极限分析有限元法的下限解
- 格式:pdf
- 大小:1.91 MB
- 文档页数:12
有限元求解方法有限元求解方法是一种常用的数值计算方法,广泛应用于工程、科学和数学领域的求解问题。
本文将介绍有限元求解方法的基本原理、步骤和应用范围。
有限元求解方法是一种数值计算方法,通过将一个连续的问题离散化成有限个子问题,然后对这些子问题进行求解,最终得到整个问题的近似解。
在有限元求解方法中,将要求解的问题分割成许多小的单元,每个单元都有一个简单的数学模型。
通过对每个单元的求解,再通过组合这些单元的解,就可以得到整个问题的解。
有限元求解方法的步骤大致可以分为以下几个部分:建立数学模型、离散化、确定边界条件、求解、后处理。
首先,需要根据实际问题建立一个数学模型,这个模型可以是一个方程、一个微分方程或者一个变分问题。
然后,将问题离散化,将连续的问题分割成有限个单元,并在每个单元上建立一个简单的数学模型。
接下来,确定边界条件,即在模型的边界上给定一些已知条件。
然后,通过求解每个单元的数学模型,得到每个单元的解。
最后,将每个单元的解组合起来,得到整个问题的解。
在得到解之后,可以进行后处理,对解进行分析和验证。
有限元求解方法广泛应用于各个领域的问题求解中。
在工程领域,有限元方法可以用于结构力学、热传导、流体力学等问题的求解。
例如,在结构力学中,可以通过有限元求解方法来计算结构的应力和位移分布,进而评估结构的强度和稳定性。
在科学领域,有限元方法可以用于物理、化学、生物等问题的求解。
例如,在地震学中,可以通过有限元求解方法来模拟地震波的传播和地壳变形。
在数学领域,有限元方法可以用于偏微分方程的数值求解。
例如,在偏微分方程的数值解法中,有限元方法是一种常用的求解方法。
有限元求解方法的优点是可以处理复杂的几何形状和边界条件,并且可以灵活地调整离散化的精度。
同时,有限元求解方法还具有较高的计算效率和数值稳定性。
然而,有限元求解方法也存在一些限制和局限性。
首先,有限元方法的求解精度受到离散化的影响,离散化越精细,求解结果越接近真实解。
岩土工程极限分析有限元法及其运用张 聪(甘肃煤田地质局一三三队,甘肃 白银 730913)摘 要:基于极限分析方法在岩土工程施工中的应用局限文章提出兼具数值分析方法和经典极限分析方法的有限元分析方法,在介绍有限元分析原理、基本理论、安全系数和发展历程的基础上,从边坡、地基、隧道等方面着重分析岩土工程极限分析有限元法的应用,验证有限元分析方法在岩土工程中应用范围的扩大,旨在能够为岩土工程施工建设发展提供更多有力的支持。
关键词:有限元极限分析方法;岩土工程;岩土滑坡中图分类号:TU195 文献标识码:A 文章编号:1002-5065(2020)14-0233-2Finite element method for limit analysis of geotechnical engineering and its applicationZHANG Cong(No.133 team of Gansu Coalfield Geological Bureau, Baiyin 730913,China)Abstract: Based on the limitation of the application of limit analysis method in geotechnical engineering construction, this paper proposes a finite element analysis method which combines numerical analysis method and classical limit analysis method. On the basis of introducing the principle of finite element analysis, basic theory, safety factor and development process, the application of limit analysis finite element method in geotechnical engineering is emphatically analyzed from the aspects of slope, foundation and tunnel, To verify the expansion of the application scope of finite element analysis method in geotechnical engineering, in order to provide more powerful support for the development of geotechnical engineering construction.Keywords: finite element limit analysis method; geotechnical engineering; geotechnical landslide极限分析法的力学基础是土体处于一种理想的弹性、属性状态,这种状态下,土体会出现一种平衡状态,即为土体滑动面上每个点的剪应力会和土地抗剪强度等同。
有限元求极限载荷
有限元法是一种近似求解结构力学问题的方法,可以用来求解各种载荷情况下的应力和应变分布。
然而,要精确地求解极限载荷是非常困难的,因为极限载荷对应的结构形态通常是非常复杂的。
通常,求解极限载荷时可以采用以下两种方法之一:
1. 构造极限状态:在有限元模型中,通过设置适当的荷载形式和边界条件,来使结构达到极限载荷状态。
这种方法需要对结构的特性有较深入的了解,需要根据实际情况选择适当的荷载形式和边界条件,且结果仅适用于所构造的极限状态。
2. 非线性稳定分析:通过有限元分析软件进行非线性稳定分析,求解结构的临界载荷。
这种方法可以考虑各种复杂的几何和材料非线性,适用于包括杆件、板和壳结构等不同类型的结构。
非线性稳定分析需要对结构的几何和材料特性进行合理的建模和边界条件设定,同时需要进行迭代求解,计算量较大。
总的来说,求解极限载荷是一项相对复杂的工作,需要对结构特性有深入的了解,并采用适当的方法和技术进行分析。
有限元法或其他数值
有限元法(Finite Element Method,FEM)是一种数值分析方法,用于求解边界值问题和偏微分方程。
它是一种将连续问题离散
化为有限个小单元的方法,每个小单元都可以用简单的数学方程描述。
通过将整个区域分解为这些小单元,然后利用数值计算方法对
每个小单元进行计算,最终得到整个区域的近似解。
有限元法在工程、物理学、地质学等领域都有广泛的应用。
有限元法的基本思想是将求解的区域划分为有限个小的单元,
然后在每个单元内建立适当的插值函数,通过这些插值函数将原始
偏微分方程转化为代数方程组,最终通过求解这些代数方程组得到
近似解。
有限元法的优点在于可以处理复杂的几何形状和边界条件,适用于各种不同类型的材料和载荷情况。
除了有限元法,还有其他一些常用的数值分析方法,例如有限
体积法、辛普森法则、龙格-库塔法等。
这些方法在不同的问题和领
域中有着各自的优势和局限性,工程师和科学家需要根据具体情况
选择合适的数值方法来求解问题。
总的来说,有限元法是一种强大的数值分析方法,在工程学和
科学研究中有着广泛的应用。
通过合理的离散化和数值计算,可以得到准确的近似解,帮助人们解决复杂的实际问题。
有限元基础知识归纳有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处Ni=1,其它节点Ni=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。
土工数值分析(一)土体稳定的极限平衡和极限分析目录1 前言 (2)2 理论基础-塑性力学的上、下限定理 (4)2.1 一般提法 (4)2.2 塑性力学的上、下限定理 (5)2.3 边坡稳定分析的条分法 (7)3 土体稳定问题的下限解-垂直条分法 (9)3.1 垂直条分法的静力平衡方程及其解 (9)3.2 数值分析方法 (11)3.3 垂直条分法的有关理论问题 (15)3.4 垂直条分法在主动土压力领域中的应用 (19)4 土体稳定分析的上限解-斜条分法 (23)4.1 求解上限解的基本方程式 (23)4.2 上限解和滑移线法的关系 (24)4.3 边坡稳定分析的上限解 (27)4.4 地基承载力的上限解 (27)5 确定临界滑动模式的最优化方法 (30)5.1 确定土体的临界失稳模式的数值分析方法 (30)5.2 确定最小安全系数的最优化方法 (31)6 程序设计和应用 (39)6.1 概述 (39)6.2 计算垂直条分法安全系数的程序S.FOR (39)6.3 计算斜条分法安全系数的程序E.FOR (53)1土工数值分析(一):土体稳定的极限平衡和极限分析法1前言边坡稳定、土压力和地基承载力是土力学的三个经典问题。
很多学者认为这三个领域的分析方法属于同一理论体系,即极限平衡分析和极限分析方法,因此,应该建立一个统一的数值分析方法。
Janbu 曾在1957年提出过土坡通用分析方法。
Sokolovski(1954)应用偏微分方程的滑移线理论提出了地基承载力、土压力和边坡稳定的统一的求解方法。
W. F. Chen (1975) 在其专著中全面阐述了在塑性力学上限和下限定理基础上建立的土体稳定分析一般方法。
但是,上述这些方法只能对少数具有简单几何形状、介质均匀的问题提供解答,故没有在实践中获得广泛的应用。
下面分析这三个领域分析方法的现状以及建立一个统一的体系的可能性。
有关边坡稳定分析的理论的研究工作,从早期的瑞典法,到适用的园弧滑裂面的Bishop简化法,到适用于任意形状、全面满足静力平衡条件的Morgenstern - Price法(1965),其理论体系逐渐趋于严格。
有限元分析及其应用(思考题)1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?2、有限元法与经典的差分法、里兹法有何区别?3、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。
4、什么是节点力和节点载荷?两者有何区别?5、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?6、单元的形函数具有什么特点?有哪些性质?7、描述弹性体的基本变量是什么?基本方程有哪些组成?8、何谓应力、应变、位移的概念?应力与强度是什么关系?9、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?10、以平面微元体为例,考虑弹性力学基本假设,推导微分平衡方程。
11、常见的弹性力学问题解法有哪几类?各有何特点或局限?简述求解思路?12、什么叫外力势能?什么叫应变能?简述势能变分原理。
试问势能变分原理代表了弹性力学的那些方程?同时,附加了什么条件?13、在三维弹性体中,若系统势能对位移变分为零。
试证明一定满足应力平衡方程和应力边界条件。
14、为了保证有限元解的收敛性,位移函数必须满足那些条件?为什么?15、位移函数构造为何按Pascal三角形进行?为什么?16、如何理解有限元解的下限性?17、何谓刚性位移?何谓常量应变?18、在按位移法求解有限元法中,为什么说应力解的精度低于位移解的精度?19 何谓协调单元?何谓非协调单元?为什么有时非协调单元的计算精度还高于协调单元?20 何谓常应变单元?其位移、应变、应力在单元内、单元边界上有何特性?21平面矩形单元的位移、应力在单元内、单元边界上有何特性?试说明矩形单元刚度矩阵的计算与坐标原点位置无关。
22谓面积坐标?其特点是什么?23分析以下几种平面单元的位移在单元公共边界上的连续性:1)常应变三角形单元;2)四节点矩形单元;3)六节点三角形单元;4)四节点直线边界四边形等参单元;5)八节点曲线边界四边形等参单元。