离散数学组合计数基础篇
- 格式:ppt
- 大小:891.00 KB
- 文档页数:124
计数原理与排列组合我们先对所学知识进行一个简单的梳理:分类加法计数原理和分步乘法计数原理是排列组合组合的基础,只有我们对这两种计数原理理解到位,我们才能更好、更深刻理解排列组合,并利用它们解决一些相关问题。
进一步讲,只有较好理解了组合的意义,我们才能对“二项式”展开有更加建党而清晰的理解——组合的基本操作在于“选择”,而二项式展开正是运用选择的思想进行的。
另外,排列组合是我们学好后期“概率问题”的一个基础。
好了,我们开始吧。
基础篇:1、 两种计数原理: 1.1加法计数原理问题引入:在200321,,,, 中,能够被5整除的数共有几个?分类加法计数原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.(也称加法原理)1.2乘法计数原理问题引入:从A 村道B 村的道路有3条,从B 村去C 村的路有2条,从C 村去D 的道路有3条,小明要从A 村经过B 村,再经过C 村,最后到D 村,一共有多少条路线可以选择?从A 村经 B 村去D 村分作 3 步:第一步, 由A 村去B 村有 3 种方法, 第二步, 由B 村去C 村有 2 种方法,第三步,从C 村到D村有3种方法分步乘法计数原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.(也称乘法原理) 2、排列与组合基础准备:阶乘n的阶乘:正整数1到n的连乘积,叫做n的阶乘记为:n!即:n*(n-1)*(n-2)......2*1=n!2.1、排列:从n个不同元素中,任取m(m£n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.排列数:简单来说就是所有不同排列的个数。
组合与排列的计算方法(知识点总结)组合和排列是离散数学中的两个重要概念,用于描述从一组元素中选择出一部分元素的方式。
在实际生活和数学问题中,我们经常需要计算不同元素的排列或组合情况。
下面将介绍组合和排列的定义、计算方法及应用。
1. 组合的计算方法组合指的是从一个元素集合中选出若干个元素,不考虑元素的顺序。
假设有n个元素,要从中选出k个元素的组合数可以用C(n, k)表示。
计算组合数的公式为:C(n, k) = n! / (k! * (n-k)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
例如,从5个元素中选出3个元素的组合数为:C(5, 3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 102. 排列的计算方法排列指的是从一个元素集合中选出若干个元素,考虑元素的顺序。
同样假设有n个元素,要从中选出k个元素的排列数可以用P(n, k)表示。
计算排列数的公式为:P(n, k) = n! / (n-k)!例如,从5个元素中选出3个元素的排列数为:P(5, 3) = 5! / (5-3)! = 5! / 2! = 603. 组合与排列的应用组合和排列的计算方法在实际生活和数学问题中有广泛的应用。
在数学问题中,组合和排列的计算方法可以用于计算概率。
例如,在一个抽奖活动中,有10个人参与,每人只能抽出一张奖券,那么获奖的组合数为C(10, 1) = 10。
如果要计算中奖概率,则需要将获奖的组合数除以总的可能组合数。
在计算机科学中,组合和排列的计算方法可以用于算法设计。
例如,在某个问题中,需要对一组数据进行全排列的处理,即将这组数据的所有可能的排列情况都生成出来。
通过排列的计算方法,可以快速计算出所有排列的结果。
在实际生活中,组合和排列的计算方法常用于安排座位、制定菜单、组织比赛等场景下。
例如,某个宴会上有8个座位,要从10个人中选出来安排座位,那么可能的座位组合数为C(10, 8) = 45。