当前位置:文档之家› 空间中的平行与垂直关系(基础)

空间中的平行与垂直关系(基础)

空间中的平行与垂直关系(基础)
空间中的平行与垂直关系(基础)

空间中的平行关系练习题

1.2.2空间中的平行关系 【目标要求】 1.理解并掌握公理4,能应用其证明简单的几何问题. 2.理解并掌握直线与平面平行的判定定理和性质定理,明确线线平行与面面平行的关系. 3.能够熟练的应用线面平行的性质定理和判定定理. 1.以下说法中正确的个数是(其中a,b表示直线,表示平面α) ( ) ①若a∥b,b∥α,则a∥α②若a∥α,b∥α,则a∥b ③若a∥b,b∥α,则a∥α④若a∥α,b∥α,则a∥b A. 0个 B. 1个 C. 2个 D. 3个 2.a∥α,b∥β,a∥b,则α与β的位置关系是() A.平行 B.相交 C.平行或相交 D.一定垂直 3.如果平面α外有两点A、B,它们到平面α的距离都是d,则直线AB和平面α的位置关系一定是() A.平行 B.相交 C.平行或相交 D. AB?α 4.当α∥β时,必须满足的条件() A.平面α内有无数条直线平行于平面β B.平面α与平面β同平行于一条直线 C.平面α内有两条直线平行于平面β D.平面α内有两条相交直线与β平面平行 5.已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且 不相交.;其中可能成立的有() A.2个 B.3个 C.4个 D.5个 6.直线a∥平面α,点A∈α,则过点A且平行于直线a的直线() A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内 7.已知直线a∥平面α,且它们的距离为d,则到直线a与到平面α的距离都等于d的点的集合是 () A.空集 B.两条平行直线 C.一条直线 D.一个平面 8. A、B是直线l外的两点,过A、B且和l平行的平面的个数是() A.0个 B.1个 C.无数个 D.以上都有可能 9.设α,β是不重合的两个平面,l和m是不重合的两条直线,则能得出α∥β的是() A.l?α,m?α,且l∥β,m∥β B.l?α,m?β,且l∥m C.l⊥α,m⊥β,且l∥m D.l∥α,m∥β,且l∥m 10.已知直线a、b,平面α、β,以下条件中能推出α∥β的是() ①a?α,b?β,a∥b;②a?α,b?α,a∥β,b∥β;③a∥b,a⊥α,b⊥β. A.① B.② C.③ D.均不能 11.若平面α∥平面β,直线a?α,直线b?β,那么直线a,b的位置关系是() A.垂直 B.平行 C.相交 D.不相交 12.梯形ABCD中AB∥CD,AB?平面α,则直线CD与平面α的位置关系是() A.平行 B.平行或相交 C.相交 D. CD平行平面α或CD?α 13.正方体AC1中,E、F、G分别为B1C1、A1D1、A1B1的中点 求证:平面EBD//平面FGA.

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

空间中的平行与垂直

空间中的平行与垂直(文/理) 热点一空间线面位置关系的判定 空间线面位置关系判断的常用方法 (1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题; (2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断. 例1(1)(·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 (2)关于空间两条直线a、b和平面α,下列命题正确的是() A.若a∥b,b?α,则a∥α B.若a∥α,b?α,则a∥b C.若a∥α,b∥α,则a∥b D.若a⊥α,b⊥α,则a∥b 答案(1)D(2)D 解析(1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交. (2)线面平行的判定定理中的条件要求a?α,故A错;对于线面平行,这条直线与面内的直线的位置关系可以平行,也可以异面,故B错;平行于同一个平面的两条直线的位置关系:平行、相交、异面都有可能,故C错;垂直于同一个平面的两条直线是平行的,故D正确,故选D. 思维升华解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中. 跟踪演练1设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;

第2讲 空间中的平行与垂直

第2讲空间中的平行与垂直 高考定位 1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择题、填空题的形式出现,题目难度较小;2.以解答题的形式考查空间平行、垂直的证明,并与空间角的计算综合命题. 真题感悟 1.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则() A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 解析连接BD,BE, ∵点N是正方形ABCD的中心, ∴点N在BD上,且BN=DN, ∴BM,EN是△DBE的中线, ∴BM,EN必相交. 连接CM,设DE=a,则EC=DC=a,MC=3 2a,

∵平面ECD ⊥平面ABCD ,且BC ⊥DC , ∴BC ⊥平面EDC , 则BD =2a ,BE = a 2+a 2=2a , BM = ? ?? ?? 32a 2 +a 2=72a , 又EN = ? ????a 22 +? ?? ?? 32a 2 =a , 故BM ≠EN . 答案 B 2.(2019·全国Ⅰ卷)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为________. 解析 如图,过点P 作PO ⊥平面ABC 于O ,则PO 为P 到平面ABC 的距离. 再过O 作OE ⊥AC 于E ,OF ⊥BC 于F , 连接PC ,PE ,PF ,则PE ⊥AC ,PF ⊥BC . 所以PE =PF =3,所以OE =OF , 所以CO 为∠ACB 的平分线, 即∠ACO =45°. 在Rt △PEC 中,PC =2,PE =3,所以CE =1, 所以OE =1,所以PO =PE 2-OE 2= (3)2-12= 2. 答案 2 3.(2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:

空间几何平行与垂直证明

空间几何平行与垂直证明 线面平行 方法一:中点模型法 例:1.已知在四棱锥P-ABCD 中,ABCD 为平行四边形, E 为PC 的中点. 求证:PA//平面BDE 练习: 1.三棱锥_P ABC 中,P A A B A C ==,120BAC ∠= ,P A ⊥平面A B C , 点E 、F 分别为线段P C 、B C 的中点, (1)判断P B 与平面A E F 的位置关系并说明理由; (2)求直线P F 与平面P A C 所成角的正弦值。 P A B C D E C B

2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AD ⊥CD .DB 平分∠ADC ,E 为PC 的中点,AD =CD . (1)证明:PA ∥平面BDE ; (2)证明:AC ⊥平面PBD . 3.已知空间四边形ABCD 中,E,F,G,H 分别为 AB,BC,CD,DA 的中点. 求证:AC//平面EFG. 4.已知空间四边形ABCD 中,E,F,G,H 分别为AB,BC,CD,DA 的中点. 求证:EF //平面BGH. 方法二:平行四边形法 例:1.已知在四棱锥P-ABCD 中,ABCD 为平行四边形,E 为PC 的中点,O 为BD 的中点. 求证:OE //平面ADP A B C D E F G H A B C D E F G H P A B C D E O

2.正方体1111ABC D A B C D -中,,E G 分别是11,BC C D 中点. 求证://E G 平面11BD D B 练习 1.如图,在四棱锥O A B C D -中,底面A B C D 四边长为1的菱形, M 为O A 的中点,N 为B C 的中点 证明:直线MN ‖平面O C D ; 2.在四棱锥P-ABCD 中,底面四边形ABCD 是平行四边形,E,F 分别是AB ,PD 的中点. 求证://A F 平面PC E 3.已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; G E D 1 C 1 B 1 A 1A D C B O A M D C B N P B C D A E F D 1O D B A C 1 B 1 A 1 C

最新空间中的平行关系教案

课题:空间中的平行关系 授课人:杜仙梅 教学目标:1.掌握直线和平面平行的判定定理和性质定理,灵活运用线面平行的判定定理和性质定理实现“线线”“线面”平行的转化。 2.掌握两个平面平行的判定定理及性质定理,灵活运用面面平行的判定定理和性质定理实现“线面”“面面”平行的转化. 教学重点、难点:线面平行的判定定理和性质定理的证明及运用;两个平面平行的判定和性质及其灵活运用. 教学方法:探究、引导、讲练相结合 教学过程: 基础知识梳理 1.直线与平面平行的判定与性质 (1)判定定理: 平面外一条直线与_______________平行,则该直线与此平面平行.(此平面内的一条直线) (2)性质定理: 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线.(平行)2.平面与平面平行的判定与性质 (1)判定定理: 一个平面内的与另一个平面平行,则这两个平面平行.(两条相交直线) (2)性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线.(平行) 思考:能否由线线平行得到面面平行? 【思考·提示】可以.只要一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,这两个平面就平行. 三基能力强化 1.两条直线a、b满足a∥b,b?α,则a与平面α的关系是(C) A.a∥α B.a与α相交 C.a与α不相交 D.a?α 2.正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为_____.(平行) 课堂互动讲练 考点一 直线与平面平行的判定: 判定直线与平面平行,主要有三种方法: (1)利用定义(常用反证法). (2)利用判定定理:关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.(3)利用面面平行的性质定理:当两平面平行时,其中一个平面内的任一直线平行于另一平面. 特别提醒:线面平行关系没有传递性,即平行线中的一条平行于一平面,另一条不一定平行于该平面.例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一 点P、Q,且AP=DQ. 求证:PQ∥平面BCE. 【证明】法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N, 连结MN、PQ.

高考数学复习《空间中的平行关系》

空间中的平行关系 【考点导读】 1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。 2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。 3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。 【基础练习】 1.若b a 、为异面直线,直线c ∥a ,则c 与b 的位置关系是 异面或相交 。 2.给出下列四个命题: ①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假. 命题的个数是 4 个。 3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。 4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题: ①a ∥c ,b ∥c ?a ∥b ;②a ∥r ,b ∥r ?a ∥b ;③α∥c ,β∥c ?α∥β; ④α∥r ,β∥r ?α∥β;⑤a ∥c ,α∥c ?a ∥α;⑥a ∥r ,α∥r ?a ∥α. 其中正确的命题是 ①④ 。 【范例导析】 例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面. ∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH 面ABC ,GF 面ABD , 由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB ∴EH ∥AB . ∴AB ∥面EFG . 例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN. 求证:MN ∥平面AA 1B 1B. 分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。本题可以采用任何一种转化方式。 简证:法1:把证“线面平行”转化为证“线线平行”。

16-17版 第1部分 专题4 突破点11 空间中的平行与垂直关系

突破点11 空间中的平行与垂直关系 提炼1 异面直线的性质 (1)面内的两条直线或平面内的一条直线与平面外的一条直线. (2)异面直线所成角的范围是? ????0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直. (3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求. 提炼2 平面与平面平行的常用性质 (1)(2)经过平面外一点有且只有一个平面与已知平面平行. (3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行. (4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面. 提炼3 证明线面位置关系的方法 (1)平行的性质定理;③面面平行的性质定理;④线面垂直的性质定理. (2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质. (3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理. (4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线.

回访1异面直线的性质 1.(2016·全国乙卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为() A. 3 2 B. 2 2 C. 3 3 D. 1 3 A[设平面CB1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可证CD1∥n. 因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直线B1D1与CD1所成角为60°,其正弦值为 3 2.] 2.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是() A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 D[由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.] 回访2面面平行的性质与线面位置关系的判断 3.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l

空间平行与垂直专题

空间平行与垂直专题 1.已知E F , G, H 是空间四点,命题甲: E , F , G H 四点不共面,命题乙:直线 EF 和GH 不相交,则甲 是乙成立的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件 E, F , G H 四点不共面,则直线 EF 和GH 肯定不相交,但直线 EF 和GH 不相交,E , F , G H 四点 答案:B a // 3 , a // Y ,^ U 3 // Y 其中正确命题的序号是( A .①③ B.①④ C.②③ D .②④ 解析:对于?』因为平行于同一个平面的两个平面相互平行』所叹①正确j 对于②,当直线用位于平面# 內J 且平行于平面為0的交线时,满足条件,但显然此时用与平面弄不垂直』因此②不正确.对于?』在 平面厲内取直线丘平行于flb 则宙ml a,曲"心得"丄fib 又n 申 因此有厲丄0,③正确;对于④,直线 曲可能位于平面口内,显然此时用与平面《■不平行,因此?不正确.综上所述,正确命題的序号是①③, 答案:A 3 .如图,在三棱锥 P — ABC 中,不能证明 API BC 的条件是( ) A. API PB AP I PC 可以共面, 例如 EF// GH 故选B. 解析:若 2 .设m n 是不同的直线, 3 , 丫是不同的平面,有以下四个命题: ①若 ②若 a 丄 3, m /a,贝 y m 丄 3 ③若 m± a , mil 3,贝U a ④若 m// n , n? a ,贝U m//

B. API PB BC ^ PB C. 平面 BPQ_平面 APC BCL PC D. API 平面 PBC 解析:A 中,因为AP I PB API PC PBn PC= P ,所以API 平面PBC 又BC ?平面PBC 所以API BC 故A 正确;C 中,因为平面 BPCL 平面APC BC! PC 所以BCL 平面APC AP ?平面APC 所以AP I BC 故C 正 确;D 中,由A 知D 正确;B 中条件不能判断出 API BC 故选B. 答案:B 4 ?设m n 是两条不同的直线, a , 3是两个不同的平面,给出下列四个命题: 其中真命题的个数为( A . 1 B . 2 C. 3 D . 4 解析:对于0由直线与平面垂直的判定定理易知其正确;对于②,平面a 与f 可能平行或相交,故②错 误;对于?,直线斤可能平行于平面0,也可能在平面0内,故③错误;对于⑨ 由两平面平行的判定定理 易得平面5平行,故?错误.综上所述,正确命题的个数为I,故选A. 答案;A 5?如图,在下列四个正方体中, A, B 为正方体的两个顶点, 解析:B 选项中,AB// MQ 且AB?平面MNQ MQ 平面MNQ 则AB//平面MNQ C 选项中,AB// MQ 且AB ?平 面MNQ MQ 平面MNQ 则AB//平面 MNQ D 选项中,AB// NQ 且AB?平面MNQ NC ?平面MNQ 则AB//平面 MNQ 故选A. 答案:A 6.如图所示,直线 PA 垂直于O O 所在的平面,△ ABC 内接于O O,且AB 为O O 的直径,点 M 为线段PB 的中 ①若 m// n , ②若 m// a ,m//3 ,贝U a // 3 ; ③若 m// n , m// 3 ,贝 U n // ④若 ml a 中,直线 AB 与平面MNQT 平行的是( . _________ B A AT-? M N, Q 为所在棱的中点,则在这四个正方体 A i M

七年级数学:空间里的平行关系(教学实录)

( 数学教案 ) 学校:_________________________ 年级:_________________________ 教师:_________________________ 教案设计 / 精品文档 / 文字可改 七年级数学:空间里的平行关系 (教学实录) Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.

七年级数学:空间里的平行关系(教学实 录) 教学建议 一、知识结构 在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念.培养学生的空间观念. 二、重点、难点分析 能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点.本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、

体的关系具有重要的意义. 1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系. 2.例如:在图中长方体的棱AA'与面ABCD垂直,面A'ABB'与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论: (1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直. (2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直. 正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A'B'C'D'的位置关系,把棱AB向两方延长,面A'B'C'D'向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD'C'C是互相平行的,棱AA'与面

(典型题)高考数学二轮复习 知识点总结 空间中的平行与垂直

空间中的平行与垂直 高考对本节知识的考查主要是以下两种形式:1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题真假实行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体实行考查,难度中等. 1.线面平行与垂直的判定定理、性质定理 线面平行的判定定理 ? ??? ? a ∥ b b ?αa ?α?a ∥α 线面平行的性质定理 ? ??? ?a ∥α a ?βα∩β= b ?a ∥b 线面垂直的判定定理 ? ??? ?a ?α,b ?αa ∩b =O l ⊥a ,l ⊥b ? l ⊥α 线面垂直的性质定理 ? ????a ⊥αb ⊥α?a ∥b 2. 面面垂直的判定定理 ? ????a ⊥αa ?β?α⊥β 面面垂直的性质定理 ? ??? ?α⊥β α∩β=c a ?αa ⊥c ?a ⊥β

面面平行的判定定理 ? ????a ?βb ?β a ∩ b =O a ∥α, b ∥α? α∥β 面面平行的性质定理 ? ??? ?α∥β α∩γ=a β∩γ=b ?a ∥b 3. 平行关系及垂直关系的转化示意图 考点一 空间线面位置关系的判断 例1 (1)l 1,l 2,l 3是空间三条不同的直线,则下列命题准确的是 ( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 (2)设l ,m 是两条不同的直线,α是一个平面,则下列命题准确的是 ( ) A .若l ⊥m ,m ?α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ?α,则l ∥m D .若l ∥α,m ∥α,则l ∥m 答案 (1)B (2)B 解析 (1)对于A ,直线l 1与l 3可能异面、相交;对于C ,直线l 1、l 2、l 3可能构成三棱柱的三条棱而不共面;对于D ,直线l 1、l 2、l 3相交于同一个点时不一定共面,如正方体一个顶点的三条棱.所以选B. (2)A 中直线l 可能在平面α内;C 与D 中直线l ,m 可能异面;事实上由直线与平面垂直的判定定理可得B 准确. 解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理实行判断,必要时能够利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全移植到立体几何中. (1)(2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中准确的是 ( )

数学(理)知识清单-专题12 空间的平行与垂直(原卷+解析版)

专练 1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的() A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 2.设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题: ①若α∥β,α∥γ,则β∥γ ②若α⊥β,m∥α,则m⊥β ③若m⊥α,m∥β,则α⊥β ④若m∥n,n?α,则m∥α 其中正确命题的序号是() A.①③B.①④ C.②③D.②④ 3.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是() A.AP⊥PB,AP⊥PC B.AP⊥PB,BC⊥PB C.平面BPC⊥平面APC,BC⊥PC D.AP⊥平面PBC 4.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题: ①若m∥n,m⊥β,则n⊥β; ②若m∥α,m∥β,则α∥β; ③若m∥n,m∥β,则n∥β; ④若m⊥α,m⊥β,则α⊥β. 其中真命题的个数为()

A .1 B .2 C .3 D .4 6.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长.其中正确的是( ) A .①② B .①②③ C .① D .②③ 7.已知平面α及直线a ,b ,则下列说法正确的是( ) A .若直线a ,b 与平面α所成角都是30°,则这两条直线平行 B .若直线a ,b 与平面α所成角都是30°,则这两条直线不可能垂直 C .若直线a ,b 平行,则这两条直线中至少有一条与平面α平行 D .若直线a ,b 垂直,则这两条直线与平面α不可能都垂直 8.三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,M ,N 分别是A 1B 1,A 1C 1的中点,则BM 与AN 所成角的余弦值为( ) A.110 B.35 C.710 D.45 9.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )

高考数学专题复习与策略专题立体几何突破点空间中的平行与垂直关系教师用书理

突破点11 空间中的平行与垂直关系 (对应学生用书第167页) 提炼1 异面直线的性质 (1)直线或平面内的一条直线与平面外的一条直线. (2)异面直线所成角的范围是? ????0,π2,所以空间中两条直线垂直可能为异面垂直或相交垂直. (3)求异面直线所成角的一般步骤为:①找出(或作出)适合题设的角——用平移法;②求——转化为在三角形中求解;③结论——由②所求得的角或其补角即为所求. 提炼2 平面与平面平行的常用性质 (1)(2)经过平面外一点有且只有一个平面与已知平面平行. (3)如果两个平面分别平行于第三个平面,那么这两个平面互相平行. (4)两个平面平行,则其中一个平面内的任意一条直线平行于另一个平面. 提炼3 证明线面位置关系的方法 (1)定理;③面面平行的性质定理;④线面垂直的性质定理. (2)证明线面平行的方法:①寻找线线平行,利用线面平行的判定定理;②寻找面面平行,利用面面平行的性质. (3)证明线面垂直的方法:①线面垂直的定义,需要说明直线与平面内的所有直线都垂直;②线面垂直的判定定理;③面面垂直的性质定理. (4)证明面面垂直的方法:①定义法,即证明两个平面所成的二面角为直二面角;②面面垂直的判定定理,即证明一个平面经过另一个平面的一条垂线. 回访1 异面直线的性质 1.(2016·全国乙卷)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )

A. 3 2 B. 2 2 C. 3 3 D. 1 3 A [设平面C B 1D1∩平面ABCD=m1. ∵平面α∥平面CB1D1,∴m1∥m. 又平面ABCD∥平面A1B1C1D1, 且平面CB1D1∩平面A1B1C1D1=B1D1, ∴B1D1∥m1.∴B1D1∥m. ∵平面ABB1A1∥平面DCC1D1, 且平面CB1D1∩平面DCC1D1=CD1, 同理可证CD1∥n. 因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形, 故直线B1D1与CD1所成角为60°,其正弦值为 3 2 .] 2.(2015·广东高考)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( ) A.l与l1,l2都不相交 B.l与l1,l2都相交 C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 D [由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.] 回访2 面面平行的性质与线面位置关系的判断 3.(2013·全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( ) A.α∥β且l∥α B.α⊥β且l⊥β C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l D [根据所给的已知条件作图,如图所示. 由图可知α与β相交,且交线平行于l,故选D.]

专题 空间几何中的平行与垂直

专题空间几何中的平行与垂直 考点 点、线、面位置关系的判断 一 1.(优质试题浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n 满足m∥α,n⊥β,则( ). A.m∥l B.m∥n C.n⊥l D.m⊥n 【解析】∵α∩β=l,∴l?β.∵n⊥β,∴n⊥l. 【答案】C 2.(优质试题安徽卷)已知m,n是两条不同直线,α,β是两个不同平面, 则下列命题正确的是( ). A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 【解析】A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m?α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确.故D项正确. 【答案】D 3.(优质试题广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平 面β内,l是平面α与平面β的交线,则下列命题正确的是( ). A.l与l1,l2都不相交 B.l与l1,l2都相交

C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交 【解析】由直线l1和l2是异面直线可知l1与l2不平行也不相交,故l1,l2中至少有一条与l相交. 【答案】D 4.(优质试题全国Ⅲ卷)在正方体ABCD -A1B1C1D1中,E为棱CD的中点,则( ). A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 【解析】连接B1C,由题意得BC1⊥B1C. ∵A1B1⊥平面B1BCC1,且BC1?平面B1BCC1, ∴A1B1⊥BC1, ∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1, ∵A1E?平面A1ECB1,∴A1E⊥BC1.故选C. 【答案】C 5.(优质试题上海卷)如图,在正方体ABCD-A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是( ). A.直线AA1 B.直线A1B1 C.直线A1D1 D.直线B1C1

线面平行与垂直关系的转化

三垂线定理 一、温故 1.线面平行的判定及性质定理 2.线面垂直的判定及性质定理 3.求线面所成角步骤 二、探究 思考1:面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。那么平面的斜线与平面内的直线在什么情况下是垂直的呢? 例1:已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a AO ⊥。 求证:a PO ⊥; 例2.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 P B

例3.已知:点O 是ABC ?的垂心,PO ABC ⊥平面,垂足为O ,求证:PA BC ⊥ 例4.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 例5.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 例6.已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a PO ⊥。 求证:a AO ⊥; P B 1 A C O D A C B P

例7.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; 线面平行与垂直关系的转化 1.对于命题:①b a a b b a ⊥?⊥,//; ②αα//,b a b a ?⊥⊥; ③ c a b a c b a ////,,,?=???βαβα;④ c b a c a b ////,,,?=?=?=?ααγγββα,其中正确的命题个数是 2.若直线a ,b 没有公共点,则下列命题:①存在与a ,b 平行的直线;②存在与a ,b 垂直的平面;③存在经过a 而与b 垂直的平面;④存在经过a 而与b 平行的平面. 其中正确的命题序号是 3.已知a ,b 和平面α,下列推理:①α⊥a 且b a a b ⊥??;②αα⊥?⊥b a b a 且//;③b a a //b //??αα且;④ααα??⊥⊥a a b a 或且//b ,其中正确的命题序号是 4.下列说法:①如果一条直线和平面内的一条直线垂直,该直线与这个平面必相交;②如果一条直线和平面的一组平行线垂直,该直线必在这个平面内;④如果一条直线和一个平面垂直,该直线垂直于平面内的任何直线,其中正确的个数是 5.空间四边形ABCD 的四条边相等,则它的对角线AD 、BC 的关系是 6.对于命题:① αα⊥????⊥a b b a //;②αα////a b b a ?????;③αα⊥?? ?? ⊥a b b a //;④ αα//b b a a ?? ?? ⊥⊥其中正确的命题是 7.在正方体ABCD-A ?B ?C ?D ?中,边对角线BD ?的一个平面交AA ?于E ,交CC ?于F , D A B C

专题二 第1讲空间中的平行与垂直关系

第1讲空间中的平行与垂直关系 A组基础达标 1. 能保证直线a与平面α平行的条件是________.(填序号) ①b?α,a∥b; ②b?α,c∥α,a∥b,a∥c; ③b?α,A,B∈a,C,D∈b且AC=BD; ④a?α,bα,a∥b. 2. 若平面α⊥平面β,平面α∩平面β=直线l,则下列说法中错误的是________.(填序号) ①垂直于平面β的平面一定平行于平面α; ②垂直于直线l的直线一定垂直于平面α; ③垂直于平面β的平面一定平行于直线l; ④垂直于直线l的平面一定与平面α,β都垂直. 3. 已知直线m,l,平面α,β,且m⊥α,lβ,给出以下四个命题: ①若α∥β,则m⊥l;②若α⊥β,则m∥l; ③若m⊥l,则α⊥β;④若m∥l,则α⊥β. 其中正确的命题是________.(填序号) 4. 已知l,m是平面α外两条不同的直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:____________. 5. 将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中的“可换命题”是________.(填序号) 6. (2019·南方凤凰台密题)如图,在三棱锥P-ABC中,△P AB和△CAB都是以AB为底 边的等腰三角形,D,E,F分别是PC,AC,BC的中点. (1) 求证:平面DEF∥平面P AB; (2) 求证:AB⊥PC. (第6题) 7. (2019·南通最后一卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,E,F分别

《空间中的平行关系》教案

《空间中的平行关系》教案 教学目标 1、知识与技能 (1)认识和理解空间平行线的传递性,会证明空间等角定理. (2)通过直观感知,归纳直线和平面平行及平面和平面平行的判定定理. (3)掌握直线和平面平行,平面与平面平行的判定定理和性质定理,并能利用这些定理解决空间中的平行关系问题. 2、过程与方法 通过类比和转换的思维方法,将空间中的某些立体图形问题转化为平面图形的问题,从而化难为易,化繁为简,带未知为已知,使问题得到很好的解决(线∥线线∥面面∥面).教学重难点 重点:平面的基本性质与推论以及它们的应用;线线平行及平行线的传递性和面面平行的定义与判定. 难点:自然语言与数学图形语言和符号语言间的相互转化与应用;如何由平行公理以及其他基本性质推出空间线、线,线、面和面、面平行的判定和性质定理,并掌握这些定理的应用. 教学过程 一、导入 看图观察,图中的关系是什么? 二、平面中的平行关系 1. 平行直线 (1)空间两条直线的位置关系 ①相交:在同一平面内,有且只有一个公共点; ②平行:在同一平面内,没有公共点. (2)初中几何中的平行公理: 过直线外一点有且只有一条直线和这条直线平行. 【说明】此结论在空间中仍成立. (3)公理4(空间平行线的传递性): 平行于同一条直线的两条直线互相平行.即:如果直线a // b,c // b,那么a // c. 【说明】此公理是判定两直线平行的重要方法:寻找第三条直线分别与前两条直线平行. 2. 等角定理 等角定理:如果一个角的两边和另一个角的两边分别对应平行,并且方向相同,那么这

两个角相等. 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. 需要说明的是:对于等角定理中的条件:“方向相同”. (1)若仅将它改成“方向相反”,则这两个角也相等. (2)若仅将它改成“一边方向相同,而另一边方向相反”,则这两个角互补.此定理及推论是证明角相等问题的常用方法. 3. 空间图形的平移 如果空间图形F的所有点都沿同一方向移动相同的距离到F'的位置,则说图形F在空间做了一次平移. 注意:图形平移后与原图形全等,即对应角和对应两点间的距离保持不变. 图形平移有如下性质: (1)平移前后的两个图形全等; (2)对应角的大小平移前后不变; (3)对应两点的距离平移前后不变; (4)对应两平行直线的位置关系在平移前后不变; (5)对应两垂直直线的位置关系在平移前后不变. 4. 证明空间两直线平行的方法 (1)利用定义 用定义证明两条直线平行,需证两件事:一是两直线在同一平面内;二是两直线没有公共点. (2)利用公理4 用公理4证明两条直线平行,只需证一件事:就是需找到直线c,使得a // c,同时b//c,由公理4得a // b. 5. 直线与平面平行 (1)直线和平面的位置关系有三种,用公共点的个数归纳为 (2)线面平行的判定定理:如果不在一个平面内的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.

空间中的平行关系练习题(优.选)

1 / 2word. 空间中的平行关系 直线与平面平行的判定定理: 平面与平面平行的判定定理: 直线与平面平行的性质定理: 平面与平面平行的性质定理: 1.以下说法中正确的个数是(其中a ,b 表示直线, 表示平面α) ( ) ①若a ∥b ,b ∥α,则a ∥α ②若a ∥α ,b ∥α ,则a ∥b ③若a ∥b ,b ?α,则a ∥α ④若a ∥α ,b ∥α,则a 与b 相交 A. 0个 B. 1个 C. 2个 D. 3个 2.a ∥α ,b ∥β ,a ∥b ,则α 与β 的位置关系是 ( ) A.平行 B.相交 C.平行或相交 D.一定垂直 3.如果平面α外有两点A 、B ,它们到平面α的距离都是d ,则直线AB 和平面α的位置关系一定是( ) A.平行 B.相交 C.平行或相交 D. AB ?α 4.当α∥β时,必须满足的条件 ( ) A.平面α内有无数条直线平行于平面β B.平面α与平面β同平行于一条直线 C.平面α内有两条直线平行于平面β D.平面α内有两条相交直线与β平面平行 5.直线a ∥平面α,点A ∈α,则过点A 且平行于直线a 的直线 ( ) A.只有一条,但不一定在平面α内 B.只有一条,且在平面α内 C.有无数条,但都不在平面α内 D.有无数条,且都在平面α内 6. A 、B 是直线l 外的两点,过A 、B 且和l 平行的平面的个数是 ( ) A.0个 B.1个 C.无数个 D.以上都有可能 7.设α,β是不重合的两个平面,l 和m 是不重合的两条直线,则能得出α∥β的是( ) A.l ?α,m ?α,且l ∥β,m ∥β B.l ?α,m ?β,且l ∥m C. l ?α,l ∥m ,且m ∥β D.l ∥α,m ∥β,且l ∥m 8. 如图所示,在三棱柱ABC —A 1B 1C 1中,M 、N 分别是BC 和A 1B 1的中点. 求证:MN ∥平面AA 1C 1 9.正方体AC 1中,E 、F 、G 分别为B 1C 1、A 1D 1、A 1B 1的中点 求证:平面EBD//平面FGA . 10、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥ BD . H G F E D B A C

相关主题
文本预览
相关文档 最新文档