高中数学-离散型随机变量的分布列
- 格式:doc
- 大小:960.50 KB
- 文档页数:17
离散型随机变量——分布列、期望与方差从近几年高考试题看,离散型随机变量的期望与方差涉及到的试题背景有:①产品检验问题;②射击,投篮问题;③选题、选课,做题,考试问题;④试验,游戏,竞赛,研究性问题;⑤旅游,交通问题;⑥摸球球问题;⑦取卡片,数字和入座问题;⑧信息,投资,路线问题;⑨与概率分布直方图关联问题;⑩综合函数、方程、数列、不等式、导数、线性规划等知识问题着重考查分析问题和解决问题的能力。
一、离散型随机变量的分布列、期望与方差1.离散型随机变量及其分布列: (1)离散型随机变量:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. (2)离散型随机变量的特点:①结果的可数性;②结果的未知性。
(3)离散型随机变量的分布列:设离散型随机变量X 所有可能的取值为i x ,与i x 对应的概率为i p (1,2,,)i n =,则下表:称为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列. (4)离散型随机变量的分布列的性质:①0i p >(1,2,,)i n =;②11nii p==∑(1,2,,)i n =.③(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅ 2.离散型随机变量的数学期望:(1)定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x , 这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).(2)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.3.离散型随机变量的方差:(1)定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这 些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.(2)离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散程度).(3)()D X的算术平方根叫做离散型随机变量X 的标准差,它也是一个衡量离散 型随机变量波动大小的量.4.随机变量aX b +的期望与方差:①()()E aX b aE X b +=+;②2()().D aX b a D X +=二、条件概率与事件的独立性:1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件 概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). 2.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两 个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事 件i A 换成其对立事件后等式仍成立.三、几类典型的概率分布:1.两点分布:如果随机变量X 的分布列为其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布.注:①两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验, 所以这种分布又称为伯努利分布. ②();().E X p D X np ==2.超几何分布:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个),称离散型随机变量X 的这 种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.记为:(,,)X H N M n .注:();ME X n N=2()()()(1)n N n N M M D X N N --=-. 3.二项分布:(1)定义:如果每次试验,只有两个可能的结果A 及A ,且事件A 发生的概率相同(p ). 那么重复地做n 次试验,各次试验的结果相互独立,这种试验称为n 次独立重复试验.在n 次试验中,事件A 恰好发生k 次的概率为:()C (1)kk n k n n P k p p -=-(0,1,,)k n =.(2)二项分布:若将事件A 发生的次数为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q-==, 其中0,1,2,,k n =,于是得到X 的分布列:由于表中第二行恰好是二项展开式00111()C C C C n n n kk n k n n n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . (3)二项分布的均值与方差:若~(,)X B n p ,则()E X np =,()D x npq =(1)q p =-.4.几何分布:(1)定义:在独立重复试验中,某事件第一次发生时,所作试验的次数X 也是一个正 整数的离散型随机变量.“X k =”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,()1,k p A p =- 那么112311231()()()()()()()(1)k k k k k P X k P A A A A A P A P A P A P A P A p p ---====-.(0,1,2,k =…);于是得到随机变量ξ的概率分布如下:记作(,),Xg k p(2)若(,),X g k p 则1()E X p =;21()pD X p-=(1)q p =-. 5.正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上 面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则 这条曲线称为X 的概率密度曲线.(2)曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布:①定义:如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作 用,则表示这样的随机现象的随机变量的概率分布近似服从正态分 布.服从正态分布的随机变量叫做正态随机变量,简称正态变量. ②正态变量概率密度曲线的函数表达式为 22()2()x f x μσ--=,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差. 期望为μ、标准差为σ的正态分布通常记作:2(,)XN μσ.③正态变量的概率密度函数的图象叫做正态曲线.④标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑤正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是 68.3%,95.4%,99.7%.⑥正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是 0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑦若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函 数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数,()()x P x μξφσ-<=.离散型随机变量——分布列、期望与方差考点1.产品检验问题:例1.已知甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品 元件,现从两个盒子内各取出2个元件,试求(1)取得的4个元件均为正品的概率; (2)取得正品元件个数ε的数学期望.例2.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、 2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品, 则当天的产品不能通过.(1)求第一天通过检查的概率;(2)求前两天全部通过检查的概率;(2)若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、 2天分别得1分、2分.求该车间在这两天内得分的数学期望.考点2.比赛问题:例3.,A B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。
教师版第五单元第4讲 离散型随机变量的分布列(6课时) 一.基本理论(一)基本概念(1) 随机变量如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量来表示, 随机变量常用希腊字母ηξ,等表示. (2) 离散型随机变量:如果对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.例如,射击命中环数ξ是一个离散型随机变量.(3) 连续型随机变量如果随机变量可以取某一区间内的一切值,这样的随机变量叫连续型随机变量. (二)离散型随机变量的分布列1.设离散型随机变量ξ可能取的值为 ,,,21n x x x ,ξ取每一个值)4,3,2,1( =i x i 的概率i i p x P ==)(ξ,则称下表为随机变量ξ的概率分布,简称为ξ的分布列.分布列的表达式可以是如下的几种(A)表格形式; (B)一组等式 (C)压缩为一个帶i 的形式.2.由概率的性质知,任一离散型随机变量的分布列具有下列二个性质:(A),3,2,1,0 =≥i p i (B)121=++ p p 3. 求分布列三种方法(1)由统计数据得到离散型随机变量分布列; (2)由古典概型求出离散型随机变量分布列;(3)由互斥事件、独立事件的概率求出离散型随机变量分布列.4..离散型随机变量的期望与方差一般地,若离散型随机变量ξ的概率分布列为则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数.或均值.+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的均方差.简称方差.ξD 叫标准差.性质: (1)22)()(ξξξE E D -= (2)b aE b a E +=+ξξ)( (3)ξξD a b a D 2)(=+(三)几种常见的随机变量的分布 1.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p p 的两点分布.2.二项分布在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.若在一次试验中某事件发生的概率是P,则在n 次独立重复试验中这个事件恰好发生k 次的概率是,,2,1,0,1,)(n k p q q p C k P kn k k n=-===-ξ 得到随机变量ξ的概率分布如下称随机变量ξ服从二项分布,记作ξ~B(n,p),并记kn k k nq p C -=b(k;n,p) 3. 超几何分布一般地,在含有M 件次品中的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为(),0,1,2,3,,,k n kM N MnNC C P x k k m C --===其中{}min ,,,,,,m M n n NM N n M N N *=≤≤∈ (1)若ξ~(,)g k p ,则1E pξ=(2) 若ξ~(,)g k p ,则21p D p ξ-=二.题型分析题型1.由统计数据求离散型随机变量的分布列题1. (2011·北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学 (1)求这两名同学的植树总棵数y 的分布列;(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.[审题视点] 本题解题的关键是求出Y 的取值及取每一个值的概率,注意用分布列的性质进行检验.解 (1)分别从甲、乙两组中随机选取一名同学的方法种数是4×4=16,这两名同学植树总棵数Y 的取值分别为 17,18,19,20,21,P (Y =17)=216=18 P (Y =18)=416=14 P (Y =19)=416=14 P (Y =20)=416=14 P (Y =21)=216=18则随机变量Y 的分布列是:(2)由(1)知E (Y )=178+184+194+204+218=19, 设这名同学获得钱数为X 元,则X =10Y , 则E (X )=10E (Y )=190.题2. 【2012高考真题广东理17】(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50][50,60][60,70][70,80][80,90][90,100]. (1)求图中x 的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ得数学期望.【答案】本题是在概率与统计的交汇处命题,考查了用样本估计总体等统计知识以及离散型随机变量的分布列及期望,考查学生应用数学知识解决实际问题的能力,难度中等。
【解析】题型2 由古典概型求离散型随机变量的分布列 题3. (20XX 年韶关二模)有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望. (1)60个1×1×1的小正方体中,没有涂上颜色的有6个,61(0)6010P ξ=== … (3分) (2)由(1)可知1(0)10P ξ==;11(1)30P ξ==;2(2)5P ξ==;2(3)15P ξ== … (7分)分布列10分)E ξ=0×110+1×1130+2×25+3×215=4730…(12分) 题4. 【2012高考真题浙江理19】已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ).【答案】本题主要考察分布列,数学期望等知识点。
(Ⅰ) X 的可能取值有:3,4,5,6.35395(3)42C P X C ===; 21543920(4)42C C P X C ===;12543915(5)42C C P X C ===; 34392(6)42C P X C ===. 故,所求X 的分布列为(Ⅱ) 所求X 的数学期望E (X )为: E (X )=645105191()34564221142121i i P X i =⋅==⨯+⨯+⨯+⨯+=∑.题型3. 由独立事件同时发生的概率求离散型随机变量的分布列题5. 【2012高考真题重庆理17】甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望 【答案】题6.【2012高考真题全国卷理19】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.【答案】题型4. 两点分布题7. 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:解析设该公司一年后估计可获得的钱数为X元,则随机变量X的取值分别为50 000×12%=6 000(元),-50 000×50%=-25 000(元).由已知条件随机变量X的概率分布列是因此E (X )=6 000×2425+(-25 000)×25=4 760答案 4 760 题型4.二项分布题8. (广东省惠州市20XX 届高三第三次调研理科)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的。
假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的。
(1)求蜜蜂落入第二实验区的概率;(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率;(3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望EX 。
解:(1)记“蜜蜂落入第一实验区”为事件A , “蜜蜂落入第二实验区”为事件B .…1分 依题意,()1111342183S h V P A V S h ⋅⋅⋅===⋅圆锥底面圆锥小椎体圆椎体圆锥底面圆锥 ……………3分∴ ()7()18P B P A =-= ∴ 蜜蜂落入第二实验区的概率为78。
……………4分(2)记“恰有一只红色蜜蜂落入第二实验区”为事件C ,则 ………………5分301091102708708187)(==⎪⎭⎫ ⎝⎛⨯⨯=C C P∴ 恰有一只红色蜜蜂落入第二实验区的概率30702. …………………8分 (3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 满足二项分布,即X ~140,8⎛⎫ ⎪⎝⎭………………………10分 ∴随机变量X 的数学期望EX =40×18=5 ………………………12分 题9. (20XX 年茂名二模)在我市“城乡清洁工程”建设活动中,社会各界掀起净化美化环境的热潮.某单位计划在小区内种植,,,A B C D 四棵风景树,受本地地理环境的影响,,A B两棵树的成活的概率均为12,另外两棵树,C D 为进口树种,其成活概率都为(01)a a <<,设ξ表示最终成活的树的数量.(1)若出现,A B 有且只有一颗成活的概率与,C D 都成活的概率相等,求a 的值; (2)求ξ的分布列(用a 表示);(3)若出现恰好两棵树成活的的概率最大,试求a 的取值范围.解:(1)由题意,得2112(1)22a ⨯⨯-=,∴2a =. ………2分 (2)ξ的所有可能取值为0,1,2,3,4. ……3分020222211(0)(1)(1)(1)24p C C a a ξ==--=- …… …………4分10202122221111(1)(1)(1)(1)(1)(1)2222p C C a C C a a a ξ==--+--=- …………5分2202110222222222211111(2)()(1)(1)(1)(1)(122)22224p C C a C C a a C C a a a ξ==-+--+-=+-…………6分2211222222111(3)()(1)(1)2222a p C C a a C C a ξ==-+-= …………………………………………7分22222221(4)()24a p C C a ξ===…………………………………………8分 得ξ的分布列为: …………………………9分ξ 0 1 2 3 4p21(1)4a - 1(1)2a - 21(122)4a a +- 2a 24a (3)由01a <<,显然21(1)4a -1(1)2a <-, 24a 2a < ……………10分∴(2)(1)p p ξξ=-==21(122)4a a +-211(1)(241)024a a a --=--+≥ …11分 (2)(3)p p ξξ=-==21(122)4a a +-21(21)024a a -=--≥ ……12分由上述不等式解得aa ≤≤……………………13分题型5.超几何分布题10. 某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X 名男同学.(1)求X 的概率分布;(2)求去执行任务的同学中有男有女的概率. 解 (1)X 的可能取值为0,1,2,3. 根据公式P (X =m )=n Mmn MN m M C C C --算出其相应的概率,即X 的概率分布为(2)去执行任务的同学中有男有女的概率为 P (X =1)+P (X =2)=5615+2815=5645.题型6. 离散型随机变量的均值和方差题11. (2011·北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354;方差为:s 2=14×[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=1116.(2)当X =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18.同理可得P (Y =18)=14;P (Y =19)=14;P (Y =20)=14;P (Y =21)=18.所以随机变量Y 的分布列为:EY =17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×18+18×14+19×14+20×14+21×18=19.题12. (2011·福建)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:且X 1的数学期望E (X 1)=6(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.[审题视点] (1)利用分布列的性质P 1+P 2+P 3+P 4=1及E (X 1)=6求a ,b 值.(2)先求X 2的分布列,再求E (X 2),(3)利用提示信息判断.解 (1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2. 又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:X 2的概率分布列如下:所以E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8.即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2. 据此,乙厂的产品更具可购买性.《离散型随机变量的分布列》作业 班次 姓名1.一袋中装有编号为1,2,3,4,5,6的6个大小相同的球,现从中随机取出3个球,以X 表示取出的最大号码. (1)求X 的概率分布; (2)求X >4的概率.解 (1)X 的可能取值为3,4,5,6,从而有: P (X =3)=3633C C =201,P (X =4)=362311C C C ⋅=203, P (X =5)=362411C C C ⋅=103, P (X =6)=362511C C C ⋅=21.故X(2)P (X >4)=P (X =5)+P (X =6)=105103+=54.2.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.[审题视点] 分别求出随机变量X 取每一个值的概率,然后求其期望. 解析 由已知条件P (X =0)=112即(1-P )2×13=112,解得P =12,随机变量X 的取值分别为0,1,2,3.P (X =0)=112,P (X =1)=23×⎝ ⎛⎭⎪⎫1-122+2×13×⎝ ⎛⎭⎪⎫122=13,P (X =2)=2×23×12×⎝ ⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫122=512,P (X =3)=23×⎝ ⎛⎭⎪⎫122=16.因此随机变量X 的分布列为E (X )=0×112+1×13+2×512+3×6=3.答案 533. (广东省江门市20XX 届高三数学理科3月质量检测试题) 甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率32, (I )记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ; (II )求甲恰好比乙多击中目标2次的概率.4. 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数,求X 的概率分布. 解 依题意随机变量X 服从超几何分布, 所以P (X =k )=410446C C C k k (k =0,1,2,3,4).4分∴P (X =0)=4104406C C C =2101,P (X =1)= 4103416C C C =354,P (X =2)= 4102426C C C =73,P (X =3)=4101436C C C =218, P (X =4)=4100446C C C =141, 9分∴X14分5.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数.(1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率. [审题视点] 对变量的取值要做到不重不漏,计算概率要准确. 解 (1)设袋中白球共有x 个,根据已知条件C 2x C 27=17,即x 2-x -6=0,解得x =3,或x =-2(舍去).(2)X 表示取球终止时所需要的次数,则X 的取值分别为:1,2,3,4,5. 因此,P (X =1)=A 13A 17=37,P (X =2)=A 14A 13A 27=27,P (X =3)=A 24A 13A 37=635,P (X =4)=A 34A 13A 47=335,P (X =5)=A 44A 13A 57=135.则随机变量X 的分布列为:(3)甲取到白球的概率为P =3A 17+43A 37+43A 57=7+35+35=35.6. (2011·江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解 (1)X 的所有可能取值为:0,1,2,3,4, P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),则(2)令Y 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835, P (Y =2 100)=P (X ≤2)=5370,E (Y )=3 500×170+2 800×1670+2 100×5370=2 280,所以此员工月工资的期望为2 280元.7. (2008·湖北理,17)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. (1)求ξ的概率分布、期望和方差;(2)若η=a ξ +b ,E (η)=1,D (η)=11,试求a ,b 的值. 解 (1)ξ的概率分布为∴E (ξ)=0×21+1×201+2×101+3×203+4×51=1.5. D (ξ)=(0-1.5)2×21+(1-1.5)2×201+(2-1.5)2×101+(3-1.5)2×203+(4-1.5)2×51=2.75. (2)由D (η)=a 2V (ξ),得a 2×2.75=11,即a =±2.又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2. 当a =-2时,由1=-2×1.5+b ,得b =4. ∴⎩⎨⎧-==,2,2b a 或⎩⎨⎧=-=42b a 即为所求.8.【2012高考真题湖南理17某超市为了解顾客的购物量及结算时间等信息,安排一名员工(Ⅰ)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)【答案】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X ========= 201101( 2.5),(3).100510010p X p X ======X 的分布为X 的数学期望为 33111()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且. 由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980.。