北师大版高中数学必修一第二章2.3映射
- 格式:docx
- 大小:3.35 MB
- 文档页数:4
2.3 映射两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素x,B中总有唯一的一个元素y与它对应,就称这种对应为从A到B的映射,记作f:A→B.A中的元素x称为原像,B中的对应元素y称为x的像,记作f:x→y.谈重点映射定义的理解(1)映射中的集合A和B是非空集合,它们可以是数集、点集或由图形组成的集合以及其他元素的集合.(2)映射是一种特殊的对应,其特殊性在于:集合A中的每一个元素,在集合B中都有唯一的元素与之对应,这种集合A中元素的任意性和集合B中对应的元素的唯一性构成了映射的核心.对应关系常用图示或文字描述的方式来表达.(3)对应有“方向性”,即“从A到B的对应”与“从B到A的对应”一般是不同的,因此,从A到B的映射与从B到A的映射是不同的.(4)映射允许集合A中不同的元素在集合B中有相同的像,即映射可以是“多对一”或“一对一”,但不能是“一对多”.(5)映射允许集合B中的某些元素在集合A中没有原像,也就是由像组成的集合C⊆B.【例1-1】给出下列四个对应,其中构成映射的是( ).A.(1)(2) BC.(1)(3)(4) D.(3)(4)解析:判断一个对应是否为映射,必须严格根据定义,观察A中每一个元素是否在B中都有唯一的元素与之对应.说明一种对应关系不是映射,只需找到一个反例即可.在(2)中,集合A中的元素3在集合B中没有元素与它对应;在(3)中,集合A中的元素2在集合B中有两个元素4和5与它对应,因此(2)和(3)不是映射,故选B.答案:B解技巧判断映射的技巧映射应满足存在性(即A中每一个元素在B中都有像)和唯一性(即像唯一).所以,判断一个对应是否为映射,关键是看是否具备:①“一对一”或“多对一”;②A中元素都有像.【例1-2】下列对应是不是从A到B的映射?(1)A=B=N+,f:x→|x-3|;(2)A={x|x≥2,x∈N},B={y|y≥1,y∈Z},f:x→y=x2-2x+2;(3)A=R,B={0,1},f:x→y=10 00xx≥⎧⎨<⎩,,,;(4)A={x|x>0},B={y|y∈R},f:x→y=(5)设A={矩形},B={实数},对应关系f为矩形到它的面积的对应;(6)设A={实数},B={正实数},对应关系f为x→1||x.解:(1)当x=3∈A时,|x-3|=0∉B,即A中的元素3按对应关系f,在B中没有元素和它对应,故(1)不是映射.(2)∵y=x2-2x+2=(x-1)2+1,对任意的x,总有y≥1.又当x∈N时,x2-2x+2必为整数,即y∈Z.∴当x ∈A 时,x 2-2x +2∈B .∴对A 中每一个元素x ,在B 中都有唯一的y 与之对应,故(2)是映射.(3)按照对应关系f ,在A 中任意一个非负数,在B 中都有唯一的数1与之对应;在A 中任意一个负数,在B 中都有唯一的数0与之对应,故(3)是映射.(4)对任意的x ∈A ={x |x >0},按对应法则f :x →y=,存在两个y ∈B ={y |y ∈R },即y =y =与之对应,故(4)不是映射.(5)∵对每一个矩形,它的面积是唯一确定的,∴对于集合A 中的每一个矩形,B 中都有唯一的实数与之对应,故(5)是映射.(6)∵实数0的绝对值还是0,其没有倒数,∴对于A 中的实数0,B 中没有元素与之对应,故(6)不是映射.2.一一映射的概念若从A 到B 的映射满足下列条件:①A 中每一个元素在B 中都有唯一的像与之对应;②A 中的不同元素的像也不同;③B 中的每一个元素都有原像.就称此映射为一一映射.有时,我们把集合A ,B 之间的一一映射也叫作一一对应.映射造出多少个映射?其中有多少个一一映射?分析:可根据映射的定义,构造从集合A 到集合B 的映射,即让A 中的每一个元素在B 中都有唯一的元素与之对应.从集合A 到集合B 的映射,若对应关系不同,则所得到的映射不同.最后依据一一映射的概念从中数出一一映射的个数.解:从集合A 到集合B 可构造如下映射(其中的对应关系用箭头表示):(3),A 到集合B 能构造出4个映射,其中有2个一一映射.【例2-2】若M ={x |0≤x ≤2},N ={y |0≤y ≤1},下列对应关系f :x →y 是从M 到N 的一一映射的是( ).A .12y x =B .13y x = C .212y x = D .y =(x -1)2 解析:一一映射首先是映射,其次是A 中的不同元素在B 中的像不同,且B 中的每一个元素在A 中都有原像,只有满足这三个条件的对应关系,才是从A 到B 的一一映射.在选项A 中,当0≤x ≤2时,0≤y ≤1,对于集合M 中的每一个元素在N 中都有唯一的像与之对应,且M 中的不同元素的像也不同,N 中的每个元素都有原像,符合一一映射的三个条件;在选项B 中,当0≤x ≤2时,0≤y ≤23,所以集合N 中的元素y ∈213y y ⎧⎫<≤⎨⎬⎩⎭在M 中没有原像;在选项C 中,当0≤x ≤2时,0≤y ≤2,所以集合M 中的元素x ∈{x x ≤2}在N 中没有像;在选项D 中,当x =0和2时,都有y =1,所以集合M 中的不同元素的像可能相同,故选A.(1)函数包括三要素:定义域、值域、两者之间的对应关系;映射包括三要素:非空集合A 、非空集合B 以及A ,B 之间的对应关系.(2)函数定义中的两个集合为非空数集;映射中两个非空集合中的元素为任意元素,如人、物、命题等都可以.(3)在函数中,对定义域中的每一个数x ,在值域中都有唯一确定的函数值和它对应,在映射中,对集合A 中的任意元素a 在集合B 中都有唯一确定的像b 和它对应.(4)在函数中,对值域中的每一个确定的函数值,在定义域中都有确定的值和它对应;在映射中,对于集合B 中的任一元素b ,在集合A 中不一定有原像.(5)函数是一种特殊的映射,是从非空数集到非空数集的映射.函数概念可以叙述为:设A ,B 是两个非空数集,f 是A 到B 的一个映射,那么映射f :A →B 就叫作A 到B 的函数.在函数中,原像的集合称为定义域,像的集合称为值域.(1)A =R ,B =R ,f :x →y =11x +;(2)A ={三角形},B ={圆},f :三角形的内切圆; (3)A =R ,B ={1},f :x →y =1;(4)A =[-1,1],B =[-1,1],f :x →x 2+y 2=1.分析:映射是一种特殊的对应,函数是一种特殊的映射,判断两个集合间的对应关系是否为函数时,只需把握两点:一、两个集合是否都是非空数集;二、对应关系是否为映射.解:(1)当x =-1时,y 的值不存在,所以不是映射,更不是函数.(2)由于A ,B 不是数集,所以(2)不是函数,但每个三角形都有唯一的内切圆,所以(2)是A 到B 的映射.(3)A 中的每一个数都与B 中的数1对应,因此,(3)是A 到B 的函数,也是A 到B 的映射.(4)取x =0,则由x 2+y 2=1,得y =±1,即A 中的一个元素0与B 中的两个元素±1对应,因此(4)不是A 到B 的映射,也不是从A 到B 的函数.警误区 关系式x =1是函数吗?有的同学问:关系式y =1是y 关于x 的函数,那么关系式x =1是y 关于x 的函数吗?函数是一种特殊的映射,是非空数集间的一种映射.对于关系式x=1,显然有x∈{1},y∈R,则1与全体实数建立对应关系,不符合函数的定义,因此,“x=1”不是y关于x的函数.4.像与原像的求解问题(1)对于一个从集合A到集合B的映射f而言,A中的每个元素x,在f的作用下,在B 中都对应着唯一的元素y,则y称为像,而x叫原像.(2)对于给出原像求像的问题,只需将原像代入对应关系式中,即可求出像.对于给出像求原像的问题,可先设出原像,再代入对应关系式中得到像,而它与已知的像是同一个元素,从而求出原像;也可根据对应关系式,由像逆推出原像.解答此类问题,关键是:①分清原像和像;②搞清楚由原像到像的对应关系.例如:已知M={自然数},P={正奇数},映射f:a(a∈M)→b=2a-1(b∈P).则在映射f下,M中的元素11对应着P中的元素________;P中的元素11对应着M中的元素________.∵2×11-1=21,∴M中的元素11对应着P中的元素21.由2a-1=11,得a=6,∴P中的元素11对应着M中的元素6.【例4-1】已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原像分别对应6和9,则19在f作用下的像为( ).A.18 B.30 C.272D.28解析:由题意,可知64,910,a ba b+=⎧⎨+=⎩解得a=2,b=-8,∴对应关系为y=2x-8.故19在f作用下的像是y=2×19-8=30.答案:B【例4-2】已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y +1,4x+3y-1).(1)求A中元素(1,2)的像;(2)求B中元素(1,2)的原像.分析:解答(1)可利用x=1,y=2代入对应关系求出3x-2y+1与4x+3y-1的值便可,解答(2)可利用方程的观点解方程组321=1431=2x yx y-+⎧⎨+-⎩,,求出x,y的值便可.解:(1)当x=1,y=2时,3x-2y+1=0,4x+3y-1=9,故A中元素(1,2)的像为(0,9).(2)令32114312x yx y-+=⎧⎨+-=⎩,,得6,179.17xy⎧=⎪⎪⎨⎪=⎪⎩故B中元素(1,2)的原像是69, 1717⎛⎫ ⎪.(1)一般地,若集合A中含有m个元素,集合B中含有n个元素,则从A到B的映射有n m 个,从B到A的映射有m n个.例如:求集合A={a,b,c}到集合B={-1,1}的映射的个数.按照映射的定义,A中元素可都对应B中同一个元素,即a→-1,b→-1,c→-1或a→1,b→1,c→1,共有2个不同的映射;A中元素也可对应B中两个元素,即a→-1,b→-1,c→1或a→-1,b→1,c→-1或a→1,b→-1,c→-1或a→1,b→1,c→-1或a→1,b→-1,c→1或a→-1,b→1,c→1,共有6个不同的映射,综上可知,从A到B的映射共有2+6=8=23个.以后可以根据两个集合中元素的个数直接计算映射的个数.(2)计算满足某些特定要求的映射的个数时,关键是将映射具体化、形象化(如用列表法、图像法、数形结合等).例如,设M={a,b,c},N={-1,0,1},若从M到N的映射f满足f(a)+f(b)=f(c),求这样的映射f的个数.要确定映射f,则只需要确定M中的每个元素对应的像即可,即确定f(a),f(b),f(c)的值.而f(a),f(b),f(c)∈{-1,0,1},还满足f(a)+f(b)=f(c),因此要确定这样的映射f的个数,则只需要确定由-1,0,1能组成多少个等式( )+( )=( ).注意到映射不要求N f(c)的取值情况表示出来.【例5-1】集合A={1,2,3},B={3,4},从A到B的映射f满足f(3)=3,则这样的映射共有________个.解析:由于f(3)=3,因此只需考虑剩下的两个元素1和2的像的问题,总共有如图所示的4种可能(也可直接利用公式得到这样的映射共有22=4个).答案:4【例5-2】已知集合A={a,b,c},B={1,2},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有________个.解析:要确定映射f,则只需确定A中的每个元素对应的像即可,即确定f(a), f(b),f(c)的值,而f(a),f(b),f(c)∈{1,2},还满足f(a)+f(b)+f(c)=4,所以f(a),f(b),f(c)中有一个是2,另两个是3个.答案:3【例5-3】设集合A={1,2,3},集合B={a,b,c},那么从集合A到集合B的映射的个数为________,从集合A到集合B的一一映射的个数为________.解析:因为集合A中有3个元素,集合B中有3个元素,所以从集合A到集合B的映射有33=27个.其中A到B的一一映射有下面6种情形.答案:27 6。
北师大版高中教材目录第一章集合§1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算 3.1 交集与并集3.2 全集与补集第二章 函数§1 生活中的变量关系 §2 对函数的进一步认识 2.1 函数概念2.2 函数的表示法 2.3 映射§3 函数的单调性 §4 二次函数性质的再研究4.1 二次函数的图像 4.2 二次函数的性质§5 简单的幂函数第三章 指数函数和对数函数 §1 正整数指数函数 §2 指数扩充及其运算性质2.1 指数概念的扩充 2.2 指数运算的性质§3 指数函数3.1 指数函数的概念3.2 指数函数x y 2= 和xy ⎪⎭⎫ ⎝⎛=21 的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算 4.2 换底公式§5 对数函数5.1 对数函数的概念 5.2 对数函数x y 2log =的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的 比较第四章 函数应用 §1 函数与方程1.1 利用函数性质判断方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画 2.2 用函数模型解决实际问题 2.3 函数建模案例第一章 立体几何初步 §1 简单几何体1.1 简单旋转体 1.2 简单多面体§2 直观图 §3 三视图3.1 简单组合体的三视图 3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识 4.2 空间图形的公理§5 平行关系5.1 平行关系的判定 5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定 6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积§8 面积公式和体积公式的简单应用 第二章 解析几何初步 §1 直线与直线的方程1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系 1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程 2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立 3.2 空间直角坐标系中点的坐标 3.3 空间两点间的距离公式第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差 4.2 标准差§5 用样本估计总体5.1 估计总体的分别5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2 变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3模拟方法——概率的应用第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式 4.1 任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性 4.3 单位圆与诱导公式§5 余弦函数的性质与图像5.1 从单位圆看正弦函数的性质 5.2 正弦函数的图像5.3 正弦函数的性质§6 余弦函数的图像与性质6.1 余弦函数的图像6.2 余弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像和性质7.3 正切函数的诱导公式§8 函数)sin(ϕ+ω=xAy的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表述 4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数 2.3 两角和与差的正切函数§3 二倍角的三角函数第一章数列§1 数列1.1 数列的概念1.2 数列的函数特性§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域 4.2 简单线性规划4.3 简单线性规划的应用第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.3 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分背景——面积和路程问题1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章计数原理§1 分类加法计数原理和分步乘法计数原理 1.1 分类加法计数原理1.2 分类乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 独立性检验2.2 独立性检验的基本思想2.3 独立性检验的应用第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质第一章?平面向量与二阶方阵§1?平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章?几何变换与矩阵§1?几种特殊的矩阵变换§2?矩阵变换的性质第三章?变换的合成与矩阵乘法§1?变换的合成与矩阵乘法§2?矩阵乘法的性质第四章?逆变换与逆矩阵§1?逆变换与逆矩阵§2?初等变换与逆矩阵§3?二阶行列式与逆矩阵§4?可逆矩阵与线性方程组第五章?矩阵的特征值与特征向量§1?矩阵变换的特征值与特征向量§2?特征向量在生态模型中的简单应用§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3数学归纳法与贝努利不等式第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程 2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入 1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法。
北师大版高中教材目录第一章 集合§1 集合的含义与表示 §2 集合的基本关系 §3 集合的基本运算 3.1 交集与并集3.2 全集与补集第二章 函数§1 生活中的变量关系 §2 对函数的进一步认识 2.1 函数概念2.2 函数的表示法 2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像 4.2 二次函数的性质§5 简单的幂函数第三章 指数函数和对数函数 §1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充 2.2 指数运算的性质§3 指数函数3.1 指数函数的概念3.2 指数函数x y 2= 和xy ⎪⎭⎫ ⎝⎛=21 的图像和 性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算 4.2 换底公式§5 对数函数5.1 对数函数的概念 5.2 对数函数x y 2log =的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章 函数应用 §1 函数与方程1.1 利用函数性质判断方程解的存在 1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画 2.2 用函数模型解决实际问题 2.3 函数建模案例第一章 立体几何初步 §1 简单几何体1.1 简单旋转体 1.2 简单多面体§2 直观图 §3 三视图3.1 简单组合体的三视图 3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识 4.2 空间图形的公理§5 平行关系5.1 平行关系的判定 5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定 6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3 球的表面积和体积§8 面积公式和体积公式的简单应用第二章 解析几何初步 §1 直线与直线的方程1.1 直线的倾斜角和斜率 1.2 直线的方程 1.3 两条直线的位置关系 1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程 2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差 4.2 标准差§5 用样本估计总体5.1 估计总体的分别5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2 变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3模拟方法——概率的应用第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义 4.2 单位圆与周期性4.3 单位圆与诱导公式§5 余弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3 正弦函数的性质§6 余弦函数的图像与性质6.1 余弦函数的图像6.2 余弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像和性质7.3 正切函数的诱导公式§8 函数)sin(ϕ+ω=xAy的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表述4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数 2.3 两角和与差的正切函数§3 二倍角的三角函数第一章数列§1 数列1.1 数列的概念1.2 数列的函数特性§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大小值§4 简单线性规划4.1 二元一次不等式组与平面区域 4.2 简单线性规划4.3 简单线性规划的应用第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1 空间向量的标准正交分解与坐标表示 3.2 空间向量基本定理3.3 空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1 直线间的夹角5.2 平面间的夹角5.3 直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点第一章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 综合法与分析法2.1 综合法2.2 分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.3 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用2.2 最大值、最小值问题第四章定积分§1 定积分的概念1.1 定积分背景——面积和路程问题 1.2 定积分§2 微积分基本定理§3 定积分的简单应用3.1 平面图形的面积3.2 简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法第一章计数原理§1 分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2 分类乘法计数原理§2 排列§3 组合§4 简单计数问题§5 二项式定理5.1 二项式定理5.2 二项式系数的性质第二章概率§1 离散型随机变量及其分布列§2 超几何分布§3 条件概率与独立事件§4 二项分布§5 离散型随机变量的均值与方差§6 正态分布6.1 连续型随机变量6.2 正态分布第三章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 独立性检验2.2 独立性检验的基本思想2.3 独立性检验的应用第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全称命题与特称命题的否定§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”4.3 逻辑联结词“非”第二章圆锥曲线与方程§1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质§2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质§3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质第三章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1 导数的概念2.2 导数的几何意义§3 计算导数§4 导数的四则运算法则4.1 导数的加法与减法法则4.2 导数的乘法与除法法则第四章导数应用§1 函数的单调性与极值1.1 导数与函数的单调性1.2 函数的极值§2 导数在实际问题中的应用2.1 实际问题中导数的应用 2.2 最大值、最小值问题第一章统计案例§1 回归分析1.1 回归分析1.2 相关系数1.3 可线性化的回归分析§2 独立性检验2.1 条件概率与独立事件2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用第二章框图§1 流程图§2 结构图第三章推理与证明§1 归纳与类比1.1 归纳推理1.2 类比推理§2 数学证明§3 综合法与分析法3.1 综合法3.2 分析法§4 反证法第四章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1 数的概念的扩展1.2 复数的有关概念§2 复数的四则运算2.1 复数的加法与减法2.2 复数的乘法与除法。
必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3.2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1 函数概念2.2 函数的表示法2.3 映射§3 函数的单调性§4 二次函数性质的再研究4.1 二次函数的图像4.2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2.1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3.3 指数函数的图像和性质§4 对数4.1 对数及其运算4.2 换底公式§5 对数函数5.1 对数函数的概念5.2 y=log2x的图像和性质5.3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1.1 利用函数性质判定方程解的存在1.2 利用二分法求方程的近似解§2 实际问题的函数建模2.1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4.1 空间图形基本关系的认识4.2 空间图形的公理§5 平行关系5.1 平型关系的判定5.2 平行关系的性质§6 垂直关系6.1 垂直关系的判定6.2 垂直关系的性质§7 简单几何体的面积和体积7.1 简单几何体的侧面积7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程1.1 直线的倾斜角和斜率1.2 直线的方程1.3 两条直线的位置关系1.4 两条直线的交点1.5 平面直角坐标系中的距离公式§2 圆与圆的方程2.1 圆的标准方程2.2 圆的一般方程2.3 直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1 空间直角坐标系的建立3.2 空间直角坐标系中点的坐标3.3 空间两点间的距离公式必修3第一章统计§1 从普查到抽样§2 抽样方法2.1 简单随机抽样2.2 分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差§5 用样本估计总体5.1 估计总体的分布5.2 估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8 最小二乘估计第二章算法初步§1 算法的基本思想 1.1 算法案例分析1.2 排序问题与算法的多样性§2 算法框图的基本结构及设计2.1 顺序结构与选择结构2.2变量与赋值2.3 循环结构§3 几种基本语句3.1 条件语句3.2 循环语句第三章概率§1 随机事件的概率 1.1 频率与概率1.2 生活中的概率§2 古典概型2.1 古典概型的特征和概率计算公式2.2 建立概率模型2.3 互斥事件§3 模拟方法—概率的应用必修4第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1 任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与诱导公式§5 正弦函数的性质与图像5.1 从单位圆看正弦函数的性质5.2 正弦函数的图像5.3正弦函数的性质§6 余弦函数的性质与图像6.1正弦函数的图像6.2 正弦函数的性质§7 正切函数7.1 正切函数的定义7.2 正切函数的图像与性质7.2 正切函数的诱导公式§8 函数y=Asin 的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1 位移、速度、和力1.2 向量的概念§2 从位移的合成到向量的加法2.1 向量的加法2.2 向量的减法§3 从速度的倍数到数乘向量3.1 数乘向量3.2 平面向量基本定理§4 平面向量的坐标 4.1 平面向量的坐标表示4.2 平面向量线性运算的坐标表示4.3 向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1 点到直线的距离公式7.2 向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1 两角差的余弦函数2.2 两角和与差的正弦、余弦函数2.3 两角和与差的正切函数§3 二倍角的三角函数必修5第一章数列§1 数列1.1 数列的概念1.2 数列的函数特征§2 等差数列2.1 等差数列2.2 等差数列的前n项和§3 等比数列3.1 等比数列3.2 等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1 不等关系1.2 比较大小§2 一元二次不等式2.1 一元二次不等式的解法2.2 一元二次不等式的应用§3 基本不等式3.1 基本不等式3.2 基本不等式与最大(小)值§4 简单线性规划4.1 二元一次不等式(组)与平面区域4.2 简单线性规划4.3 简单线性规划的应用选修1-1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1 充分条件2.2 必要条件2.3 充要条件§3 全称量词与存在量词3.1 全称量词与全称命题3.2 存在量词与特称命题3.3 全。
高中数学北师大版必修一:2.2.3《映射》双基达标+综合提高1.已知集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},则下列对应关系中不能看作从M 到P 的映射的是( ).A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析 选项C 中,集合M 中元素6没有像,不是映射. 答案 C2.已知集合A =N +,B ={a |a =2n -1,n ∈Z },映射f :A →B ,使A 中任一元素a 与B 中元素2a -1对应,则与B 中元素17对应的A 中元素是( ). A .3 B .5 C .17 D .9解析 利用对应法则转化为解方程.由题意,得2a -1=17,解得a =9. 答案 D3.定义在R 上的函数y =f (x )的值域为[a ,b ],则y =f (x +1)的值域为( ). A .[a ,b ]B .[a +1,b +1]C .[a -1,b -1]D .无法确定解析 将函数y =f (x )的图像向左平移一个单位得函数y =f (x +1)的图像,由于定义域均是R ,则这两个函数图像上点的纵坐标的取值范围相同,所以y =f (x +1)的值域也是[a ,b ].故选择A. 答案 A4.设集合A 和B 都是自然数集,映射f :A →B 把A 中的元素n 映射到B 中的元素2n+n ,则在映射f 下,A 中的元素________对应B 中的元素3.解析 对应法则为f :n →2n +n ,根据题意2n+n =3,可得n =1. 答案 15.已知:A ={a ,b ,c },B ={1,2},从A 到B 建立映射f ,使f (a )+f (b )+f (c )=4,则满足条件的映射共有________个.解析 ∵B ={1,2},f (a )+f (b )+f (c )=4, ∴f (a ),f (b ),f (c )当中有一个取2,另两个取1. ∴只有3种对应方法. 答案 36.A =R ,B ={(x ,y )|x 、y ∈R },f :A →B ,f :x →(x +1,x 2+1). (1)求A 中元素2的像;(2)B 中元素⎝ ⎛⎭⎪⎫32,54的原像. 解 (1)x =2时,x +1=2+1,x 2+1=3, ∴2的像是(2+1,3).(2)设B 中元素⎝ ⎛⎭⎪⎫32,54的原像为x , 则⎩⎪⎨⎪⎧32=x +1,54=x 2+1,得x =12.∴B 中元素⎝ ⎛⎭⎪⎫32,54的原像为12. 综合提高限时25分钟7.下列对应是从集合S 到T 的映射的是( ). A .S =N ,T ={-1,1},对应法则是(-1)n,n ∈SB .S ={0,1,4,9},T ={-3,-2,-1,0,1,2,3},对应法则是开平方C .S ={0,1,2,5},T ={1,12,15},对应法则是取倒数D .S ={x |x ∈R },T ={y |y ∈R },对应法则是x →y =1+x1-x解析 判断映射方法简单地说应考虑A 中的元素是否都可以受f 作用,作用的结果是否一定在B 中,作用的结果是否唯一这三个方面.很明显A 符合定义;B 是一对多的对应;C 命题中的元素0没有像;D 命题集合S 中的元素1也无像. 答案 A8.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下): 表1 映射f 的对应法则原像 1 2 3 4 像3421表2 映射g 的对应法则原像 1 2 3 4 像4312则与f [g (1)]相同的是( )A .g [f (1)] B .g [f (2)] C .g [f (3)] D .g [f (4)]解析 f (a )表示在对应法则f 下a 对应的像,g (a )表示在对应法则g 下a 对应的像. 由表1和表2,得f [g (1)]=f (4)=1,g [f (1)]=g (3)=1,g [f (2)]=g (4)=2,g [f (3)]=g (2)=3,g [f (4)]=g (1)=4,则有f [g (1)]=g [f (1)]=1.答案 A9.已知集合M ={a ,b ,c ,d },P ={x ,y ,z },则从M 到P 能建立不同映射的个数是________. 解析 集合M 中有4个元素,集合P 中有3个元素,则从M 到P 能建立34=81个不同的映射. 答案 8110.已知(x ,y )在映射f 作用下的像是(x +y ,xy ),则(3,4)的像为________,(1,-6)的原像为________.解析 根据条件可知x =3,y =4,则x +y =3+4=7,xy =3×4=12,所以(3,4)的像为(7,12);设(1,-6)的原像为(x ,y ),则有⎩⎪⎨⎪⎧x +y =1,xy =-6,解得⎩⎪⎨⎪⎧x =-2,y =3,或⎩⎪⎨⎪⎧x =3,y =-2.所以(1,-6)的原像为(-2,3)或(3,-2). 答案 (7,12) (-2,3)或(3,-2)11.已知集合A ={1,2,3,k},B ={4,7,a 4,a 2+3a },且a ∈N ,k ∈N ,x ∈A ,y ∈B ,映射f :A →B ,使B 中元素y =3x +1和A 中元素x 对应,求a 及k 的值.解 ∵B 中元素y =3x +1和A 中元素x 对应,∴A 中元素1的像是4;2的像是7;3的像是10,即a 4=10或a 2+3a =10. ∵a ∈N ,∴由a 2+3a =10,得a =2. ∵k 的像是a 4,∴3k +1=16,得k =5.∴a =2,k =5.12.(创新拓展)已知集合A ={x |(x -1)(x 2+3x -4)=0},集合B ={a ,a +5,a 2-2a -5},映射f :A →B 是“加2”,求实数a 的值,并判断映射f :A →B 是不是一一映射? 解 ∵(x -1)(x 2+3x -4)=0,∴x 1=x 2=1,x 3=-4, ∴集合A ={1,-4},∵映射f :A →B 是“加2”, ∴1+2=3∈B ,-4+2=-2∈B .①当a =3时,a +5=8,a 2-2a -5=-2, ∴B ={3,-2,8}.此时8无原像,∴f :A →B 不是一一映射. ②当a =-2时,a +5=3,a 2-2a -5=3. ∴B ={-2,3},与B 有三个元素矛盾,∴a ≠-2. ③当a +5=-2时,a =-7,a 2-2a -5=58, ∴B ={7,-2,58},与3∈B 矛盾,∴a ≠-7. ④当a 2-2a -5=-2时,a 1=3,a 2=-1.当a=3时,B={3,-2,8};当a=-1时,a+5=4,B={-2,-1,4},与3∈B矛盾,则a≠-1. ∴a=3,B={-2,3,8},映射f:A→B不是一一映射.。
2.3 映射一、教材的地位与作用函数是数学中最主要的概念之一,而函数概念贯穿与中学数学的始终,映射是一种特殊的对应,而且函数也是特殊的对应,学习集合的映射概念的主要目的是为了给函数下定义。
本章的函数定义是用映射刻画的近代定义,初中学习的函数概念是用“对应”来描述的,这两个函数定义反映了函数概念发展的不同阶段。
二、教学目标1.知识与技能:(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;(2)能准确使用数学符号表示映射,把握映射与映射的区别;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法。
2.过程与方法: (1)在概念形成过程中,培养学生的观察、比较和归纳的能力;(2)通过映射概念的学习,逐步提高学生对知识的探究能力。
3.情感态度与价值观: 使学生认识到事物间的有联系的,对应的,映射是一种联系方式,使学生理解动与静的辩证关系。
三、教学重难点教学重点:映射的概念教学难点:映射与一一映射的概念及其应用四、教法学法与教具从学生熟悉的对应入手,选择一些具体的生活例子,然后财举一些数学例子,分为一对多、多对一、多对多、一对一四种情况,让学生认真观察、比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识。
教具:多媒体五、教学过程:1、创设情景,揭示课题复习初中常见的对应关系1.对于任何一个实数a,数轴上都有唯一的点p和它对应;2.对于坐标平面内任何一个点A,都有唯一的有序实数对(,x y)和它对应;3.对于任意一个三角形,都有唯一确定的面积和它对应;4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;设计意图:从学生熟悉的对应入手,选择一些具体的生活例子,然后财举一些数学例子,分为一对多、多对一、多对多、一对一四种情况,让学生认真观察、比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识2.讲解新课1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射.2.先看几个例子,两个集合A、B的元素之间的一些对应关系:一提出问题给出以下对应关系三个对应关系有什么共同特点?(1)集合A与B都是非空集合;(2)集合A中的元素在集合B中都有唯一的元素与之对应.设计意图:观察法:通过观察事物的联系与区别得出一般性的结论,让学生观察、分析升华为理论,然后在应用中发现规律,培养学生的自主学习与抽象概括的能力。
高中数学北师大版必修1-全册-知识点总结高中数学北师大版必修1-全册-知识点总结高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集. (3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(). 【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集(或 A中的任一元素都属于B (1)AA (2) (3)若且,则 (4)若且,则或真子集 AB (或BA),且B中至少有一元素不属于A (1)(A为非空子集)(2)若且,则集合相等 A中的任一元素都属于B,B中的任一元素都属于A (1)AB (2)BA (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集. 【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集且(1)(2)(3)⑷ Α⊆B⟺A∩B=A 并集或(1)(2)(3)⑷A⊆B⟺A∪B=B 补集∁uA ⑴ (∁uA)∩A=∅, ⑵∁uA∪A=U, ⑶ ∁u∁uA=A, ⑷ ∁uA∩B=∁uA∪∁uB, ⑸ ∁u(A∪B)=(∁uA)∩(∁uB) ⑼ 集合的运算律:交换律:结合律: 分配律: 0-1律:等幂律:求补律:A∩∁uA=∅A∪CuA=U ∁uU=∅∁u∅=U 反演律:∁u(A∩B)=(∁uA)∪(∁uB) ∁u(A∪B)=(∁u A)∩(∁uB) 第二章函数§1函数的概念及其表示一、映射 1.映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的元素,在集合B中都有元素和它对应,这样的对应叫做到的映射,记作 . 2.象与原象:如果f:A→B是一个A到B的映射,那么和A中的元素a对应的叫做象,叫做原象。
2.3 映射
问题导学
一、映射、一一映射与函数的判定
活动与探究1
在如图所示的对应中是A 到B 的映射的是( ).
A .②
B .③
C .③④
D .④
活动与探究2
判断下列对应是不是从集合A 到集合B 的映射,其中哪些是一一映射?哪些是函数?为什么?
(1)A =R ,B ={非负实数},对应关系f :y =x 2,x ∈A ,y ∈B .
(2)A =R ,B ={正实数},对应关系f :y =x 2,x ∈A ,y ∈B .
(3)A ={x ∈R |x >0},B =R ,对应关系f :A 中的元素对应它的平方根.
(4)A ={x |x >0},B ={x |x >0},f :y =1x
,x ∈A ,y ∈B . 迁移与应用
判断下列对应是否为集合A 到集合B 的映射,其中哪些是一一映射?哪些是函数?为什么?
(1)A =N ,B =N +,对应关系f :x →|x -1|;
(2)A ={x |0≤x ≤6},B ={y |0≤y ≤2},对应关系f :x →x 2
; (3)A ={1,2,3,4},B ={4,5,6,7},对应关系f :x →x +3.
判断一个对应是否构成从A 到B 的映射时,先看集合A 中每一个元素在集合B 中是否均有对应元素.若有,看对应元素是否唯一;集合B 中有剩余元素不影响映射的成立.想说明一个对应不是映射,只需寻找一个反例即可.若进一步判断该映射是否是函数,只需看两个集合A ,B 是否是非空数集即可.若进一步判断是否为一一映射,还需注意B 中的每一个元素在A 中都有原像,集合A 中不同元素对应的像不同.
二、像与原像的计算
活动与探究3
已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x 2
+1),求A 中元素2的像和B 中元素⎝⎛⎭⎫32,54的原像.
迁移与应用
已知映射f :A →B 中,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(3x -2y +1,4x +3y -1),
(1)求A 中元素(1,2)的像;
(2)求B 中元素(1,2)的原像.
解决像与原像的计算问题的关键是紧扣定义,具体地说,就是若已知A 中的元素a (即原像a ),求B 中与之对应的元素b (即像b ),这时只要将元素a 代入对应关系f 求解即可;若已知B 中的元素b (即像b ),求A 中与之对应的元素a (即原像a ),这时构造方程(组)进行。