人教版高中数学必修一教案:映射的概念
- 格式:docx
- 大小:175.38 KB
- 文档页数:7
映射的概念高中教学教案一、教学目标1. 让学生理解映射的概念,知道映射是一种数学关系,将一个集合的元素对应到另一个集合的元素。
2. 让学生掌握映射的基本性质,包括单射性、满射性和双射性。
3. 让学生能够运用映射的概念解决实际问题,提高学生的数学应用能力。
二、教学内容1. 映射的定义:介绍映射的概念,解释映射是将一个集合的元素对应到另一个集合的元素。
2. 映射的基本性质:讲解映射的单射性、满射性和双射性,并通过实例进行分析。
3. 映射的图像:介绍映射的图像表示方法,让学生能够通过图像理解映射的特点。
4. 映射的应用:通过实际问题,让学生运用映射的概念解决问题,提高学生的数学应用能力。
三、教学方法1. 采用讲授法,讲解映射的定义和基本性质,让学生掌握映射的概念。
2. 采用案例分析法,通过实例讲解映射的性质,让学生深入理解映射的特点。
3. 采用图像展示法,展示映射的图像,让学生直观地理解映射的关系。
4. 采用问题驱动法,给出实际问题,让学生运用映射的概念解决问题,提高学生的数学应用能力。
四、教学步骤1. 引入映射的概念,让学生了解映射是将一个集合的元素对应到另一个集合的元素。
2. 讲解映射的基本性质,包括单射性、满射性和双射性,并通过实例进行分析。
3. 介绍映射的图像表示方法,让学生能够通过图像理解映射的特点。
4. 给出实际问题,让学生运用映射的概念解决问题,提高学生的数学应用能力。
五、教学评价1. 课堂提问:通过提问了解学生对映射概念的理解程度。
2. 课后作业:布置有关映射的练习题,检验学生对映射知识的掌握情况。
3. 课堂讨论:组织学生进行课堂讨论,培养学生的合作能力和思维能力。
4. 问题解答:评价学生在解决问题时的数学思维能力和创新能力。
六、教学拓展1. 映射与函数的关系:介绍映射与函数的联系和区别,让学生理解函数是一种特殊的映射。
2. 不同类型的映射:讲解线性映射、非线性映射等不同类型的映射,并分析其特点。
1、2、2、3映射学案编写者:黄冈实验学校数学教师孟凡洲一、【学习目标】1、要求学生理解映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”;2、映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素;3、会利用映射的定义解决一些简单的问题.二、【自学内容和要求及自学过程】阅读材料,自学教材22页内容,回答问题(映射)材料:给出以下对应关系如右:<1>这三个对应关系有什么共同特点?<2>像材料中的对应我们称为映射,请你结合教材给出映射的定义;映射定义中的“都有唯一”是什么意思?函数与映射有什么关系?<3>你能举出几个生活中映射的例子吗?结论:<1>①都有三部分组成:A、B、f;②集合A、B均为非空集合;③集合A中的元素在集合B中都有唯一的元素与之对应;<2>一般地,设A、B是两个的集合,如果按某一个确定的,使对于集合A中的,在集合B中都有的y与之对应,那么就称对应为从集合A到集合B的一个映射.记作“”;“都有唯一”包含两层意思:一是,二是,也就是说有且只有一个的意思,即是或;函数是特殊的映射,映射是函数的推广.三、【练习与巩固】1、自学教材第22页例7,然后完成练习一练习一:<1>你能理解例7中的解题思路吗?试述之;<2>图(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?2、根据今天所学知识,然后完成练习二练习二:设f:A→B是A到B的映射,其中A→B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),求:(1)A中元素(-1,2)在B中对应的元素;(2)在A中什么元素与B中元素(-1,2)对应?四、【课堂作业】1、必做题:教材第23页练习4;2、选做题:教材第24页习题1.2A组第10题.1、2、2、3映射学案编写者:黄冈实验学校数学教师孟凡洲一、【学习目标】1、要求学生理解映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”;2、映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素;3、会利用映射的定义解决一些简单的问题.【教学效果】:教学目标的出示,有利于学生明确本节课的任务,从而能激发学生学习的兴趣.二、【自学内容和要求及自学过程】阅读材料,自学教材22页内容,回答问题(映射)材料:给出以下对应关系如右:<1>这三个对应关系有什么共同特点?<2>像材料中的对应我们称为映射,请你结合教材给出映射的定义;映射定义中的“都有唯一”是什么意思?函数与映射有什么关系?<3>你能举出几个生活中映射的例子吗?结论:<1>①都有三部分组成:A、B、f;②集合A、B均为非空集合;③集合A中的元素在集合B中都有唯一的元素与之对应;<2>一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.记作“f:A→B”;“都有唯一”包含两层意思:一是必有一个,二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一;函数是特殊的映射,映射是函数的推广.【教学效果】:通过举例学习,学生能分辨出哪一些是映射,哪一些不是映射,达到了教学目标.需要注意的是,讲解的时候举反例是必要的.三、【练习与巩固】1、自学教材第22页例7,然后完成练习一练习一:<1>你能理解例7中的解题思路吗?试述之;<2>图(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?2、根据今天所学知识,然后完成练习二练习二:设f:A→B是A到B的映射,其中A→B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),求:(1)A中元素(-1,2)在B中对应的元素;(2)在A中什么元素与B中元素(-1,2)对应?【教学效果】:学生们都能顺利的完成练习一,练习二需老师讲解.四、【课堂作业】1、必做题:教材第23页练习4;2、选做题:教材第24页习题1.2A组第10题.五、【小结】这节课主要学习的是映射.映射在高考中的要求不是很高,了解定义,理解函数是特殊的映射即可.学习完之后要达到能分辨出哪些是映射,哪些不是映射.哪些是函数,哪些不是函数.六、【反思】这节课符号比较多,学生学习起来比较艰涩,课前要引导学生做好预习.。
高中数学必修一教案【优秀4篇】高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。
一。
教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。
二。
教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。
显然,值域是集合B的子集。
注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。
3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学必修一教案篇二一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。
高一数学映射§2.1 映射教学目标1.使学生了解映射的概念、表示方法.2.使学生了解象、原象的概念.3.使学生通过简单的对应图示了解一一映射的概念.4.使学生认识到事物间是有联系的,对应、映射是一种联系方式。
教学重点映射、一一映射的概念.教学难点映射、一一映射的概念.教学方法讲授法.教具准备幻灯片4张:第一张:课本P47图2—1中四个对应图(记作A)。
第二张:初中学过的对应的例子(记作B)。
(1)对于任何一个实数,数轴上都有唯一的点和它对应;(2)对于坐标平面内的任何一个点,都有唯一有序实数对(x,y)和它对应;(3)对于任意一个三角形,都有唯一确定的面积和它对应;(4)对于任意一个二次函数,相应坐标平面内都有唯一的抛物线和它对应。
第三张:判断下面的对应是否为映射(记作C)(1)设A={1,2,3,4},B={3,4,5,6,7,8,9}。
集合A中的元素x按照对应法则“乘2加1”和集合B中的元素2x+1对应,这个对应是否为集合A到集合B的映射?为什么?(2)设A=N+,B={0,1}。
集合A中的元素x按照对应法则“x除以2得的余数和集合B中的元素对应”,这个对应是否为集合A到集合B的映射?为什么?第四张:课本P48图2—2。
(记作D)。
教学过程(I)复习回顾师:前面一章,我们学习了元素与集合之间的关系“∈”、“∉”,集合与集合之间的关系“⊆”、”“⊈”。
请同学们回忆一下“∈”、“∉”符号的哪边是元素?A⊆B、B、A⊈B的含义是什么?生:(略)师:在初中我们学过一些对应的例子,如(打出幻灯片B,师生共同看例子)。
这一节我们来学习一种特殊的对应映射(导入课题并板书)。
(II)讲授新课先看两个集合A、B的元素之间的一些对应的例子(打出幻灯片A),为简明起见,这里的A、B都是有限集合。
(对每个对应都要强调对应法则,集合顺序)师:这四个对应分别是怎样的对应?生:一对多、一对一、多对一、一对一。
师:这四个对应的共同特点是什么?生:对于集合A中的任何一个元素,按照某种对应法则ƒ,在集合B中都有确定的元素和它对应。
映射的概念高中教学教案一、教学目标1. 让学生理解映射的概念,掌握映射的基本性质和表示方法。
2. 培养学生运用映射的观点解决数学问题的能力。
3. 提高学生对数学概念的理解和逻辑思维能力。
二、教学内容1. 映射的定义:介绍映射的概念,解释映射的数学表达方式。
2. 映射的性质:介绍映射的单射、满射和双射的概念,解释它们的数学表达方式。
3. 映射的表示方法:介绍图示法和函数表示法,讲解它们的区别和应用。
三、教学重点与难点1. 重点:映射的概念、性质和表示方法。
2. 难点:映射性质的证明和应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究来理解映射的概念。
2. 利用实例讲解映射的性质和表示方法,让学生在实践中掌握知识。
3. 鼓励学生进行小组讨论和交流,提高合作能力和逻辑思维能力。
五、教学过程1. 引入:通过一个实际问题,引导学生思考如何将一个集合的元素映射到另一个集合。
2. 讲解映射的定义:解释映射的概念,让学生理解映射的数学表达方式。
3. 讲解映射的性质:介绍单射、满射和双射的概念,解释它们的数学表达方式。
4. 实例分析:利用实例讲解映射的性质和表示方法,让学生在实践中掌握知识。
5. 练习与讨论:布置一些练习题,让学生巩固所学知识,并进行小组讨论和交流。
6. 总结与反思:对本节课的内容进行总结,让学生反思自己在学习过程中的收获和不足。
六、教学评价1. 评价目标:通过作业、测验和课堂表现等方式,评价学生对映射概念的理解、性质的掌握和表示方法的运用。
2. 评价方法:a) 作业:布置相关的习题,评估学生对映射概念和性质的掌握。
b) 测验:设计选择题、填空题和解答题,测试学生对映射知识的理解和应用能力。
c) 课堂表现:观察学生在讨论、提问和解答问题时的表现,评价其参与度和理解程度。
3. 评价标准:a) 映射概念理解:能够准确描述映射的定义,区分不同类型的映射。
b) 性质掌握:能够判断给定的映射是否具有单射、满射或双射性质,并给出理由。
高一数学教案:《映射》教学设计高一数学教案:《映射》教学设计教学目标1.了解映射的概念,象与原象的概念,和一一映射的概念.(1)明确映射是特别的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特别之处在于必需是多对一和一对一的对应;(2)能精准使用数学符号表示映射,把握映射与一一映射的区分;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.2.在概念形成过程中,培育同学的观查,比较和归纳的力量.3.通过映射概念的学习,逐步提高同学对学问的探究力量.教学建议教材分析(1)学问结构映射是一种特别的对应,一一映射又是一种特别的映射,而且函数也是特别的映射,它们之间的关系可以通过下图表示出来,如图:由此我们可从集合的包含关系中帮忙我们把握相关概念间的区分与联系.(2)重点,难点分析本节的教学重点和难点是映射和一一映射概念的形成与熟悉.①映射的概念是比较抽象的概念,它是在学校所学对应的基础上进展而来.教学中应特殊强调对应集合中的唯一这点要求的理解;映射是同学在学校所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成映射,由此可以看到映射必是"对B中之唯一',而只要是对应就必需保证让A中之任一与B中元素相对应,所以满意一对一和多对一的对应就能体现出"任一对唯一'.②而一一映射又在映射的基础上增加新的要求,打算了它在学习中是比较困难的.教法建议(1)在映射概念引入时,可先从同学熟识的对应入手,选择一些详细的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种状况,让同学仔细观查,比较,再引导同学发觉其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让同学的熟悉从感性熟悉到理性熟悉.(2)在刚开头学习映射时,为了能让同学看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让同学可以比较直观的熟悉映射,而后再选择用抽象的数学符号表示映射,比如:,.这种表示方法比较简明,抽象,且能看到三者之间的关系.除此之外,映射的一般表示方法为,从这个符号中也能看到映射是由三部分构成的整体,这对后面熟悉函数是三件事构成的整体是特别有帮忙的.(3)对于同学层次较高的学校可以在给出定义后让同学依据自己的理解举出映射的例子,老师也给出一些映射的例子,让同学从中发觉映射的特点,并用自己的语言描述出来,最终老师加以概括,再从中引出一一映射概念;对于同学层次较低的学校,则可以由老师给出一些例子让同学观查,老师引导同学发觉映射的特点,一起概括.最终再让同学举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.(4)关于求象和原象的问题,应在计算的过程中总结方法,特殊是求原象的方法是解方程或方程组,还可以通过方程组解的不怜悯况(有唯一解,无解或有很多解)加深对映射的熟悉.(5)在教学方法上可以采纳启发,商量的形式,让同学在实例中去观查,比较,启发同学查找共性,共同商量映射的特点,共同举例,计算,最终进行小结,老师要起到点拨和深化的作用.教学设计方案2.1 映射教学目标(1)了解映射的概念,象与原象及一一映射的概念.(2)在概念形成过程中,培育同学的观查,分析对比,归纳的力量.教学方法:启发商量式教学过程:一、引入在学校,我们已经初步探讨了函数的定义并讨论了几类简洁的常见函数.在高中,将利用前面集合有关学问,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今日要具体的概念.二、新课在前一章集合的初步学问中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点讨论两个集合的元素与元素之间的对应关系.这要先从我们熟识的对应说起(用投影仪打出一些对应关系,共6个)我们今日要讨论的是一类特别的对应,特别在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让同学认真观查后由同学回答,对有争议的,或漏选,多选的可具体说明理由进行商量.最终得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出.(主体内容由同学完成,老师做必要的补充)(板书)一.映射(3)通过映射概念的学习,逐步提高同学的探究力量.教学重点难点::映射概念的形成与熟悉.教学用具:实物投影仪。
高中数学映射教学教案
教学目标:让学生了解映射的定义、性质和应用,并掌握相关的解题方法。
教学重点和难点:映射的定义和性质、映射的合成和逆映射、映射在几何中的应用。
教学准备:教材、课件、活动设计、练习题等。
教学流程:
一、引入(5分钟)
教师向学生介绍映射的概念,引导学生思考什么是映射,并举例说明。
二、概念理解(15分钟)
1. 讲解映射的定义和符号表示,让学生掌握映射的基本概念。
2. 讲解映射的性质,帮助学生理解映射的基本性质。
三、运用能力培养(20分钟)
1. 给学生一些简单的映射题目,让学生能够灵活运用映射的知识解题。
2. 引导学生进行映射的合成和逆映射的讨论和解题。
四、拓展应用(10分钟)
1. 讲解映射在几何中的应用,如平移、旋转等。
2. 给学生一些实例题目,帮助学生了解映射在几何中的具体应用。
五、总结(5分钟)
教师总结本节课的重点和难点,巩固学生对映射的理解,激发学生对数学的兴趣。
六、作业布置(5分钟)
布置相关的练习题,让学生复习本节课内容,并巩固所学知识。
教学反思:老师可以根据学生的学习情况调整教学内容和方法,确保学生能够有效地掌握映射的相关知识。
同时,鼓励学生多进行实际操作,加深对映射的理解和应用能力。
高中数学映射的教案教学目标:1. 理解数学映射的概念和基本性质。
2. 掌握如何判断一个给定关系是否为映射。
3. 能够在实际问题中应用映射的概念解决问题。
教学重点:1. 映射的定义和基本性质。
2. 判断一个给定关系是否为映射。
3. 应用映射解决实际问题。
教学难点:1. 理解映射和函数的区别。
2. 能够准确地判断一个关系是否为映射。
教学准备:1. 教师备好教材、教具和课件。
2. 学生预先学习相关知识。
3. 教师准备案例题目和练习题。
教学过程:一、导入(5分钟)教师引导学生回顾函数的概念,并告诉学生今天将学习数学映射的内容。
二、讲解映射的概念和基本性质(15分钟)1. 教师讲解映射的定义和基本性质,引导学生理解映射的概念。
2. 教师通过示例说明映射的性质,让学生加深对映射的理解。
三、判断关系是否为映射(15分钟)1. 教师讲解判断一个给定关系是否为映射的方法。
2. 教师通过案例指导学生如何判断一个关系是否为映射。
四、应用映射解决实际问题(10分钟)1. 教师给出一个实际问题,引导学生运用映射的概念解决问题。
2. 学生尝试独立解决问题,教师及时给予指导和反馈。
五、课堂练习(10分钟)学生完成几道与映射相关的练习题,巩固所学知识。
六、总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生对映射的概念进行复习。
七、作业布置(5分钟)布置相关习题作业,督促学生加强练习。
教学反思:本节课主要是对数学映射的基本概念和性质进行讲解,通过案例和练习引导学生深入理解映射的概念。
教学中应注意引导学生掌握映射的判定方法和应用技巧,激发学生对数学的兴趣和学习的动力。
§1.2.2 映射一.教學目標1.知識與技能:(1)瞭解映射的概念及表示方法;(2)結合簡單的對應圖表,理解一一映射的概念.2.過程與方法(1)函數推廣為映射,只是把函數中的兩個數集推廣為兩個任意的集合;(2)通過實例進一步理解映射的概念;(3)會利用映射的概念來判斷“對應關係”是否是映射,一一映射.3.情態與價值映射在近代數學中是一個極其重要的概念,是進一步學習各類映射的基礎.二.教學重點:映射的概念教學難點:映射的概念三.學法與教學用具1.學法:通過豐富的實例,學生進行交流討論和概括;從而完成本節課的教學目標;2.教學用具:投影儀.四.教學思路(一)創設情景,揭示課題復習初中常見的對應關係1.對於任何一個實數a,數軸上都有唯一的點p和它對應;2.對於座標平面內任何一個點A,都有唯一的有序實數對(,x y)和它對應;3.對於任意一個三角形,都有唯一確定的面積和它對應;4.某影院的某場電影的每一張電影票有唯一確定的座位與它對應;5.函數的概念.(二)研探新知1.我們已經知道,函數是建立在兩個非空數集間的一種對應,若將其中的條件“非空數集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應關係,這種對應就叫映射(板書課題).2.先看幾個例子,兩個集合A、B的元素之間的一些對應關係:(1)開平方;(2)求正弦;(3)求平方;(4)乘以2.歸納引出映射概念:一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A 中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A→B 為從集合A 到集合B 的一個映射.記作“f :A →B ” 說明:(1)這兩個集合有先後順序,A 到B 的映射與B 到A 的映射是截然不同的,其中f 表示具體的對應法則,可以用多種形式表述.(2)“都有唯一”什麼意思?包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思.(三)質疑答辯,排難解惑,發展思維例1.下列哪些對應是從集合A 到集合B 的映射?(1)A={|P P 是數軸上的點},B=R ,對應關係f :數軸上的點與它所代表的實數對應; (2)A={|P P 是平面直角坐標中的點},}{(,)|,,B x y x R y R =∈∈對應關係f :平面直角坐標系中的點與它的座標對應;(3)A={三角形},B={|},x x 是圆对应关系f :每一個三角形都對應它的內切圓; (4)A={|x x 是新華中學的班級},}{|,B x x =是新华中学的学生對應關係f :每一個班級都對應班裏的學生.思考:將(3)中的對應關係f 改為:每一個圓都對應它的內接三角形;(4)中的對應關係f 改為:每一個學生都對應他的班級,那麼對應f :B →A 是從集合B 到集合A 的映射嗎?例2.在下圖中,圖(1),(2),(3),(4)用箭頭所標明的A 中元素與B 中元素的對應法則,是不是映射?是不是函數關係?求正弦 B(1) (2)A 求平方B A 乘以2 B(3) (4)(四)鞏固深化,回饋矯正1、畫圖表示集合A 到集合B 的對應(集合A ,B 各取4個元素) 已知:(1)}}{{1,2,3,4,2,4,6,8A B ==,對應法則是“乘以2”; (2)A={|x x >}0,B=R ,對應法則是“求算術平方根”; (3){}|0,A x x B R =≠=,對應法則是“求倒數”;(4){0|0A α=∠<}}{090,|1,B x x α∠≤=≤對應法則是“求余弦”.2.在下圖中的映射中,A 中元素600的像是什麼?B 中元素2的原像是什麼?A 求正弦 B(五)歸納小結提出問題:怎樣判斷建立在兩個集合上的一個對應關係是否是一個映射,你能歸納出幾個“標準”呢?師生一起歸納:判定是否是映射主要看兩條:一條是A 集合中的元素都要有象,但B 中元素未必要有原象;二條是A 中元素與B 中元素只能出現“一對一”或“多對一”的對應形式.(六)設置問題,留下懸念.1.由學生舉出生活中兩個有關映射的實例.2.已知f 是集合A 上的任一個映射,試問在值域f (A)中的任一個元素的原象,是否都是唯一的?為什麼?3.已知集合}{}{,,1,0,1,A a b B ==-從集合A 到集合B 的映射,試問能構造出多少映射?。
高中数学映射教案
一、教学目标:
1. 理解映射的概念和性质;
2. 掌握映射的表示方法;
3. 能够根据给定的映射找出它的定义域、值域和像;
4. 能够进行映射的复合和逆映射的求解;
二、教学重点:
1. 映射的概念和性质;
2. 映射的表示方法;
3. 映射的定义域、值域和像的确定;
4. 映射的复合和逆映射的求解;
三、教学难点:
1. 映射的复合;
2. 映射的逆映射;
四、教学过程:
1. 映射的概念和性质的介绍(10分钟)
教师简单介绍映射的定义及性质,引导学生理解映射的基本概念。
2. 映射的表示方法(15分钟)
教师通过具体例子演示映射的表示方法,解释映射的不同形式表示。
3. 映射的定义域、值域和像(20分钟)
教师讲解如何确定映射的定义域、值域和像的方法,通过实例进行讲解并进行练习。
4. 映射的复合(15分钟)
教师介绍映射的复合的概念和方法,通过例题演示如何进行映射的复合,并让学生自行练习。
5. 映射的逆映射(15分钟)
教师讲解映射的逆映射的概念和求解方法,通过实例进行演示并让学生进行练习。
6. 练习与检测(15分钟)
教师布置相关练习题让学生巩固所学知识,并进行检测。
五、教学反思:
通过本节课的教学,学生应该能够掌握映射的基本概念、性质和运算方法,能够熟练计算映射的复合和逆映射。
教师应该及时收集学生的反馈意见,对教学过程进行调整和改进。
§2.1.2 一一映射[教学目的]使学生了解一一映射的概念;会判断一些简单对应是否是一一映射.[重点难点]重点:一一映射的概念;难点:判断所给对应是否是一一映射.[教学设想]1.教法:直观演示、引导发现法;2.学法:启发学生观察、思考、分析和讨论;3.课时:1课时.[教学过程]一、复习引入⒈复习从集合A到集合B的映射的概念.然后指出以下两点:⑴映射是特殊的对应,它的特点是:在集合A中的任一元素在集合B中有唯一的元素与它对应;⑵对集合B中的元素,在集合A中可以有几个元素和它对应,即对集合B中的元素,在集合A中的原象没有提出个数上的限定.⒉问题引入:如果f是集合A到B的映射,B中任一元素在A中原象的个数可能有几种情况,举例说明.答:有三种情况:⑴集合B中的某一元素在A中没有原象(如图1);⑵集合B中的任何一个元素在A中都有一个原象(如图2);⑶集合B中的某一元素在A中有两个或两个以上的原象(如图3).f a在B,在A答:就是找出由b求a的对应法则.易知它们的对应法则分别是:“除以2”,“减3”和“开方”.我们记B→A的对应法则为g.再问:g:B→A是不是从B到A的映射,为什么?答:图2中的g:B→A是映射;图1、图3中的g:B→A不是映射.小结:对任一个f:A→B的映射来说,由B到A的对应g都存在,但对应g 有的是映射,有的不是映射.可见要使对应g成为映射,必须对原来的f提出更多的条件.引导学生分析图1、图3两种情况:图1中,g不是映射的原因是因为B中存在元素“5”,它在A中没有原象.图3中,g不是映射的原因是因为B中的元素“1”和“4”,它们在A中有两个原象.从而得出结论:如果f:A→B是映射,要使g:B→A成为映射,必须排除这两种情况,而对映射提出更多的条件.为了排除这两种情况,映射f 还应满足什么条件呢?⑴B 中任何一个元素在A 中都有原象;⑵B 中任何一个元素在A 中都有唯一的原象,换句话说,A 中的不同元素在B 中有不同的象. 我们把满足上述两个条件的映射f :A →B 叫做一一映射.二、学习、讲解新课⒈ 一一映射的概念设A ,B 是两个集合,f :A →B 是从集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射.所以,一一映射是特殊的映射,而且如果f :A →B 是一一映射,那么g :B →A 是映射.⒉ 一一映射的判断⑴有限集合例1 集合A 的元素是a ,集合B 的元素是b ,判断下面的映射是不是从A 到B 的一一映射,为什么?①② 解:①是从A 到B 的一一映射,因它符合定义;②不是,因为它不满足定义中的“对于集合A 中的不同元素在B 中有不同的象”这一条.问:如何作最小的改动,使上述①中的一一映射变为非一一映射?答:只要将B 的元素改成有两个相同,或再加进一个元素,就可使①中的一一映射变为非一一映射.⑵无限集合例2 设M={…,-3,-2,-1,0,1,2,3,…},N={0,1,2,3,…},f 是从M 到N 的对应:x →y=|x|.这个对应是不是映射?是不是一一映射?为什么?答:这个对应是映射,因它满足映射的定义;但它不是一一映射,因为M 中不同的元素在N 中有相同的象.例3 f :R →CR(R-),x →y=x2是不是一一映射,为什么?在对应法则不变的情况下,怎样改动一下,就可以使它成为一一映射?解:f :R →CR(R-),x →y=x2是映射,但不是一一映射,因为R 中的不同元素(如2,-2)在集合CR(R-)中有不同的象(如4).如果将原象集合R 改为CR(R-),则f :CR(R-)→CR(R-),x →y=x2是从CR(R-)到 CR(R-)的一一映射.⑶生活中的例子例4 A={苍梧一中的学生},B={苍梧一中学生的年龄},f :A →B ,a →a 的年龄,是不是从A 到B 的一一映射,为什么?解:不是一一映射,因为不同的学生年龄会相同.⒊目标检测⑴课本P49练习:3.⑵已知A={1,2,3,4},B={2,4,6,8},写出一个A到B上的一一映射.⑶已知A={1,2,3,4},B={1,3,5,7,9},则对应f:A→B,x→y=2x+1,x∈A,y∈B是否是A到B 上的一一映射,为什么?若不是,在不改变对应法则的前提下,把它改写成一个A到B上的一一映射.解:⑴图2-1⑵、⑶、⑷都是集合A到集合B的映射,其中⑵是A到B上的一一映射.⑵ f:A→B,x→y=2x,x∈A,y∈B就是A到B上的一个一一映射.⑶ f:A→B,x→y=2x+1,x∈A,y∈B是A到B上的映射,但不是一一映射;只要将集合B中的元素1去掉,其他条件不变,则它就是一个A到B上的一一映射.三、小结1.一一映射是一种特殊的映射.若一个映射同时满足:⑴A中的不同元素在B中有不同的象;⑵B中任何一个元素在A中都有原象,则这个映射就是一一映射.2. 在映射f:A→B中,若象集合C≠B,则此映射不是一一映射,也就是说,C=B是一一映射的必要条件.3. 如果f:A→B是一一映射,那么g:B→A是映射.四、布置作业(一)复习:课本内容,熟悉巩固有关概念.(二)书面:课本P50习题2.1:3;练习册P24 B组:2.答案:课本P50习题2.1:3:⑴是映射.因为对于左边集合的每一个元素,右边集合都有唯一的元素和它对应;但不是一一映射,因为集合A中不同元素a1,a4有相同的象b1,B中的元素b2在A中没有原象.⑵是映射,理由同第⑴题;是一一映射,因为对于左边集合的不同元素,在右边集合中有不同的象,而且右边集合中每一元素都有原象.⑶不是映射.因为对于左边集合的元素a2,右边集合有两个元素b1,b3和它对应(不唯一).⑷是映射,理由同第⑴题;但不是一一映射,因为对于集合B的元素b5,在集合A中没有原象.练习册P24 B组2:已知A=R,B={y|y∈R,且y≥1},x∈A,对应法则f:x→y=x2-2x+2.问:f:A→B是A到B的映射吗?是一一映射吗?若不是,如何改动集合A(集合B和对应法则不变),使之成为一一映射.解:是映射,但不是一一映射,因为y=(x-1)2+1的对称轴是x=1,所以,若将集合A改为{x|x≥1,x∈R}(或{x|x≤1,x∈R})时,A到B的对应f:x→y=x2-2x+2就是一一映射了.(三)思考题:练习册P24 B组3:设A={1,2,3,m},B={4,7,n4,n2+3n},m,n∈N,a∈A,b∈B,“f:a→b=pa+q”是从A到B的一一映射,又1的象是4,7的原象是2,试求p,q,m,n的值.解:由1→4,2→7得,4=p+q,7=2p+q,解得p=3,q=1;又由f是一一映射,得3→n4且m→n2+3n,或3→n2+3n且m→n4,即n4=3p+q=10且n2+3n=mp+q=3m+1,或n2+3n=3p+q=10且n4= mp+q=3m+1,亦即n4=10且n2+3n=3m+1---①,或n2+3n=10且n4=3m+1---②,∵m,n∈N, ∴①无解;解②得m=5,n=2.∴p=3,q=1, m=5,n=2.(四)预习:课本P50-53 2.2函数.。
映射数学讲解高中教案
教学目标:
1. 理解映射的概念和基本性质。
2. 掌握映射的表示方法和分类。
3. 能够应用映射的概念解决实际问题。
教学重点:
1. 映射的定义和符号表示。
2. 映射的分类和特点。
3. 映射的应用。
教学难点:
1. 理解映射和函数的关系。
2. 运用映射的知识解决实际问题。
教学准备:
1. 教材:包含映射相关知识的教材。
2. 教具:黑板、彩色粉笔、投影仪等。
3. 实例:准备一些实际例题作为练习。
教学过程:
一、导入(5分钟)
通过一个简单的例子引入映射的概念,让学生了解映射的基本概念。
二、概念讲解(15分钟)
1. 映射的定义和符号表示。
2. 映射的分类和特点。
3. 映射与函数的关系。
三、示例分析(15分钟)
结合实际例题,分析映射的应用,引导学生掌握映射的运用方法。
四、练习与讨论(15分钟)
提供若干练习题,让学生在课堂上完成并进行讨论,加深对映射的理解。
五、总结与作业布置(5分钟)
总结本节课的重点内容,布置相关作业,巩固学生对映射知识的掌握。
教学反思:
映射是数学中的重要概念,理解和掌握映射的知识对于学生的数学学习起着重要的作用。
通过本节课的教学,学生能够对映射有一个初步的了解,为后续深入学习数学打下基础。
高中数学必修一3.1教案一、教学目标:1. 了解集合的基本概念,掌握集合的表示方法和常用集合运算。
2. 掌握映射的定义及其性质,能够区分单射、满射和双射。
3. 能够利用集合和映射的知识解决实际问题。
二、教学重点:1. 集合的定义和表示方法。
2. 集合的包含关系和集合的运算。
3. 映射的定义及其性质。
三、教学难点:1. 区分不同类型的映射。
2. 利用映射解决实际问题。
四、教学准备:1. 教科书《高中数学》必修一。
2. 教学PPT或黑板。
3. 学生练习册和作业布置。
五、教学过程:1. 导入:通过实际例子引入集合和映射的概念,引发学生的兴趣。
2. 集合的定义和表示方法:讲解集合的概念、元素、空集、子集、并集、交集等概念,并讲解集合的表示方法。
3. 集合的运算:讲解集合的包含关系、并集、交集、差集等运算,并进行示范练习。
4. 映射的定义:讲解映射的概念、定义及表示方法,引导学生理解映射和函数的关系。
5. 映射的性质:介绍映射的各种性质,如单射、满射、双射等,并进行相关练习。
6. 解决问题:结合实际问题,引导学生应用集合和映射的知识解决问题。
7. 总结:对集合和映射的概念进行总结,并布置相关作业。
六、课堂练习:1. 确定下列集合A、B、C的并集、交集:A = {1, 3, 5, 7},B = {2, 4, 6, 8},C = {1, 2, 3, 4}2. 给出一个映射f:A → B,使得f是单射但非满射。
七、课堂作业:1. 完成教材相关习题和练习册练习。
2. 思考并解决以下问题:什么是单射、什么是满射、什么是双射?举例说明。
八、教学反思:本节课主要涉及到集合和映射的基本概念和运算,对学生的逻辑思维和问题解决能力有一定的要求。
在教学过程中要注重引导学生理解概念、运用概念解决问题,并通过实例加深学生的理解。
同时,作业布置要针对性强,帮助学生加深对知识点的理解和掌握。
数学 必修1:映射的概念教学目标: 1.知识与技能了解映射的概念,掌握象、原象等概念及其简单应用。
2.过程与方法学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
3.情感、态度与价值观树立数学应用的观点,培养学习良好的思维品质。
教学重点:映射的概念。
教学难点:映射的概念。
教学过程:一、复习引入: [来源:]1、在初中我们已学过一些对应的例子:(学生思考、讨论、回答)[来源:]①看电影时,电影票与座位之间存在者一一对应的关系 ②对任意实数a ,数轴上都有唯一的一点A 与此相对应[来源:] ③坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应 2、函数的概念本节我们将学习一种特殊的对应—映射。
二、讲解新课:看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集[来源:]求平方B B说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A 中的任何一个元素,在右边集合B中都有唯一的元素和它对应映射:设A,B是两个集合,如果按照某种对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射记作:B:Af→象、原象:给定一个集合A到集合B的映射,且Ba∈∈,,如果元素a和元Ab素b对应,则元素b叫做元素a的象,元素a叫做元素b的原象关键字词:(学生思考、讨论、回答,教师整理、强调)①“A到B”:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射,A到B是求平方,B到A则是开平方,因此映射是有序的;②“任一”:就是说对集合A中任何一个元素,集合B中都有元素和它对应,这是映射的存在性;③“唯一”:对于集合A中的任何一个元素,集合B中都是唯一的元素和它对应,这是映射的唯一性;④“在集合B中”:也就是说A中元素的象必在集合B中,这是映射的封闭性.指出:根据定义,(2)(3)(4)这三个对应都是集合A到集合B的映射;注意到其中(2)(4)是一对一,(3)是多对一思考:(1)为什么不是集合A到集合B的映射?回答:对于(1),在集合A中的每一个元素,在集合B中都有两个元素与之相对应,因此,(1)不是集合A到集合B的映射思考:如果从对应来说,什么样的对应才是一个映射?一对一,多对一是映射但一对多显然不是映射辨析:[来源:]①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;③存在性:映射中集合A的每一个元素在集合B中都有它的象;④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都有原象,即A中元素的象集是B的子集.[来源:] 映射三要素:集合A、B以及对应法则f,缺一不可;三、例题讲解例1 判断下列对应是否映射?有没有对应法则?c g c g c gd d (是) (不是) (是) 是映射的有对应法则,对应法则是用图形表示出来的 例2下列各组映射是否同一映射?[来源:] [来源:]:] 例3(1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则12:+→x x f (2)设}1,0{,*==B N A ,对应法则得的余数除以2:x x f → (3)N A =,}2,1,0{=B ,除所得的余数被3:x x f →[来源:](4)设}41,31,21,1{},4,3,2,1{==Y X 取倒数x x f →:(5)N B N x x x A =∈>=},,2|{,的最大质数小于x x f →: 四、练习:1.设A={1,2, 3,4},B={3,4,5,6,7,8,9},集合A 中的元素x 按照对应法则“乘2加1”和集合B 中的元素2x+1对应.这个对应是不是映射?(是)2.设A=N*,B={0,1},集合A 中的元素x 按照对应法则“x 除以2得的余数”和集合B 中的元素对应.这个对应是不是映射?(不是(A 中没有象))3.A=Z ,B=N*,集合A 中的元素x 按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射? (是)4.A={0,1,2,4},B={0,1,4,9,64},集合A 中的元素x 按照对应法则“f :a τ b=(a -1)2”和集合B 中的元素对应.这个对应是不是映射? (是)5.在从集合A 到集合B 的映射中,下列说法哪一个是正确的?(A )B 中的某一个元素b 的原象可能不止一个;(B )A 中的某一个元素a 的象可能不止一个(C )A 中的两个不同元素所对应的象必不相同; (D )B 中的两个不同元素的原象可能相同 6.下面哪一个说法正确?(A )对于任意两个集合A 与B ,都可以建立一个从集合A 到集合B 的映射 (B )对于两个无限集合A 与B ,一定不能建立一个从集合A 到集合B 的映射 (C )如果集合A 中只有一个元素, B 为任一非空集合,那么从集合A 到集合B 只能建立一个映射(D )如果集合B 只有一个元素,A 为任一非空集合,则从集合A 到集合B 只能建立一个映射 7.集合A=N ,B={m|m=1212+-n n ,n ∈N},f :x →y=1212+-x x ,x ∈A ,y ∈B.请计算在f 作用下,象119,1311的原象分别是多少.( 5,6 )。
新课标人教A版高中数学必修一课程标准细化1、了解映射的概念及其与函数的关系;2、掌握映射的表示方法;3、能够判断给定的映射是单射、满射还是双射;4、了解反函数的概念及其应用。
二.教学重点和难点1、映射的概念及其与函数的关系;2、映射的表示方法,包括箭头图、矩阵、集合等;3、单射、满射、双射的判断方法及其应用;4、反函数的概念及其应用。
难点在于单射、满射、双射的判断方法。
教学目标:1.通过实例让学生了解映射的概念和表示方法。
2.结合简单的对应图表,让学生理解一一映射的概念。
3.让学生理解函数概念与映射概念的区别与联系。
教学重点:映射的概念教学难点:映射的概念教学内容:1.3.1 函数的单调性教学目标:1.通过已学过的函数,特别是二次函数,让学生理解函数的单调性及其几何意义,形成增(减)函数的直观认识。
2.通过具体函数值的大小比较,让学生认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义,并掌握用定义证明函数单调性的步骤。
3.让学生树立数形结合的思想,学会运用函数图像理解和研究函数的性质。
教学重点与难点:1.函数的单调性及其几何意义。
2.利用函数的单调性定义判断、证明函数的单调性。
1.3.2 函数的奇偶性教学目标:1.通过具体函数的图像,让学生理解函数的奇偶性及其几何意义,学会运用函数图像理解和研究函数的性质,并学会判断函数的奇偶性。
2.通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
教学重点与难点:1.函数的奇偶性及其几何意义。
2.判断函数的奇偶性的方法与格式。
第二章:基本初等函数2.1.1 指数与指数幂的运算研究目标:1.通过平方根、立方根等式,让学生理解n次方根的意义,能进行简单的n次方根的运算。
2.通过n次方根和数的运算,让学生理解有理数指数幂的含义,掌握根式与有理数指数幂的互化。
3.通过数学逼近过程,让学生理解无理数指数幂的意义。
映射的概念1、映射的概念:设A,B 是两个非空集合,如果按照某种对应法则f ,使对于-______________________,在B 中都有 ______________________,那么,这样的单值对应叫做集合A 到集合B 的 _______,记作_______2、对应与映射,映射与函数的关系_______ 二、例题分析:例1、如图所示的对应中,哪些是A 到B 的映射?例2、在下列集合A 到集合B 的对应中是映射的是( )A:*N B A ==,对应法则:|3|:-→x x fB:}1,0{,==B R A ,对应法则:⎩⎨⎧<≥→)0(0)0(1:x x x f C:R B A ==,对应法则:x x f ±→: D:Q B Z A ==,,对应法则::f 取倒数例3、已知映射},|),{(,:R y R x y x B A B A f ∈∈==→,:f A 中的元素),(y x 对应B 中的元素为)134,123(-++-y x y xa 1a 2 a 3 a 4b 1 b 2 b 3 b 4 a 1 a 2 a 3 a 4 b 1 b 2 b 3 b 4 a 2 a 1 a 3 a 4 b 1 b 2 b 3 b 4a 2a 1b 1 b 2 b 3 b 4 a 2a 1b 1 b 2a 2 a 1 a 3 a 4b 1 b 2(1) (2)(3)(4)(5) (6)求A 中元素(1,2)与B 中的哪个元素对应? A 中哪些元素与B 中元素(1,2)对应?例4、①集合{1,2,3,4},{5,6}A B ==,则A 到B 的不同映射有_______个。
②集合}1,0,1{},,,{-==N c b a M ,映射NM f →:满足0)()()(=++c f b f a f ,那么映射N M f →:的个数是_______个。
练习若B={-1,3,5},试找出一个集合A ,使得:21f x x →-是A 到B 的映射。
2、(全国高考题)设集合A 和B 都是自然数集N ,映射:f A B →把集合A中的元素n 映射到集合B 的元素2nn + ,则在映射f 下,集合A 中的__________与集合B 的20对应。
1.1.2 集合间的基本关系高一数学教材分析《集合间的基本关系》单独作为一节教学内容具有承上启下的作用,实际上,学生在小学和初中已接触过一些集合,如自然数集、有理数集、实数集、三角形集合、一元一次不等式的解集等等,只是没有这样叫而已,现在只是从集合的角度来重新审视原来所学的数与式的关系。
这节《集合间的基本关系》是对上一节所学的集合基本概念的深化、延伸,同时也是下一节集合运算的基础和前提,是用集合观点理清集合之间内在联系的桥梁和工具。
集合单元的核心是元素与集合之间的关系,集合之间的关系是通过元素与集合之间的关系来确定的,而元素与集合之间的关系就需要判断元素是否具有相应集合的特征性质,对这一部分内容的学习,能加深学生对子集概念的理解,能更好地认识到集合间关系的本质,从而学会抓住元素与集合之间的关系来研究问题。
教学时,要重视使用Venn 图,这有助于学生体会直观图示对理解抽象概念的作用。
本节通过类比两个实数之间的大小关系,探究两个集合之间的关系;通过实例分析,获知两个集合间的包含与相等关系,然后给出定义;从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.课时分配本节内容用1课时的时间完成,主要讲解子集、真子集、集合相等、空集的概念,然后重点借助例题加深对以上概念的理解和灵活运用。
教学目标重难点: 1、子集、真子集的概念及它们的联系与区别;2、空集的概念以及与一般集合间的关系.知识点:(1)理解集合的包含和相等的关系.(2)了解使用Venn图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.能力点:熟练掌握集合之间的包含关系,已知包含关系,会求字母的取值范围。
教育点:应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.考试点:解题过程中,重视空集∅的特殊情况。
易错易混点:0,{0}与∅三者之间的关系。
课堂模式学生自主探究、小组合作、交流讨论与教师启发相结合的方法教学。
一、引入新课1.复习(结合提问):(1)集合的概念、集合元素的三条性质。
(2)集合的表示、符号、常用数集、列举法、描述法。
(3)集合与元素的关系:“属于”的概念。
2.创设情境提出问题:思考:实数有相等关系,大小关系,如:5<7,7>3,5=5等等,类比实数之间的关系,联想集合之间是否具备类似的关系。
师:对两个实数a、b,应有a>b或a = b或a<b.而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系.类比生疑,引入课题二、探究新知示例1:考察下列三组集合,并说明两集合之间存在怎样的关系。
(1)A = {1,2,3}B = {1,2,3,4,5}(2)A = {新华中学高(一)6班的全体女生}B = {新华中学高(一)6 班的全体学生}(3)A= {x | x是两条边相等的三角形}B = {x | x是等腰三角形}x-=} ,B={-1,1}(4)A={x|210生:实例(1)、(2)的共同特点是A的每一个元素都是B的元素.师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的子集怎样定义呢?学生合作:讨论归纳子集的共性.1.子集:一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B 的子集,记作记作A⊆B (或B⊇A),读作:“A含于B”(或B包含A)。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊄B 。
Venn 图:用平面上封闭曲线的内部代表集合. 如果A ⊆B ,则Venn 图表示为:2.集合相等: 引导:生:类似(3),(4)的两个集合,集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素。
师:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B称为相等集合. 引导:生:C 是D 的子集,同时D 是C 的子集.师:如果A ⊆B 同时 B ⊆A 那么A=B.师生合作得出子集、相等两概念的数学定义. 通过实例的共性探究、感知子集、相等概念,通过归纳共性,形成子集、相等的概念。
3. 真子集:在(1)中,A ⊆B ,但4 ∈B ,且4∉A,我们称集A 是集B 的真子集。
如果集合A ⊆B ,但存在元素x ∈B ,且x ∉ A ,称A 是B 的真子集,记作A ⊂B (或B ⊃A).4. 空集例:A={x |2x+ 1 = 0,x ∈R}.生:集A 中没有元素师:不含任何元素的集合叫做空集,记作φ,并规定: 空集是任何集合的子集.性质总结: ① 任何一个集合是它本身的子集.。
A ⊆A②空集是任何非空集合的真子集. ③如果 A ⊆B, B ⊆C ,那么 A ⊆C.证明:设x 是A 的任一元素,则 x ∈AA ⊆B,∴x ∈B 又 B ⊆C ∴x ∈C 从而 A ⊆C同样;如果 A ⊆B, B ⊆C ,那么 A ⊆C三、理解新知练习: 能满足关系{a ,b}⊆A ⊆{a ,b ,c ,d ,e}的集合A 的数目是( A ) A .8个 B .6个 C .4个 D .3个【解析】由关系式知集合A 中必须含有元素a ,b ,且为{a ,b ,c ,d ,e}的子集,所以A中元素就是在a,b元素基础上,把{c,d,e}的子集中元素加上即可,故A = {a,b},A = {a,b,c},A = {a,b,d},A = {a,b,e},A = {a,b,c,d},A = {a,b,c,e},A = {a,b,d,e},A = {a,b,c,d,e},共8个,故应选A.设计意图:通过练习加深对子集概念的理解。
四、运用新知例1:(1)写出集合{a、b}的所有子集;(2)写出集合{a、b、c}的所有子集;(3)写出集合{a、b、c、d}的所有子集;学生练习求解,老师点评总结.a,2a,3a…师:根据问题(1)、(2)、(3),对子集个数的探究,提出问题:已知A = {1a},求A的子集共有多少个?n总结:一般地,集合A含有n个元素,则A的子集共有2n个,A的真子集共有2n– 1个.设计意图:通过练习加深对子集、真子集概念的理解.培养学生的归纳能力.∴x = 0,y = 1 ∴A = B = {0,1,–1}.练习1. 设集合A={1,3,a},B={1,21a a -+},若 A ⊇B ,求a 的值。
练习2. 若集合A={x|x 2+x -6=0},B={x|ax+1=0},且B ⊂A ,求a 的值。
五、课堂小结子集:集合A,B ,任意x ∈A 则 x ∈B 。
真子集:集合A ,B ,任意x ∈A 则 x ∈B ,但存在0x∈B ,且x∉ A 。
集合相等:集合A 与B 的元素完全相同。
空集:不含任何元素的集合。
性质:①若A 非空,则 φ ⊂A 。
②A ⊆A③如果 A ⊆B, B ⊆C ,那么 A ⊆C.六、布置作业上交作业:(1)P7 练习2,3。
P12 习题1.1 A 组 5。
补充作业:(1)给出下列四个命题: 空集没有子集; 空集是任何一个集合的真子集;空集即{}0;任何一个集合必有两个或两个以上的子集,其中正确的个数为__________。
(2)已知集合{}2p x x 1,x R ==∈,集合Q {}x ax 1==,若Q P ⊆,求a 的值。
七、教后反思1.本节课的设计力争体现新课标的基本理念。
以“类比猜想-探究概念-概念深化-探究性质-巩固应用”为明线,“文字语言-符号语言-图形语言”为暗线,整节课的关键是通过元素和集合之间的关系来确定集合之间的关系。
让学生学会用类比的方法来解决问题,把学生的探究活动放在首位,使学生在发现、探究的过程中得到子集的概念,在此基础上,进一步探究子集的性质,完成对子集从具体到抽象、从感性认识到理性认识的转变,发展学生分析问题解决问题,抽象概括等能力,从而更好地体会集合语言的简洁与准确。
2.教学目标达成情况:(1)结合具体实例,了解子集、真子集、两个集合相等的概念; (学生能举出相关例子,说明学生已了解相关概念。
)(2)掌握有关子集、真子集的符号及表示方法,会用它们正确表示一些简单集合间的关系,培养学生的符号表示的能力;(在课堂及课后练习中,学生能正确判断一些简单集合间的关系,并用相应符号表示)(3)能使用韦恩图表达集合之间的关系,体会图形语言对理解抽象概念的作用;(学生能用韦恩图正确表示真子集、集合相等的关系;在探究子集性质的环节,有一部分学生用到了韦恩图。