高中数学-分布列
- 格式:ppt
- 大小:193.50 KB
- 文档页数:12
高中数学分布列相关教学一、教学任务及对象1、教学任务本教学任务围绕高中数学的分布列相关内容进行设计。
分布列是概率论中的一个重要概念,它涉及到随机变量的取值及其概率的列出。
在本单元中,教师将引导学生学习如何建立分布列,理解并运用其解决实际问题。
此外,还包括对二项分布、几何分布、超几何分布等常见分布列的性质和应用进行探讨,旨在培养学生逻辑推理能力、数据分析能力以及解决实际问题的能力。
2、教学对象本教学设计的对象为高中二年级的学生,他们在之前的数学学习过程中已经掌握了基本的概率论知识,如概率的加法规则、乘法规则等。
此外,学生也具备一定的代数运算能力和逻辑思维能力。
然而,对于分布列这一较为抽象的概念,学生可能存在理解上的困难,因此,在教学过程中需要关注学生的个体差异,采取不同的教学策略,使学生在掌握知识的同时,提高解决问题的能力。
二、教学目标1、知识与技能(1)理解分布列的定义,掌握分布列的基本性质;(2)掌握常见分布列(如二项分布、几何分布、超几何分布等)的特点和应用;(3)学会运用分布列解决实际问题,提高数据分析能力;(4)能够运用概率论的基本原理,建立随机变量的分布列;(5)掌握分布列与累积分布函数的关系,理解其应用意义。
2、过程与方法(1)通过实例引入,让学生体会从具体问题中抽象出分布列的过程,培养观察能力和抽象思维能力;(2)采用问题驱动的教学方法,引导学生积极思考、主动探究,培养学生的自主学习能力;(3)通过小组合作学习,培养学生的团队合作意识和沟通能力;(4)运用数学软件或工具,辅助学生进行数据分析,培养学生的实际操作能力;(5)通过课后练习和拓展阅读,巩固所学知识,提高学生的知识运用能力。
3、情感,态度与价值观(1)激发学生对数学学科的兴趣,提高学生的数学素养;(2)培养学生严谨、细致的学习态度,使其养成良好的学习习惯;(3)鼓励学生面对问题勇于挑战,培养克服困难的勇气和信心;(4)通过数学知识的学习,使学生认识到数学在现实生活中的重要作用,提高学生的应用意识;(5)培养学生的集体荣誉感,使其在学习过程中关心他人,乐于助人。
高中数学--离散型随机变量及其分布列1.若随机变量X 的概率分布列为且p 1=12p 2,则p 1等于( )A.12 B.13 C.14D.16 【解析】 由p 1+p 2=1且p 2=2p 1可解得p 1=13.【答案】 B2.已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)等于( )A.19 .16 C.13D.14【解析】 ∵12a +22a +32a =1,∴a =3,P (X =2)=22×3=13.【答案】 C3.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( )A .25B .10C .7D .6 【解析】 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.【答案】 C4.随机变量X 的分布列如下:其中a ,b ,c【解析】 ∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.【答案】 235.(2012·安徽高考)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束。
试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量.(1)求X =n +2的概率; (2)设m =n ,求X 的分布列.【解】 (1)X =n +2表示两次调题均为A 类型试题,概率为n m +n ×n +1m +n +2=n (n +1)(m +n )(m +n +2).(2)m =n 时,每次调用的是A 类型试题的概率为P =12,随机变量X 可取n ,n +1,n +2.P (X =n )=(1-p )2=14,P (X =n +1)=2p (1-p )=12,P (X =n +2)=p 2=14,所以X 的分布列为课时作业【考点排查表】1.设某项试验的成功率为失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)的值为( )A .1 B.12 C.13D.15【解析】 设X 的分布列为:即“X =0”表示试验失败,“X 设失败的概率为p ,成功的概率为2p .由p +2p =1,则p =13,因此选C.【答案】 C2.若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β)D .1-β(1-α) 【解析】 由分布列性质可有:P (x 1≤X ≤x 2)=P (X ≤x 2)+P (X ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β). 【答案】 B3.已知离散型随机变量X 的分布列为则k 的值为( ) A.12 B .1 C .2D .3【解析】 由分布列性质有k n +k n +…+kn =1,得k =1.【答案】 B4.今有电子原件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A.C 35C 350 B.C 15+C 25+C 35C 350C .1-C 345C 350D.C 15C 245+C 25C 245C 350【解析】 不出现二级品的结果数为C 345, 不出现二级品的概率为C 345C 350,∴出现二级品的概率为1-C 345C 350.【答案】 C5.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A.C 480C 610C 10100B.C 680C 410C 10100 C.C 480C 620C 10100D.C 680C 420C 10100【解析】 超几何分布恰有6个红球则有4个白球,结果数为C 680C 420, ∴恰有6个红球的概率为C 680C 420C 10100.【答案】 D6.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)【解析】 由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 【答案】 D 二、填空题7.随机变量X 的分布列P (X =k )=a ⎝⎛⎭⎫23k,k =1,2,3,…,则a 的值为________.【解析】 由 ∞k =1P (X =k )=1,即 a ⎣⎡⎦⎤23+⎝⎛⎭⎫232+⎝⎛⎭⎫233+ (1)∴a 231-23=1,解得a =12.【答案】 128.若离散型随机变量X 的分布列为常数c =______.【解析】 由离散型随机变量分布列的基本性质知 ⎩⎪⎨⎪⎧9c 2-c +3-8c =1,0≤9c 2-c ≤1,0≤3-8c ≤1,解得c =13.【答案】 139.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________.【解析】 相应的基本事件空间有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4) =136+236+336=16. 【答案】 16三、解答题10.设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地时才停止前进,ξ表示停车时已经通过的路口数,求:(1)ξ的分布列;(2)停车时最多已通过3个路口的概率.【解】 (1)ξ的所有可能值为0,1,2,3,4.用A k 表示事件“汽车通过第k 个路口时不停(遇绿灯)”,则P (A k )=34(k =1,2,3,4),且A 1,A 2,A 3,A 4独立.故P (ξ=0)=P (A 1)=14;P (ξ=1)=P (A 1·A 2)=34×14=316;P (ξ=2)=P (A 1·A 2·A 3)=(34)214=964;P (ξ=3)=P (A 1·A 2·A 3·A 4)=(34)314=27256;P (ξ=4)=P (A 1·A 2·A 3·A 4)=(34)4=81256.从而ξ有分布列:(2)P (ξ≤3)=1-P (ξ=4)=1-81256=175256.即停车时最多已通过3个路口的概率为175256.11.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X 的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率.【解】 (1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是(2)设“取出的3A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,∴取出的3件产品中一等品件数多于二等品件数的概率为P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. 12.一个袋中装有若干大小相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)若袋中共有10个球; ①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 分布列;(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710,并指出袋中哪种颜色的球个数最少.【解】 (1)①记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.②随机变量X 的取值为0,1,2,3, P (X =0)=C 35C 310=112;P (X =1)=C 15C 25C 310=512;P (X =2)=C 25C 15C 310=512;P (X =3)=C 35C 310=112.故X 的分布列为:(2)证明:设袋中有n 由题意得y =25n ,所以2y <n,2y ≤n -1,故y n -1≤12.设“从袋中任意摸出两个球,至少有1个黑球”为事件B , 则P (B )=25·n -y n -1+35·y n -1+25·y -1n -1=25+35×y n -1≤25+35×12=710. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于n5.故袋中红球个数最少.四、选做题13.(2012·全国新课标高考)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100(1)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列; (2)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤5时,y =5n -5(16-n )=10n -80.得:y =⎩⎪⎨⎪⎧10n -80,(n ≤15),80, (n ≥16).(n ∈N )(2)①X 可取60,70,80P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7 X 的分布列为②购进17y =(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.76.4>76得:应购进17枝.。
分布列知识点总结一、概念介绍1.1 分布列的定义分布列是离散随机变量的取值和相应概率的列。
对于离散型随机变量X,其所有可能取值x1,x2,……,xn及其上对应的概率P(X=x1),P(X=x2),……,P(X=xn)就构成了X的分布列。
1.2 分布列的性质(1)分布列的概率和为1对于任意一个随机变量X,其分布列中所有可能取值的概率之和为1,即∑P(X=xi)=1。
(2)随机变量的取值是有限个或可列无限个分布列中的随机变量的取值只能是有限个或可列无限个,不可能是连续的。
二、分布列的应用2.1 用分布列计算期望和方差分布列是计算离散随机变量的期望和方差的有力工具。
根据期望和方差的公式,可以直接利用分布列中的取值和概率来计算期望和方差。
2.2 利用分布列进行概率计算通过分布列,可以计算得到随机变量取某个值的概率,或者计算随机变量在某个范围内取值的概率等。
这对于一些概率问题的求解非常有用。
三、分布列的例子3.1 二项分布二项分布是一种常见的离散型概率分布,用于描述在n次独立重复的伯努利试验中成功的次数。
设X为二项分布随机变量,其分布列为:X 0 1 2 …… nP C(n,0) * p^0 * (1-p)^n C(n,1) * p^1 * (1-p)^(n-1) C(n,2) * p^2 * (1-p)^(n-2) …… C(n,n) * p^n * (1-p)^0其中,p为成功的概率,n为试验的次数。
3.2 泊松分布泊松分布描述了单位时间内随机事件发生的次数。
设X为泊松分布随机变量,其分布列为:X 0 1 2 3 4 ……P e^(-λ) * λ^0 / 0! e^(-λ) * λ^1 / 1! e^(-λ) * λ^2 / 2! e^(-λ) * λ^3 / 3! e^(-λ) * λ^4 / 4! ……其中,λ为单位时间内随机事件发生的平均次数。
四、分布列与其他概率分布的关系4.1 分布列与连续型概率分布分布列适用于离散型随机变量,而连续型随机变量则需要用概率密度函数进行描述。
分布列计算公式分布列是概率论中的一个重要概念,特别是在高中数学的概率统计部分经常会用到。
那咱们就来好好聊聊分布列计算公式。
在学习分布列的时候,我想起曾经教过的一个学生小明。
小明这孩子特别聪明,但是对于分布列的计算一开始总是有点迷糊。
咱们先来说说啥是分布列。
简单来说,分布列就是把随机变量的所有可能取值以及对应的概率都罗列出来。
比如说,扔一个骰子,随机变量 X 表示骰子的点数,那么 X 就可能是 1、2、3、4、5、6,每个点数出现的概率就是 1/6,这就是一个简单的分布列。
那分布列的计算公式是啥呢?一般来说,如果随机变量 X 有 n 个可能的取值 x1, x2,..., xn,对应的概率分别是 p1, p2,..., pn,那么这个分布列就可以写成 P(X = xi) = pi (i = 1, 2,..., n)。
这里要注意,所有的概率 pi 之和必须等于 1 ,这是个关键的点哦!咱们就拿小明做过的一道题来说吧。
有一个抽奖活动,盒子里有 5 个红球和 3 个白球,从中随机抽取 3 个球,设随机变量 X 表示抽到红球的个数,求 X 的分布列。
首先,X 可能的取值是 0、1、2、3 。
当 X = 0 时,也就是一个红球都没抽到,概率就是从 3 个白球中选3 个的组合数除以从 8 个球中选 3 个的组合数。
当 X = 1 时,就是抽到 1 个红球 2 个白球,这时候就要算从 5 个红球中选 1 个,从 3 个白球中选 2 个的组合数,然后除以从 8 个球中选 3 个的组合数。
以此类推,算出 X = 2 和 X = 3 时的概率。
在这个过程中,小明一开始总是弄混组合数的计算,不是少乘了个系数,就是分母的总数搞错了。
我就一遍遍地给他讲,还让他自己多动手算几遍。
通过这道题,小明终于搞清楚了分布列计算公式的运用。
其实啊,分布列的计算就是要细心,把每种情况都考虑清楚,按照公式一步一步来,可不能马虎。
再比如说,在一个班级里,随机抽取学生参加比赛,设随机变量 Y 表示被抽取的男生人数。
高中数学高三分布列知识点在高中数学的学习中,分布列是一个重要的概念和技巧,它用于描述随机试验中各个可能结果的概率分布。
分布列的研究可以帮助我们理解概率论的基本原理,并且可以应用于实际问题的解决。
一、概念和基本性质分布列是指随机试验的所有可能结果及其对应的概率。
在计算分布列时,我们需要确定试验的所有可能结果,并且计算每个结果出现的概率。
分布列具有以下基本性质:1. 概率的非负性:每个结果的概率都是非负数,不会出现负值。
2. 概率的和为1:所有结果的概率之和等于1,表示必然事件的发生。
3. 互斥性:不同结果之间是互斥的,即只能发生其中一个结果。
4. 可列性:试验的所有可能结果是可列的,即可以一一列举。
二、常见的分布列1. 二项分布:二项分布是一种离散的概率分布,适用于只有两个可能结果的试验。
二项分布的概率计算公式为P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n表示试验的次数,k表示成功的次数,p表示每次试验成功的概率。
2. 泊松分布:泊松分布是一种离散的概率分布,适用于描述单位时间(或空间)内某事件发生的次数的概率分布。
泊松分布的概率计算公式为P(X=k)=e^(-λ)λ^k/k!,其中λ表示单位时间(或空间)内事件的平均发生次数。
3. 几何分布:几何分布是一种离散的概率分布,适用于描述在独立重复试验中,试验成功之前所需的失败次数的概率分布。
几何分布的概率计算公式为P(X=k)=(1-p)^(k-1)p,其中p表示每次试验成功的概率。
4. 正态分布:正态分布是一种连续的概率分布,适用于描述大部分事物的分布情况。
正态分布的概率密度函数为f(x)=1/(σ√(2π))e^(-(x-μ)^2/(2σ^2)),其中μ表示均值,σ表示标准差。
三、应用实例分布列的应用非常广泛,下面我们通过几个实例来说明其实用性。
1. 投掷硬币问题:假设我们进行10次硬币的正反面投掷试验,每次成功的概率都是0.5。
理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。
2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。
(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。
如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值; (Ⅱ)根据样本数据,试估计盒子中小球重量的平均值; (Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。
高中数学 概率与分布列归类目录【题型一】 超几何分布型分布列【题型二】二项分布型分布列【题型三】正态分布型【题型四】分布列均值与方差【题型五】竞技比赛型分布列【题型六】多人比赛竞技型分布列【题型七】递推数列型【题型八】三人传球递推数列型【题型九】导数计算型分布列最值【题型十】机器人跳棋模式求分布列【题型一】超几何分布型分布列总数为N的两类物品,其中一类为M件,从N中取n件恰含M中的m件,m=0,1,2⋯,k,其中k为M与n的较小者,Pξ=m=C m M C n-mN-MC n N,称ξ服从参数为N,M,n的超几何分布,记作ξ~H N,M,n,此时有公式Eξ=nM N。
一般地,假设一批产品共有N件,其中有M件次品. 从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C k M C n-kN-MC n N,k=m,m+1,m+2,⋯,r. 其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}. 如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布_.E(X)=np.1(2023·湖北·模拟预测)某区域中的物种P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某生物研究小组计划在该区域中捕捉100个物种P ,统计其中A 种的数目后,将捕获的生物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i (i =1,2,⋯,20).设该区域中A 种的数目为M ,B 种的数目为N ,每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E (X i +X j )=E (X i )+E (X j ),D (X i +X j )=D (X i )+D (X j );(ⅰ)证明:E (X )=E (X 1),D (X )=120D (X 1);(ⅱ)该小组完成所有试验后,得到X i 的实际取值分别为x i (i =1,2,⋯,20).数据x i (i =1,2,⋯,20)的平均值x=40,方差s 2=1.176.采用x和s 2分别代替E (X )和D (X ),给出M ,N 的估计值.2(23·24高三上·江苏南通·阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有X 个红球,则分得X 个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.3(2024·广东广州·二模)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区植物覆盖面积与某种野生动物数量的关系,将其分成面积相近的若干个地块,从这些地块中随机抽取20个作为样区,调查得到样本数据x i,y i(i=1,2,⋯,20),其中x i,和y i,分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量(单位:只),并计算得∑20i=1x i-x2=80,∑20i=1y i-y2=9000,∑20i=1x i-xy i-y=800.(1)求样本x i,y i(i=1,2,⋯,20)的相关系数(精确到0.01),并推断这种野生动物的数量y(单位:只)和植物覆盖面积x(单位:公顷)的相关程度;(2)已知20个样区中有8个样区的这种野生动物数量低于样本平均数,从20个样区中随机抽取2个,记抽到这种野生动物数量低于样本平均数的样区的个数为X,求随机变量X的分布列.附:相关系数r=∑ni=1x i-xy i-y∑ni=1x i-x2∑ni=1y i-y2,2≈1.414【题型二】二项分布型分布列若在一次实验中事件发生的概率为p0<p<1,则在n次独立重复实验中恰好发生k次概率pξ=k =C k n p k1-p,称ξ服从参数为n,p的二项分布,记作ξ~B n,p,Eξ=np,D i= n-k k=0,1,2,⋯,nnpq.1(2024·云南昆明·一模)聊天机器人(chatterbot)是一个经由对话或文字进行交谈的计算机程序.当一个问题输入给聊天机器人时,它会从数据库中检索最贴切的结果进行应答.在对某款聊天机器人进行测试时,如果输入的问题没有语法错误,则应答被采纳的概率为80%,若出现语法错误,则应答被采纳的概率为30%.假设每次输入的问题出现语法错误的概率为10%.(1)求一个问题的应答被采纳的概率;(2)在某次测试中,输入了8个问题,每个问题的应答是否被采纳相互独立,记这些应答被采纳的个数为X,事件X=k(k=0,1,⋯,8)的概率为P(X=k),求当P(X=k)最大时k的值.2(2024·全国·模拟预测)某地文旅部门为了增强游客对本地旅游景区的了解,提高旅游景区的知名度和吸引力,促进旅游业的发展,在2023年中秋国庆双节之际举办“十佳旅游景区”评选活动,在坚持“公平、公正公开”的前提下,经过景区介绍、景区参观、评选投票、结果发布、颁发奖牌等环节,当地的6个“自然景观类景区”和4个“人文景观类景区”荣获“十佳旅游景区”的称号.评选活动结束后,文旅部门为了进一步提升“十佳旅游景区”的影响力和美誉度,拟从这10个景区中选取部分景区进行重点推介.(1)若文旅部门从这10个景区中先随机选取1个景区面向本地的大学生群体进行重点推介、再选取另一个景区面向本地的中学生群体进行重点推介,记面向大学生群体重点推介的景区是“自然景观类景区”为事件A ,面向中学生群体重点推介的景区是“人文景观类景区”为事件B ,求P B A ,P B ;(2)现需要从“十佳旅游景区”中选4个景区,且每次选1个景区(可以重复),分别向北京、上海、广州、深圳这四个一线城市进行重点推介,记选取的景区中“人文景观类景区”的个数为X ,求X 的分布列和数学期望.3(2023·广东肇庆·二模)在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号n 次,每次发射信号“0”和“1”是等可能的.记发射信号1的次数为X .(1)当n =6时,求P X ≤2(2)已知切比雪夫不等式:对于任一随机变量Y ,若其数学期望E Y 和方差D Y 均存在,则对任意正实数a ,有P Y -E Y <a ≥1-D Ya 2.根据该不等式可以对事件“Y -E Y <a ”的概率作出下限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,试估计信号发射次数n 的最小值.【题型三】正态分布型(1)若X 是正态随机变量,其概率密度曲线的函数表达式为f x =12π⋅σe -x -μ22σ2,x ∈R (其中μ,σ是参数,且σ>0,-∞<μ<+∞)。