画正五边形
- 格式:ppt
- 大小:394.50 KB
- 文档页数:12
正五边形尺规作图的画法与其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H, AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点.五边形ABCDE即为所求.第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi 〔i为右下角标〕=22i〔底数2指数2的i次幂〕+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k〔2的k次幂〕或2k×p1×p2×…×ps,〔1,2…s为右下角标〕其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路<他早期曾在语言学与数学之间犹豫过>,而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数<3=F0,5=F1>;对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。
以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。
正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
§2—2 正五边形的画法课题:正五边形的画法教学目标知识目标正五边形的画法能力目标1.掌握正五边形的画法2.正确使用绘图工具情感目标1.培养学生认真细致的职业素养2.培养学生良好的画图习惯,激发学生对机械专业的学习兴趣3.通过画图中需要减小积累误差的思考与操作,培养学生团结合作的精神和解决实际问题的能力教学重点正五边形的画法教学难点准确作图教学课时1课时教学方法讲授和现场演练相结合,小组合作探究法教学过程:一、知识回顾1.常用的绘图工具图板、丁字尺、三角板、圆规、分规、铅笔等2.绘图工具的使用二、引入新课题生活中有各种形状的物体,其中有许多都是正多边形的,那么,大家能举一些实际的例子吗?既然大家都知道这么多正多边形,那大家能正确画出这些正多边形吗?这节课,我们就一起来学习其中一种图形——正五边形的画法。
三、新课讲授1、正五边形的作图原理若已知正多边形的外接圆直径,利用圆规、丁字尺和三角板对外接圆进行圆周的五等分,再依次连接等分点,即可画出正五边形。
2、正五边形的作图步骤(教师讲解并演示)方法:1)作OA的等分点(中点)M。
2)以M点为圆心,M1为半径作弧,交水平直径于K点。
3)以1K为边长,将圆周五等分,顺序连接各等分点,即可作出圆内接正五边形。
(a)(b)(c)图1-24 正五边形画法学生分组练习画图,并讨论总结问题,教师点评讲解。
四、小结。
通过本堂课的学习,我们掌握了正五边形的画法,作为知识的延伸,我们又了解了五角星的画法,希望大家下去多多练习,及时巩固正五边形的画法,为后续学习打好基础。
五、布置作业习题集2-1 1(3)。
六、板书设计2-2正五边形的画法1、正五边形的作图原理五等分外接圆,依次连线2、正五边形的作图步骤1)作OA的等分点(中点)M。
2)以M点为圆心,M1为半径作弧,交水平直径于K点。
3)以1K为边长,将圆周五等分,顺序连接各等分点,即可作出正五边形。
七、课后反思画好正五边形的关键在于找点,第一个是OA的等分点,即中点M;第二个是通过M 点找到的K点,从而得到正五边形的边长1K;再用边长找到圆周的五个等分点,最后顺序连接五个等分点得到正五边形。
机械制图正五边形画法3篇以下是网友分享的关于机械制图正五边形画法的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇1、[正五边形的画法]圆内接正五边形的画法如下:1、任作一圆O2、任作圆O中互相垂直的两直径AB、CD3、作OD的垂直平分线交OD于E4、以E为圆心,EA长为半径作弧,交CD于F5、在圆O上顺序作弦AG=GH=HM=MN=NA=AF则得正五边形AGHMN已知边长作正五边形的近似画法如下:①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K.②以K为圆心,取AB的2/3长度为半径向外侧取C点,使CK=2/3AB③以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M,N.④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形. 正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn 没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马**********]17 × [***********]4721F9 = 2424833 ×[***********][***********][1**********]57 ×[***********]52 [***********][***********]58213 161444157[***********][1**********]F10 = 45592577 ×6487031809 ×[***********][***********]2897 × P252F11 = 319489 ×974849 ×[***********]137 ×[***********]0513 × P564F12 = 114689 × 26017793 × 63766529 × [1**********]1 ×12561 [1**********] ×[***********][***********][***********] ×C1133 F13 = [1**********]61 ×[***********]3 ×[*700417,其中641=5×27+1 这一结果意味着是一个合数,因此费马的猜想是错的。
内接正五边形画法原理内接正五边形是指一个正五边形的每个顶点都与内切圆的圆心相连,从而形成的一种特殊图形。
它是一个具有很高美学价值和几何特性的图形,其画法原理是通过一系列几何构造来完成的。
本文将详细介绍内接正五边形的画法原理。
我们需要明确内接正五边形的定义。
内接正五边形是指一个正五边形的每个顶点都与内切圆的圆心相连,从而形成的一种特殊图形。
它具有以下特点:1. 五个顶点均位于内切圆上;2. 五个顶点与内切圆圆心相连的线段长度相等;3. 每条边均与相邻两条边成72度的夹角。
接下来,我们来介绍内接正五边形的画法原理。
画内接正五边形的关键是确定内切圆的半径。
假设内切圆的半径为r,我们可以通过一系列几何构造来找到r的值。
我们以正五边形的中心为圆心,画一个半径为r的圆。
然后,我们连接圆的圆心和任意一个顶点,得到一条半径为r的线段。
接着,我们以这条线段为边长,画一个正三角形,将其顶点与圆心相连。
这样,我们就得到了一个以内切圆为外接圆的正三角形。
接下来,我们再次以正三角形的一个顶点为圆心,画一个半径为r 的圆。
然后,我们连接圆的圆心和正三角形的另外两个顶点,得到两条半径为r的线段。
接着,我们以这两条线段为边长,分别画两个正三角形,将它们的顶点与圆心相连。
这样,我们就得到了两个以内切圆为外接圆的正三角形。
重复以上步骤,我们可以得到一个以内切圆为外接圆的正五边形。
在这个过程中,每次都会得到两个新的正三角形,并且内切圆的半径会不断逼近我们所期望的值。
需要注意的是,在实际操作中,我们可以使用各种工具来辅助完成这些几何构造。
例如,我们可以使用直尺来画线段,使用指南针来画圆等。
这样可以更加准确地完成内接正五边形的画法。
总结起来,内接正五边形的画法原理是通过一系列几何构造来确定内切圆的半径,并最终得到一个以内切圆为外接圆的正五边形。
这个过程需要使用几何知识和相关工具,以保证结果的准确性和美观性。
内接正五边形作为一种具有高度对称性和几何美感的图形,广泛应用于艺术、建筑和设计等领域。
解正五边形的几种模型1. 传统模型:传统的解析几何方法可以用来构建正五边形的模型。
首先,利用直尺和量角器在纸上确定一个任意大小的正五边形。
然后,通过绘制其对角线或使用等分角度的方法,寻找出五个内角均为108度的点,并连接这五个点,得到正五边形的模型。
传统模型:传统的解析几何方法可以用来构建正五边形的模型。
首先,利用直尺和量角器在纸上确定一个任意大小的正五边形。
然后,通过绘制其对角线或使用等分角度的方法,寻找出五个内角均为108度的点,并连接这五个点,得到正五边形的模型。
2. 三角形模型:正五边形可以通过将一个三角形五次重复来构建模型。
首先,画一个等边三角形作为起点。
然后,从三角形的一个顶点开始,逆时针旋转120度,并将该点作为下一个三角形的顶点。
依此类推,重复五次旋转和连接的步骤,最后形成一个正五边形的模型。
三角形模型:正五边形可以通过将一个三角形五次重复来构建模型。
首先,画一个等边三角形作为起点。
然后,从三角形的一个顶点开始,逆时针旋转120度,并将该点作为下一个三角形的顶点。
依此类推,重复五次旋转和连接的步骤,最后形成一个正五边形的模型。
3. 黄金分割模型:黄金分割是一个比例关系,可以用来分割正五边形的边。
通过黄金比例的构造,我们可以得到一个正五边形的模型。
先确定一个边长,然后根据黄金分割的公式计算出其他边的长度。
通过连接这些点,我们可以得到一个正五边形的模型。
黄金分割模型:黄金分割是一个比例关系,可以用来分割正五边形的边。
通过黄金比例的构造,我们可以得到一个正五边形的模型。
先确定一个边长,然后根据黄金分割的公式计算出其他边的长度。
通过连接这些点,我们可以得到一个正五边形的模型。
总结起来,解正五边形的几种模型可以通过传统的解析几何方法、三角形的重复以及黄金分割等方式来实现。
这些模型可以帮助我们更好地理解和展示正五边形的几何特征和结构。
> 注意:本内容为参考文档,有关正五边形的具体模型构造过程,请参考专业教材或咨询专业人士以确保准确性。