有限元分析法第3章 杆单元
- 格式:ppt
- 大小:918.50 KB
- 文档页数:30
3杆系结构的有限元法有限元法是一种常用的结构分析方法,可以用来分析各种复杂的结构问题。
其中,杆系结构的有限元法是一种专门针对杆系结构及其变形特性的有限元分析方法。
本文将从有限元法的基本原理、杆系结构的有限元剖分、杆单元的刚度矩阵计算和应力计算四个方面介绍杆系结构的有限元法。
有限元法的基本原理:有限元法是一种将连续物体离散化为有限个独立几何单元的数值分析方法。
它的基本原理是将连续结构按一定的规则划分为若干个互不重叠的子域,然后在每个子域上建立适当的求解方程和函数,最后将各个子域的问题合并起来,得到整个结构的解。
有限元法可以将连续问题转化为一个线性代数方程组的求解问题,然后通过数值计算方法求解方程组,得到结构的变形、应力等信息。
杆系结构的有限元剖分:杆系结构是由多根杆件组成的结构体系。
在进行有限元分析时,需要将杆系结构进行剖分,将其离散化为有限个杆单元。
杆系结构的剖分方式可以有多种,常见的有线性剖分和非线性剖分。
线性剖分是指将每根杆件均匀地划分为若干个子单元,每个子单元长度相等。
线性剖分的好处是计算简单,但是在一些情况下不够准确。
非线性剖分是指根据杆件的曲线形状和载荷变化特点,对杆件进行不规则剖分。
这样可以更准确地描述杆系结构的实际变形情况。
非线性剖分的好处是结果更准确,但计算量相对较大。
杆单元的刚度矩阵计算:一般来说,杆单元的刚度矩阵可以通过两种方法进行计算:力法和位移法。
力法是指通过杆件上的内力和外力之间的平衡关系,推导出杆单元的刚度矩阵。
力法的基本原理是,杆单元上的总应变等于外力产生的内力,即σ=Eε=F/A。
其中,σ为应力,E为弹性模量,ε为应变,F为外力,A为杆单元的截面积。
位移法是指通过位移与应变之间的关系,推导出杆单元的刚度矩阵。
位移法的基本原理是,根据虚功原理和位移互相独立的原则,建立位移-应变-应力关系,然后通过对位移表达式积分,得到杆单元的刚度矩阵。
杆单元的应力计算:在有限元分析中,杆单元的应力计算是非常重要的一步。
《有限元应用实训》实验报告(1)杆单元问题一、实训问题介绍:如图3-4所示三杆组合,三个杆的长度均相等为30in(762m m),在2节点施加水平向右大小为3000l b(13344.6N)的力,杆件1和杆件2的弹性模量为E=30×106ps i(206880N/m m2),横截面面积为1in2(645.16m m2),杆件3的弹性模量为E=15×106ps i(103440N/m m2),横截面面积为2in2(1290.32m m2),节点1和节点4为固定约束。
在有限元软件中对模型进行有限元分析,回答下面两个问题:(1)确定节点2和节点3的位移;(2)节点1和节点4的反作用力。
二、方法与材料本次练习的研究对象为桁架结构,桁架结构由杆件组成,杆件受轴向力作用,其有限元基本模型为杆,可通过杆单元建立结构的有限元分析模型。
So l id Works有限元软件建模与求解步骤:2.1创建杆横截面草图,保存在weldment profi l es目录下,另存为.s ld l fp格式根据杆1、2和杆3规定的横截面,分别建立相应的截面文件。
2.2创建杆件草图2.3创建结构焊件,结构构件分别为三个杆件赋予截面2.4建立有限元s imulat i on新算例(1)定义材料(2)将焊件定义为桁架杆件(3)施加边界条件,节点1和节点4施加固定铰链约束(4)施加载荷条件,节点2施加水平向右的集中力(5)生成杆件网格并计算三、计算结果与讨论3.1节点2、3的位移节点2、3沿x方向(轴向)的位移分别为0.04597m m,0.0160m m计算结果与原题公式计算结果相同,说明本模型正确。
节点沿y和z向的位移为零,符合杆轴线承载条件。
3.2节点1、4的约束反力杆的约束反力为8010N,-5340N3.3杆件的轴向力3.4杆件的轴向应力3.5杆件的安全系数,当乘数为0.5时最小安全系数是8.8873.6应力准则应用最大Von Mises应力准则四、结论:通过软件建模,成功计算了结构构件的位移、应力、内力,确定了危险截面,出现在第一个杆件左端点处,构件满足最大Von M i ses应力准则,结构符合强度要求。
杆单元定义
杆单元指的是在有限元分析中用来模拟某个结构或系统中的杆件的基本单元。
由于杆件在实际结构中的作用非常广泛,如桥梁、塔架、建筑结构等,因此杆单元是有限元法中最常用的基本元素。
杆单元一般由两个节点和一个杆单元的特征长度组成。
杆单元是结构体系中最基本的单元,它的内部并不包含热、电、磁等其他物理量,只考虑其中的变形、应力和应变等力学变量。
因此,在进行有限元分析之前,必须先将杆件离散化成为若干个杆单元,并对每个杆单元进行分析求解,以得到有效的杆件响应和力学性质。
在杆单元的分析过程中,需要考虑很多因素。
首先是单元内外受力平衡,即受力部分应该满足初步假设下的力学平衡条件并修正。
其次是应力、应变关系以及应力应变曲线的确定,这些需要对材料的性质进行分析,获得被称为“本构方程”的关系式。
最后是单元的刚性矩阵和质量矩阵的计算,这些矩阵是计算分析的基础,并且极大地影响了分析结果。
杆单元还有许多种类,根据其被忽略或者保留的实际结构特征和应力情况,可以分为细杆单元、柱形单元、混合单元、等效杆单元等等。
每种单元之间有各自的优势和限制,并在不同的应用场景下具有
不同的适用性。
总之,杆单元是有限元分析中最常见的基本元素之一,用于模拟结构中的杆件,并对应力和应变等力学变量进行分析求解。
在进行有限元分析之前,必须先对结构进行若干个杆单元的离散化,才能得到有效的响应和力学性质。
有限元分析是建筑设计和工程科学领域中重要的数值分析手段之一,杆单元也在这个过程中扮演着重要的角色。