是 (2) 使导体ab 向右匀速运动所需的外力 F' = N, 方向_ (3) 电阻R 上消耗的功率 P = _____ W 例2拉力所做的功如图10,两根足够长光滑平行金属导轨 PP ‘ 倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的 两金属板M 、N 相连,板间距离足够大, 板间有一带电微粒, 金属棒ab 水平跨放在导轨上, 下滑过程中与导轨接触良好.现同时由静止释放带电微粒和金属棒ab ,则()A .金属棒ab 最终可能匀速下滑B.金属棒ab —直加速下滑导体棒的运动状态也和安练习1练习 如图所示,足够长的光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面向上(导轨和导线电阻不计),则垂直导轨的导体棒 ab 在下滑过程中() A. 导体棒 ab 中感应电流从a 流向b B. 导体棒 ab 受到的安培力方向平行斜面向上 C. 导体棒 ab 一定匀加速下滑D. 灯泡亮度一直保持不变0的斜面上,导轨下端接有电 例3如图5所示电路,两根光滑金属导轨平行放置在倾角为 阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒 ab 质量 为m ,受到沿斜面向上且与金属棒垂直的恒力 F 的作用•金属棒沿导轨匀速下滑, 则它在下滑高度h 的过程中,以下说法正确的是 A •作用在金属棒上各力的合力做功为零 B •重力做的功等于系统产生的电能 C.金属棒克服安培力做的功等于电阻 R 上产生的焦耳热 D •金属棒克服恒力 F 做的功等于电阻 R 上产生的焦耳热 练习1如图Z10 — 1所示,在磁感应强度为 B 的匀强磁场中,有半径为 框架,OC 为一能绕0在框架上滑动的导体棒 0、C 之间连一个电阻 R, 的电阻均不计,若要使 OC 能以角速度 3匀速转动,则外力做功的功率是 X Y B 2 3 2r 4B 23 2r 4 貫 A. R B. 2R X B 23 2r 4B 23 2r 4C. 4RD. 8Rr 的光滑半圆形导体 导体框架与导体棒 ( )X …亠 XX A Q X XX 练习2竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5 T,导体 杆ab 和cd 的长均为0.2 m,电阻均为0.1 Q ,所受重力均为0.1 N,现在用力向上推导体杆 ab,使之匀速上升(与导轨接触始终良好),此时cd 恰好静止不动,ab 上升时下列说法正确的 是( A. ab B. ab C. 在 D. 在 ) 。
电磁感应中的动力学问题和能量问题一、感应电流在磁场中所受的安培力1.安培力的大小:F=BIL= ⑴.由F= 知,v 变化时,F 变化,物体所受合外力变化,物体的加速度变化,因此可用牛顿运动定律进行动态分析.⑵.在求某时刻速度时,可先根据受力情况确定该时刻的安培力,然后用上述公式进行求解.2.安培力的方向判断(1)右手定则和左手定则相结合,先用右手定则确定感应电流方向,再用 左手定则判断感应电流所受安培力的方向.(2)用楞次定律判断,感应电流所受安培力的方向一定和导体切割磁感线运动的方向垂直。
热点一 对导体的受力分析及运动分析从运动和力的关系着手,运用牛顿第二定律.基本方法是:受力分析→运动分析(确定运动过程和最终的稳定状态)→由牛顿第二定律列方程求解.运动的动态结构:这样周而复始的循环,循环结束时加速度等于零,导体达到平衡状态.在分析过程中要抓住a=0时速度v 达到最大这一关键.特别提示1.对电学对象要画好必要的等效电路图.2.对力学对象要画好必要的受力分析图和过程示意图二、电磁感应的能量转化1.电磁感应现象的实质是其他形式的能和电能之间的转化.2.感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.3.电流做功产生的热量用焦耳定律计算,公式为Q=I 2Rt热点二 电路中的能量转化分析从能量的观点着手,运用动能定理或能量守恒定律.基本方法是:受力分析→弄清哪些力做功,做正功还是负功→明确有哪些形式的能参与转化,哪些增哪些减→由动能定理或能量守恒定律列方程求解.特别提醒在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情况,因为安培力做的功是电能和其他形式的能之间相互转化的“桥梁”.简单表示如下: 安培力做正功 电能 其他形式能.安培力做副功 其它形式能 电能如何求解电磁感应中的力学问题,一直是高中物理教学的一个难点,也是近几年来高R L B R E BL v22=⋅R L B 22考的热点。
电磁感应中的力学问题和能量转换问题一、知识扫描1。
电磁感应中产生的感应电流在磁场中将受到安培力的作用,从而影响导体棒(或线圈)的受力情况和运动情况。
解决这类电磁感应现象中的力学综合题,要将电磁学、力学中的有关 知识综合起来应用。
2。
电磁感应现象实质是能量转化与守恒。
电磁感应过程中导体(或线圈)克服安培力做功,其他形式的能量转化为电能。
当感应电流通过用电器时,电能又转化为其他形式的能量.“外力"克服安培力做了多少功,就有多少 能转化为 能。
同理,安培力做了多少功,就有多少 能转化为 能。
3。
安培力的冲量RBL BLq t BLI t F ∆Φ==∆=∆ 三、好题精析例1。
如图所示,AB 、CD 是两根足够长的固定平行金属导轨,两导轨间的距离为L ,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B,在导轨的 AC 端连接一个阻值为 R 的电阻,一根质量为m 、垂直于导轨放置的金属棒ab ,从静止开始沿导轨下滑。
求导体ab 下滑的最大速度v m ;(已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计。
g=10m /s 2)例2。
如图所示,水平面上固定有平行导轨,磁感应强度为B 的匀强磁场方向竖直向下.同种合金做的导体棒ab 、cd 横截面积之比为2∶1,长度和导轨的宽均为L ,ab 的质量为m ,电阻为r ,开始时ab 、cd 都垂直于导轨静止,不计摩擦。
给ab 一个向右的瞬时冲量I ,在以后的运动中,cd 的F=BIL临界状态态v 与a 方向关系运动状态的分析a 变化情况F=ma合外力运动导体所受的安培力 感应电流确定电源(E ,r )rR E I +=最大速度v m 、最大加速度a m 、产生的电热各是多少?例3.(2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0。
20m 。
两根质量均为m=0。
10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0。
50Ω。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0。
20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s ,金属杆甲的加速度为a=1.37m/s 2,问此时两金属杆的速度各为多少?四、变式迁移1、如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么[ ] A .完全进入磁场中时线圈的速度大于(v 0+v)/2;B .安全进入磁场中时线圈的速度等于(v 0+v )/2;C .完全进入磁场中时线圈的速度小于(v 0+v )/2;D .以上情况A 、B 均有可能,而C 是不可能的(提示在时间△t 内安培力的冲量RBL BLq t BLI t F ∆Φ==∆=∆) 2、两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0。
2T ,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =0.25Ω,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s ,如图所示。
不计导轨上的摩擦.FLa a(1)求作用于每条金属细杆的拉力的大小.(2)求两金属细杆在间距增加0。
40m 的滑动过程中共产生的热量.五、能力突破1。
如图12。
4'-1,在匀强磁场中,导体ab 与光滑导轨紧密接触,ab 在向右的拉力F 作用下以速度v 做匀速直线运动,当电阻R 的阻值增大时,若速度v 不变则[ ] A.F 的功率减小 B. F 的功率增大 C. F 的功率不变 D 。
F 的大小不变2.如图12。
4’—2所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆从轨道上由静止滑下。
经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则[ ] A.如果B 增大,v m 将变大 B.如果α变大,v m 将变大 C.如果R 变大,v m 将变大 D 。
如果m 变小,v m 将变大3.如图12。
4’-3所示,两根竖直放置的光滑平行导轨,其一部分处于方向垂直导轨所在平面且有上下水平边界的匀强磁场中,一根金属杆MN 成水平沿导轨滑下,在与导轨和电阻R 组成的闭合电路中,其他电阻不计。
当金属杆MN 进入磁场区后,其运动的速度图像可能是下图中的[ ]vv4.如图,CDEF 是固定的、水平放置的、足够长的“U ”型金属导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上架一个金属棒,在极短时间内给棒一个向右的速度,棒将开始运动,最后又静止在导轨上,则棒在运动过程中,就导轨光滑和粗糙两种情况比较 [ ]A. 安培力做的功相等 B 。
电流通过整个回路所做的功相等 C. 整个回路产生的总热量相等 D 。
棒的动量改变量相等5.如图,甲、乙两个完全相同的线圈,在距地面同一高度处由静止开始释放,A 、B 是边界范围、磁感应强度的大小和方向均完全相同的匀强磁场,只是A 的区域比B 的区域离地面高一些,两线圈下落时始终保持线圈平面与磁场垂直,则[ ] A 。
甲先落地。
B. 乙先落地。
C 。
二者同时落地。
D. 无法确定。
6。
如图12.4’—4所示,AB 为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度。
两个相同的磁性小球,同时从A 、B 管上端的管口无初速释放,穿过A 管的小球比穿过B 管的小球先落到地面。
下面对于两管的描述中可能正确的是[ ] A 。
A 管是用塑料制成,B 管是用铜制成 B 。
A 管是用铝制成,B 管是用胶木制成 C 。
A 管是用胶木制成,B 管是塑料制成 D 。
A 管是用胶木制成,B 管是用铝制成7.如图12.4'—5,在光滑绝缘水平面上,有一矩形线圈以一定的速度进入匀强磁场区域,线圈全部进入匀强磁场区域时期动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则[ ] A.线圈恰好完全离开磁场时停下 B. 线圈在未完全离开磁场时即已停下 C.线圈能够通过场区不会停下 D 。
线圈在磁场中某个位置停下备用:如图12。
4’—6所示,导轨平面水平,匀强磁场方向垂直于导轨平面,光滑导体棒ab 、cd 放在导轨上,不计导轨电阻,今用平行于导轨的恒力作用于ab 棒使之由静止开始向左运动,则[ ] A 。
cd 棒也向左运动;B 。
除开始时刻外,任一时刻ab 棒的速度都大于cd 棒的速度 C.除开始时刻外,任一时刻ab 棒的加速度都大于cd 棒的加速度 D 。
最终两棒的加速度将相同。
8。
水平放置的平行金属框架宽L =0。
2m ,质量为m =0。
1kg 的金属棒ab 放在框架上,并且与框架的两条边垂直.整个装置放在磁感应强度B =0。
5T,方向垂直框架平面的匀强磁场中,如图所示。
金属棒ab 在F =2N 的水平向右的恒力作用下由静止开始运动.电路中除R =0。
05Ω外,其余电阻、摩擦阻力均不考虑。
试求当金属棒ab 达到最大速度后,撤去外力F ,此后感应电流还能产生的热量。
(设框架足够长)CDEF9。
如图所示,abcd 和a /b /c /d /为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。
ab 、a /b/间的宽度是cd 、c /d /间宽度的2倍。
设导轨足够长,导体棒ef 的质量是棒gh 的质量的2倍。
现给导体棒ef 一个初速度v 0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?10。
如图?,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1=1m ,bc 边的边l 2=0.6m ,线框的质量m =1kg ,电阻R =0.1Ω,线框通过细线与重物相连,重物质量M =2kg ,斜面上ef 线(ef∥gh )的右端方有垂直斜面向上的匀强磁场,B=0.5T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 线的距离s =11.4m,(取g =10m/s 2),试求: ⑴线框进入磁场时的速度v 是多少?⑵ab 边由静止开始运动到gh 线所用的时间t 是多少?a /备用:如图所示,电动机牵引一根原来静止的、长L 为1m 、质量m 为0.1kg 的导体棒MN 上升,导体棒的电阻R 为1Ω,架在竖直放置的框架上,它们处于磁感应强度B 为1T 的匀强磁场中,磁场方向与框架平面垂直。
当导体棒上升h =3.8m 时,获得稳定的速度,导体棒上产生的热量为2J ,电动机牵引棒时,电压表、电流表的读数分别为7V 、1A ,电动机内阻r 为1Ω,不计框架电阻及一切摩擦,求:(1)棒能达到的稳定速度;(2)棒从静止至达到稳定速度所需要的时间.参考答案一、知识扫描2. 其他形式的 电 电 其它形式的 三、好题精析例1。
〖解析〗ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a=0时,其速度即增到最大v=v m ,此时必将处于平衡状态,以后将以v m 匀速下滑。
E=BLv ①; I=E/R ②; 安培力F 安方向如图示,其大小为:F 安=BIL ③。