工程力学重点总结
- 格式:doc
- 大小:339.38 KB
- 文档页数:7
工程力学知识点详细总结工程力学是研究物体受力和变形规律的学科,它是工程学的基础学科之一。
在工程实践中,我们经常需要对结构物体的力学特性进行分析和计算,以保证结构的安全可靠。
因此,工程力学的理论和方法在工程设计和施工中起着不可替代的作用。
本文以静力学、动力学和固体力学为主要内容,详细总结了工程力学的相关知识点。
一、静力学1.力的概念和分类力是引起物体产生加速度的原因,根据力的性质和来源可以将力分为接触力和场力。
接触力是通过物体的静止接触面传递的力,包括摩擦力、正压力和剪切力等;场力是由物体之间的相互作用所产生的力,包括重力、电磁力和引力等。
2.受力分析受力分析是研究物体受力情况的一种分析方法,通过分析物体受力的大小、方向和作用点,可以确定物体的平衡条件和受力状态。
在受力分析中,可以应用力矩平衡、受力图和自由体图等方法来分析物体的受力情况。
3.力的合成和分解力的合成和分解是将若干个力按照一定规律合成为一个合力,或者将一个力分解为若干个分力的方法。
通过力的合成和分解,可以简化受力分析的过程,求解物体的受力情况。
4.平衡条件平衡是指物体处于静止状态或匀速直线运动状态。
根据平衡的要求,可以得出物体的平衡条件,包括受力平衡和力矩平衡。
在分析物体的平衡条件时,可以应用力的合成和分解、力矩平衡等方法进行求解。
5.杆件受力分析杆件受力分析是研究杆件受力情况的一种分析方法,通过分析杆件受力的大小、方向和作用点,可以确定杆件的受力状态。
在杆件受力分析中,可以应用正压力、拉力和剪力等概念进行求解。
6.梁的受力分析梁是一种常见的结构构件,受到外部加载作用时会产生弯曲变形。
梁的受力分析是研究梁受力情况的一种分析方法,通过分析梁受到的弯矩和剪力的分布规律,可以确定梁的受力状态。
在梁的受力分析中,可以应用梁的静力平衡和弯矩方程等方法进行求解。
7.静力学原理静力学原理是研究物体力学特性的基本原理,包括牛顿定律、平衡条件和力的合成分解定理等。
工程力学知识点全集总结一、力的作用1. 力的概念力是物体相互作用的结果,可以改变物体的运动状态或形状。
力的大小用力的大小和方向来描述,通常用矢量表示。
2. 力的分类根据力的性质,力可以分为接触力和非接触力两种。
根据力的性质和作用对象的不同,可以将力分为压力、拉力、剪切力、弹性力、重力等不同类型的力。
3. 力的合成与分解多个力共同作用在物体上时,可以将它们的效果看作是一个力的合成。
而反之,一个力也可以根据其方向和大小,被分解为若干个分力。
4. 力的平衡当物体受到多个力的作用时,如果这些力的合力为零,则称物体处于力的平衡状态。
5. 力的矩力的矩是力的大小与作用点到物体某一点的距离的乘积,力矩的方向垂直于力的方向和力臂的方向。
物体在力的作用下发生转动,与力的大小、方向以及力臂的长度有关。
6. 自由体图自由体图是指将某个物体从其他物体中分离出来,然后在自由体上画出受到的所有力的作用线,用以分析物体所受力的平衡情况。
二、刚体静力学1. 刚体的概念刚体是指在受力作用下,形状和尺寸不发生改变的物体。
刚体的转动可以分为平移和转动两种。
2. 刚体的平衡条件刚体的平衡条件包括平衡的外力条件和平衡的力矩条件。
当刚体受到多个力的作用时,这些力的合力为零,力矩的合力矩也为零时,刚体处于平衡状态。
3. 简支梁的受力分析简支梁是指两端支持固定并能够转动的梁,在受力作用下会产生弯曲和剪切。
可以利用简支梁受力分析的原理,对梁在受力作用下的受力和变形进行研究。
4. 梁的受力分析在工程实践中,梁的受力分析是非常重要的。
在不同受力条件下,梁的受力分析方法会有所不同。
通常会用到力学平衡、力学方程等知识来分析和计算梁的受力情况。
5. 摩擦力摩擦力是指物体在相对运动或相对静止的过程中,由于接触面间的不规则性而产生的力。
摩擦力的大小和方向与接触面的性质、力的大小和方向等因素有关。
6. 斜面上的力学问题斜面上的力学问题是工程力学中的一个常见问题,包括斜面上的物体受力情况、斜面上的滑动、斜面上的加速度等内容。
工程力学知识点工程力学是一门研究物体机械运动和受力情况的学科,它在工程领域中具有极其重要的地位。
通过对工程力学的学习,我们能够更好地理解和设计各种结构和机械系统,确保其安全性、稳定性和可靠性。
接下来,让我们一起深入了解一些关键的工程力学知识点。
一、静力学静力学主要研究物体在静止状态下的受力情况。
首先是力的基本概念,力是物体之间的相互作用,具有大小、方向和作用点三个要素。
力的合成与分解遵循平行四边形法则,通过这个法则可以将多个力合成为一个合力,或者将一个力分解为多个分力。
平衡力系是静力学中的一个重要概念。
如果一个物体所受的力系能够使物体保持静止,那么这个力系就称为平衡力系。
在平衡力系中,所有力的矢量和为零。
此外,还有约束和约束力的知识。
约束是限制物体运动的条件,而约束力则是约束对物体的作用力。
常见的约束类型有光滑接触面约束、柔索约束、铰链约束等,每种约束产生的约束力都有其特定的规律。
二、材料力学材料力学关注的是材料在受力时的变形和破坏情况。
首先是拉伸与压缩,当杆件受到沿轴线方向的拉力或压力时,会发生伸长或缩短。
通过胡克定律可以计算出杆件的变形量,其应力与应变之间存在线性关系。
剪切与挤压也是常见的受力形式。
在连接件中,如铆钉、螺栓等,会受到剪切力和挤压力的作用。
我们需要计算这些力的大小,以确保连接件的强度足够。
扭转是指杆件受到绕轴线的外力偶作用时发生的变形。
对于圆轴扭转,其切应力分布规律和扭转角的计算是重要内容。
弯曲则是工程中常见的受力情况,梁在受到垂直于轴线的载荷时会发生弯曲变形。
我们需要掌握梁的内力(剪力和弯矩)的计算方法,以及正应力和切应力的分布规律,从而进行梁的强度和刚度设计。
三、运动学运动学研究物体的运动而不考虑其受力情况。
点的运动可以用直角坐标法、自然法等方法来描述。
例如,用直角坐标法可以表示点的位置、速度和加速度。
刚体的运动包括平移、定轴转动和平面运动。
平移时,刚体上各点的运动轨迹相同,速度和加速度也相同;定轴转动时,刚体上各点的角速度和角加速度相同;平面运动可以分解为随基点的平移和绕基点的转动。
工程力学的基础知识点总结工程力学的基础知识点主要包括以下内容:1.向量的基本概念向量是工程力学中经常使用的重要概念。
向量有大小和方向,可以用箭头来表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
向量的加法和减法等运算也是工程力学中需要掌握的重要概念。
此外,向量的分解、合成和共线向量等也是工程力学中常见的概念。
2.力的基本概念力是工程力学的基本概念之一。
力是物体之间的相互作用,可以改变物体的状态和形状。
力的大小和方向可以用向量来表示。
在工程力学中,力可以分为内力和外力。
内力是物体内部分子间的相互作用力,外力是物体外部其他物体施加在物体上的作用力。
力的平行四边形定律、力矩和力偶等也是工程力学中需要掌握的重要概念。
3.受力分析受力分析是工程力学中非常重要的内容。
在受力分析中,需要观察物体受到的外力和内力,然后通过受力平衡条件和动力学原理等来分析物体的受力情况。
受力分析可以帮助工程师设计合理的结构,确保结构的稳定和安全。
4.平衡条件在静力学中,平衡条件是非常重要的内容。
平衡条件包括平衡点的概念和平衡方程的建立等。
平衡条件在工程力学中应用广泛,可以帮助工程师设计合理的结构和确定结构的安全系数。
5.应力和应变应力和应变是材料力学中的重要概念。
应力是单位面积上的力,可以用力和面积的比值来表示。
应变是物体在受力作用下的形变量,也可以用长度变化量与长度的比值来表示。
6.拉力和压力拉力和压力是工程力学中重要的概念。
拉力是物体两端受到的拉伸力,压力是物体受到的挤压力。
拉力和压力是材料在受力作用下的重要表现形式,可以帮助工程师设计合理的材料和结构。
7.刚度和强度刚度和强度是材料力学中的重要概念。
刚度是材料受力后发生形变的能力,强度是材料抵抗破坏的能力。
刚度和强度是工程师设计材料和结构时需要考虑的重要因素。
8.弹性、塑性和断裂弹性、塑性和断裂是材料力学中的重要现象。
弹性是材料在受力作用下可以恢复原状的能力,塑性是材料在受力作用下会产生永久形变的能力,断裂是材料在受力作用下会发生破裂的现象。
工程力学知识点总结工程力学是一门研究物体受力、变形以及力学性质的学科。
它是工程学的基础学科之一,广泛应用于工程设计、结构分析和材料力学等领域。
在本文中,我将对工程力学的一些重要知识点进行总结,希望能够帮助读者更好地理解和应用工程力学的原理和方法。
第一部分:力的基本概念和平衡条件力是工程力学的核心概念之一,它可以引起物体的形状和运动发生变化。
在工程力学中,力的三要素是大小、方向和作用点。
力的大小可以用矢量表示,它的方向可以用箭头表示,作用点是力所作用的物体上的一点。
对于一个物体的平衡条件,有三种可能:静力平衡、动力平衡和稳定平衡。
静力平衡是指物体在受到多个力的作用下,力的合力为零,物体处于静止状态。
动力平衡是指物体在受到多个力的作用下,力的合力不为零,物体处于运动状态。
稳定平衡是指物体在受到微小扰动后能够自动恢复到原来的平衡状态。
第二部分:受力分析和结构受力受力分析是工程力学的基础,它通过分析物体所受到的外力和内力,来确定物体的运动状态和受力情况。
在受力分析中,我们常常使用自由体图和受力分解的方法来求解受力问题。
自由体图是指将物体从结构中分离出来,在图上标识出所受到的外力和内力,便于分析和计算。
结构受力是工程力学的重要内容之一,它研究物体在受到外力作用下的变形和应力情况。
常见的结构受力包括轴力、剪力、弯矩和应力等。
轴力是指物体沿着轴线方向受到的拉力或压力,剪力是指物体内部两个相邻截面之间的力,弯矩是指物体在受力作用下发生的弯曲时所产生的力矩,应力是指物体受到的单位面积上的力。
第三部分:材料力学和变形性能材料力学是工程力学中的重要分支,它研究物体的材料在受力作用下的变形和破坏情况。
常见的材料力学知识点包括杨氏模量、屈服强度、伸长率和断裂韧性等。
杨氏模量是描述材料刚度的指标,它反映了材料在受力作用下产生的弹性变形程度。
屈服强度是指材料在受到一定载荷后开始发生塑性变形的临界点。
伸长率是指材料在拉伸过程中的长度变化百分比,它可以反映材料的延展性能。
工程力学课程总结工程力学作为理工科专业基础课程,对于培养学生的科学素养和解决实际工程问题具有重要意义。
本文将对工程力学课程进行全面的总结,梳理课程核心知识点,以帮助读者更好地掌握这门学科。
一、课程概述工程力学课程主要包括静力学、动力学和材料力学三个部分。
静力学研究在平衡状态下的物体受力情况,动力学研究物体运动与受力之间的关系,而材料力学则关注物体在受力作用下的变形与破坏规律。
二、核心知识点1.静力学(1)力的分解与合成:掌握力的分解与合成方法,能够解决复杂受力问题。
(2)受力分析:学会对物体进行受力分析,确定受力大小、方向和作用点。
(3)平衡方程:了解平衡方程的推导过程,熟练运用平衡方程解决静力学问题。
2.动力学(1)牛顿运动定律:掌握牛顿运动定律的基本原理,能够运用其解决实际问题。
(2)运动方程:了解运动方程的建立过程,能够求解物体在受力作用下的运动规律。
(3)动量定理与动量守恒:理解动量定理和动量守恒定律,并能应用于碰撞、爆炸等实际问题。
3.材料力学(1)应力与应变:掌握应力与应变的概念,了解其计算方法。
(2)弹性力学:了解弹性力学的基本理论,能够求解弹性体的受力与变形问题。
(3)强度理论与破坏准则:了解材料的强度理论和破坏准则,能够预测材料的破坏行为。
三、课程总结通过学习工程力学课程,我们掌握了以下技能:1.能够对物体进行受力分析,解决静力学问题。
2.能够运用牛顿运动定律和运动方程解决动力学问题。
3.能够求解弹性体的受力与变形问题,预测材料的破坏行为。
4.提高了解决实际工程问题的能力,为后续专业课程学习打下坚实基础。
工程力学知识点总结第0章1.力学:研究物体宏观机械运动的学科。
机械运动:运动效应,变形效应。
2.工程力学任务:A.分析结构的受力状态。
B.研究构件的失效或破坏规律。
C.分研究物体运动的几何规律D.研究力与运动的关系。
3.失效:构件在外力作用下丧失正常功能的现象称为失效。
三种失效模式:强度失效、刚度失效、稳定性失效。
第1章1.静力学:研究作用于物体上的力及其平衡的一般规律。
2.力系:是指作用于物体上的一组力。
分类:共线力系,汇交力系,平行力系,任意力系。
等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。
3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。
4.分力的方位角:力与x 轴所夹的锐角α: 方向:由 Fx 、Fy 符号定。
5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。
(刚体是理想化模型,实际不存在)6.力矩:度量力使物体在平面内绕一点转动的效果。
()O M F Fd=±方向:力使物体绕矩心作逆时针转动时,力矩为正;反之,为负力矩等于0的两种情况:(1) 力等于零。
(2) 力作用线过矩心。
力沿作用线移动时,力矩不会发生改变。
力可以对任意点取矩。
7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。
(例:不能单手握方向盘,不能单手攻丝)特点:1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。
2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。
3.力偶对其作用面内任一点的矩恒等于力偶矩。
即:力偶对物体转动效应与矩心无关。
三要素:大小,转向,作用面。
力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。
推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。
(只能在作用面内而不能脱离。
)推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力和力偶臂的大小,而不改变对刚体的作用。
工程力学基础知识点归纳总结工程力学那可真是一门超级有趣又很有用的学科呢!今天就来和大家好好归纳总结一下它的基础知识点。
一、静力学。
静力学主要研究物体在力系作用下的平衡规律。
1. 力的概念。
力啊,它是物体间的相互作用。
你想啊,就像你推桌子,你给桌子一个力,桌子呢,也会给你一个反作用力。
这个力有大小、方向和作用点这三个要素,少了哪个都不行哦。
比如说,你用10牛的力去推桌子的角,和用5牛的力推桌子的中间,那效果肯定不一样呀。
2. 力的合成与分解。
这就像是把几个小伙伴的力量合起来,或者把一个大力量分成几个小力量。
平行四边形法则是个很厉害的方法呢。
比如说有两个力,像两个小伙伴拉一个东西,我们就可以用平行四边形法则把它们合成一个合力。
反过来,一个力也可以分解成不同方向的分力,就像把一个人的力量分成不同方向去做不同的事。
3. 刚体的概念。
刚体就是那种在力的作用下,形状和大小都不会改变的物体。
这有点像超级坚固的钢铁侠,不管怎么受力,都不会变形。
在静力学里研究刚体的平衡可重要啦。
4. 平衡方程。
物体平衡的时候,它受到的力要满足一定的方程。
比如说在平面汇交力系中,力在x轴和y轴上的投影的代数和都得是零呢。
这就像是一群小伙伴拔河,两边的力量要是不平衡,那绳子就会动起来,只有两边力量相等了,绳子才会静止,这就是平衡的状态。
二、材料力学。
材料力学就开始研究材料在力的作用下的性能啦。
1. 拉伸和压缩。
材料在受到拉力或者压力的时候,会有不同的表现。
像橡皮筋,你拉它的时候,它就会变长,这就是拉伸。
而像柱子,承受上面的重量,就是受到压缩。
材料在拉伸和压缩的时候,有个很重要的概念叫应力。
应力就像是材料内部每个小部分承受的压力或者拉力的平均情况。
2. 剪切。
剪切力就像是剪刀剪东西时的力。
想象一下你剪一张纸,纸的两边受到相反方向的力,这就是剪切力啦。
材料在剪切力作用下也有它自己的特性,比如说它能承受多大的剪切力才会被剪断。
3. 扭转。
大一工程力学的知识点总结一、向量力学1.向量的基本概念和运算:向量的表示法、向量加法和乘法运算、向量分解2.向量的合成与分解:平面向量的合成与分解、三维向量的合成与分解3.单位矢量:基本矢量、单位向量的概念与运算4.物体的运动:位矢、位移与平均速度、瞬时速度与瞬时加速度二、力和力的平衡1.力的基本概念:力的定义、力的分类、力的单位2.力的合成与分解:力的合成、力的分解、平面力系的合成3.力的平衡:力的平衡条件、平面力系的平衡条件、力的图示法三、刚体的平衡1.刚体的基本概念:刚体的定义、质点与刚体的区别2.刚体平衡的条件:转动力矩的概念、矢量叉积、平面力系的力矩平衡条件3.刚体的静力学分析:平面问题的解法、近似计算方法四、摩擦力与支持反力1.摩擦力的基本概念:静摩擦力与滑动摩擦力2.静摩擦力的分析:静摩擦力的大小与方向、静摩擦力的极限值3.支持反力的分析:平衡问题的解法、不同支持条件下的反力分析五、动力学1.牛顿第二定律:牛顿第二定律的表述、质点的加速度与作用力关系2.动力学分析:质点的自由体图、质点的运动学分析和力学分析3.牛顿第三定律:牛顿第三定律的表述和应用六、重力1.重力的基本概念:重力的定义、重力的计算公式2.重力的分析:自由落体运动、竖直上抛运动、重力加速度的测定七、力的作用点运动1.力的作用点运动:力矩的概念、力矩与转动动力学的关系2.刚体的旋转:转动惯量的概念、刚体的动力学分析八、弹性力学1.弹性力学的基本概念:应力与变形的关系、弹性力学的前提假设2.线性弹性力学:胡克定律、杨氏模量、梁的弯曲以上是大一工程力学的主要知识点总结,希望能够对你的学习有所帮助。
当然,工程力学是一门基础性课程,还有很多细节和衍生的内容需要进一步学习和探索。
第一章静力学的基本概念和公理受力图一、刚体P2 刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力P7 约束:1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;3光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
四、受力分析和受力图选取研究对象,画出研究对象所受的全部主动力和约束反力,主动力一般是预先给定的,约束反力需根据约束的类型来判断。
表示研究对象受力的简明图形,称为受力图。
第二章平面汇交力系一、平面汇交力系合成和平衡的几何法1、平面汇交力系合成的力多边形法制由分力矢量折线和合力矢量构成的多边形称为力多边形。
这种求合理矢量的几何作图法则称为力多边形法则。
平面汇交力系合成的结果是一个通过汇交点的合力,该合力矢量等于原力系中各分力的矢量和。
P16 平面汇交力系平衡的必要充分几何条件:力多边形自行封闭二、力的分解与投影力在某轴上的投影:等于力的大小乘以力与该轴正向之间夹角的余弦。
力的投影与力的分量是两个不同的概念。
三、合力投影定理P19 合力投影定理:合力在任一轴上的投影,等于各分力在该轴上投影的代数和。
四、平面汇交力系平衡的解析法P20平面汇交力系平衡条件:∑F ix=0;∑F iy=0。
2个独立平衡方程第三章力矩平面力偶系一、力对点之距1、P24 力矩M0(F)=±Fh(逆时针为正),点O为矩心,垂直距离h为力臂,力使物体逆时针转动为正。
2、P25 合力矩定理:平面汇交力系的合力对平面内任一点的矩,等于所有各分力对同一点的矩的代数和。
二、力偶和力偶矩1、P26力偶:大小相等、方向相反,作用线平行且不共线的两个力组成的力系称为力偶;力偶矩M=±Fd(逆时针为正)2、P27力偶的性质力偶不能与一个力等效,力偶只能用力偶平衡;力偶对其所在平面内任一点的矩恒等于力偶矩,与矩心的位置无关。
在同一平面内的两个力偶,只要两力偶的力偶矩(包括大小和方向)相等,则此两力偶的效应相等。
这就是平面力偶的等效条件。
推论1力偶可在其作用面内任意转移,而不会改变它对刚体的效应。
推论2 只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不会改变它对刚体的效应。
三、平面力偶系的合成与平衡1平面力偶系:作用在刚体上同一平面内的多个力偶,称为平面力偶系。
平面力偶系可以合成为一个合力偶,合力偶矩等于各分力偶矩的代数和。
2、P28 平面力偶系平衡条件:力偶系中所有各力偶矩的代数和等于零。
第四章平面任意力系一、P33 力的平移定理:作用于刚体上的力可以平行移动到刚体内的任意一点,但必须附加一个力偶,该附加力偶的力偶矩等于原力对指定点的矩。
二、平面任意力系向作用面内一点简化1、P34 平面力向力系一点简化平面任意力系中各力的矢量和F R`称为该力系的主矢量,简称主矢;力系各力对简化中心O的矩的代数和Mo称为该力系对简化中心O的主矩。
平面任意力系向作用面内任一点简化,可得一个力和一个力偶。
这个力等于该力系的主矢,作用线经过简化中心O;这个力偶的矩等于该力系对简化中心O的主矩。
2、平面任意力系的简化结果分析(1)主矢F R`=0,主矩M o≠0,简化为一个力偶;(2)主矢F R`≠0,无论主矩是否为0,简化为一个力;(3)主矢F R`=0,主矩M o=0,平衡力系。
三、平面任意力系及其平衡方程1、平面任意力系平衡的必要和充分条件是:力系的主矢和对任意一点的主矩都等于零。
P36 平面任意力系平衡条件:∑F x=0;∑F y=0,∑M O(Fi)=0。
3个独立方程2、P38平面平行力系平衡条件:∑F y=0,∑M O(F)=0,或∑M A(F)=0,∑M B(F)=0,2个独立方程P39 静定,超静定四、考虑滑动摩擦时的平衡问题P43 摩擦:当两物体具有相对运动的趋势或相对运动时,在其接触处的公切面内就会彼此作用有阻碍相对滑动的阻力,即滑动摩擦力,简称摩擦力。
静摩擦力:对物块施加一个大小可变的水平力F ,并由零逐渐增大,在接近某一数值Fc 的过程中,物块仅有相对支撑面滑动的趋势,但始终保持静止。
可见支撑面除了对物块作用有法向约束反力Fn 外,必定还有切向约束反力Fs 作用,此力称为静滑动摩擦力,简称静摩擦力。
当主动力增大到Fc 时,物块虽无相对滑动,但即将失去平衡,称为平衡的临界状态。
此时的静摩擦力达到最大值,称为最大静摩擦力,以Fmax 表示。
Fmax=fs ×Fn ,fs 是摩擦因数,Fn 是两物间的正压力(法向约束反力),这称为静摩擦定律。
静摩擦力的方向与物块的相对滑动趋势方向相反,大小随主动力的变化而变,但介于0和最大值之间,即0≤Fs ≤Fmax全约束反力与法线间的夹角的最大值θ称为摩擦角,摩擦角的正切等于静摩擦因数。
如果作用于物块的全部主动力的合力F R 的作用线在摩擦角之内,则无论这个力怎么大,物块必保持静止,这称为自锁现象。
第五章 空间力系 重心 一、力在直角坐标轴上的投影 1、一次投影法设力F 作用于物体上的O 点,过O 作空间直角坐标系Oxyz ,若已知力F 与x 、y 、z 坐标轴正向间的夹角分别是α、β、γ,则力F 在x 、y 、z 轴上的投影是: Fx=Fcos α;Fy=Fcos β;Fz=Fcos γ。
二、力对轴之矩1、力对某轴的矩是力使刚体绕此轴转动效应的度量,它等于该力在垂直于该轴的平面上的投影对这平面与该轴的交点的矩。
可表示为Mz(F)=Mo(Fxy)=±Fxy ·h2、力对轴之矩的解析表达式M x (F)=yF z -zF y ;M y (F)=zF x -xF z ;M Z (F)=xF y -yF x三、空间力系平衡方程P53 空间力系平衡条件:6个方程;空间汇交力系:3个方程;空间平行力系:3个方程四、物体的重心和形心地心对物体的吸引力称为物体的重力,其大小就是物体的重量。
物体重力的作用点称为物体的重心。
由物体的几何形状和尺寸所决定的点是物体的几何中心,称为物体的形心。
第六章 点的运动 P64 质点 一、自然法 1、点的运动方程动点在运动过程中,其弧坐标是时间t 的单值连续函数,S=f(t),上式称为以弧坐标表示的点的运动方程。
2、点的速度点做曲线运动时,速度的大小等于弧坐标对时间的一阶导数的绝对值;方位沿轨迹切线,指向由弧坐标对时间的一阶导数的正负号判定。
P65 点的速度dtdsv =3、点的加速度加速度:切向加速度dtdva =τ,速度大小变化;法向加速度ρ2v a n=,速度方向变化,加速度22na a a+=τ点作曲线运动时,切向加速度表明速度大小对时间的变化率。
其大小等于速度的代数值对时间的一阶导数,或等于弧坐标对时间的二阶导数;其方位沿轨迹的切线,指向由导数的正负号决定。
法向加速度表明速度方向对时间的变化率,其大小等于速度的平方处以轨迹上动点所在处的曲率半径(作圆周运动时,曲率半径等于半径R ),其方向沿轨迹动点所在处的法线,指向曲率中心。
直线运动:τa a=;匀速曲线运动:n a a =;匀变速曲线运动:τa是常数,n a 不等于零,t a v v τ+=0,20021t a t v s s τ++= 二、直角坐标法1、点的直角坐标运动方程和轨迹方程)(1t f x =,)(2t f y =,上式就是点的直角坐标运动方程。
动点以t 为参数的轨迹参数方程,从中消去时间t ,就可以得到点的轨迹方程。
第七章 刚体的基本运动P73 平动:刚体在运动过程中,若其上任意直线始终与它的初始位置保持平行,则称刚体作平行移动,简称平动。
刚体平动的特征:刚体平动时,其上各点的轨迹相同且平行,同一瞬时各点的速度和加速度相等。
P74定轴转动:刚体在运动过程中,如果其上(或其拓延部分)有一条直线始终保持不动,则称为刚体的定轴转动,简称转动。
转动方程:刚体转动过程中,转角)(t ϕϕ=,是时间的函数,反映了刚体整体的转动规律。
角速度dtd ϕω=,角加速度dtd ωα=,角速度30602nn ππω==(n 是转速,r/min)P76 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==,第八章 质点动力学基础惯性定律:无外力作用时,质点将保持原来的运动状态(静止或匀速直线运动)。
运动定律:质点因受力的作用而产生的加速度,其方向和力的方向相同,大小与力的大小成正比,即F ma =,m 是质点的质量,a 是质点的加速度,F 是作用在质点上的合力。
作用与反作用定律:两个物体间的作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在这两个物体上。
第九章 刚体动力学基础刚体内各质点的质量与其到z 轴的距离的平方的乘积之和,称为刚体对z 轴的转动惯量,用J z 表示,即2i i z r m J ∑=,转动惯量:圆环2mR J z =;圆盘2/2mR J z =;细杆12/2ml J z =。
P91平行轴定理:刚体对任一轴的转动惯量等于刚体对通过质心且与该轴平行的轴的转动惯量加上刚体的质量与两轴间距离平方的乘积,即2`md J J z z +=P88转动定理:转动刚体对转轴大的转动惯量与角加速度的乘积等于作用于刚体的所有外力对转轴之矩的代数和,此结论称为转动定理。