线性二自由度汽车操纵稳定性Simulink仿真
- 格式:doc
- 大小:2.20 MB
- 文档页数:6
10.16638/ki.1671-7988.2021.03.010基于MATLAB/Simulink的车辆转向稳定性的仿真研究马园杰,周旭(湖北汽车工业学院机械工程学院,湖北十堰442000)摘要:汽车的操纵稳定性是衡量汽车安全性最基本的指标之一,影响汽车行驶稳定性的基本因素主要有横摆角速度与质心侧偏角,将汽车简化为二自由度模型,建立关于横摆角速度与质心侧偏角的转向微分方程。
基于MA TLAB/Simulink软件建立仿真模型,对前轮转向与四轮转向典型的二自由度汽车模型进行仿真分析。
对比两轮转向和四轮转向的稳定性。
且四轮转向采用线控转向,将线控转向系统与四轮转向系统的优点结合起来,观察采用线控对汽车稳定性的影响。
关键词:二轮转向;四轮转向;横摆角速度;质心侧偏角中图分类号:TP391.9;U463.41 文献标示码:A 文章编号:1671-7988(2021)03-34-03 Simulation Research on Vehicle steering stability based on MATLAB/SimulinkMa Yuanjie, Zhou Xu(Department of Mechanical Engineering, Hubei University of Automotive Technology, Hubei Shiyan 442000)Abstract:Vehicle handing stability is the index to measure automobile safety. Yaw velocity and side slip angle are the basic factors that affect the vehicle handing stability. Simplify the car to two degree of freedom model. This paper establi -shed the differential equations of Yaw velocity and side slip angle. Using the MA TLAB/Simulinl to create the simulation model and analyze the stability of Vehicle steering system. Combine the advantage of the wire steering system with four wheel steering , Observe its effect on stability.Keywords: Two wheel steering; Four wheel steering; Yaw velocity; Side slip angleCLC NO.: TP391.9; U463.41 Document Code: A Article ID: 1671-7988(2021)03-34-03前言随着人们对现代汽车安全性及操纵稳定性的关注,汽车行驶稳定性越来越成为人们备受关注的焦点。
线性二自由度汽车操纵稳定性Simulink 仿真汽车的操纵稳定性是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能够遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且遇到外界干扰时,汽车能够抵抗干扰而保持稳定行驶的能力,汽车的操纵稳定性是汽车主动安全性的重要评价指标之一。
操纵稳定性包括:汽车在转向盘输入或外界干扰输入下的侧向运动响应随时间而变化的特性称为时域响应特性;转向盘输入有角位移输入和力矩输入;外界干扰输入主要指侧向风和路面不平产生的侧向力。
1. 转向盘角阶跃输入下的响应稳态响应,评价参量为 横摆角度速度增益—转向灵敏度瞬态响应,评价参量为 反应时间;横摆角速度波动的无阻尼园频率。
2. 横摆角速度频率响应特性转向盘转角正弦输入下,频率由0至∞变化时,汽车横摆角速度与转向盘转角的振幅比及相位差的变化规律。
评价参量为:共振峰频率;共振时的振幅比;相位滞后角;稳态增益。
3. 转向盘中间位置操纵稳定性转向盘小转角、低频正弦输入下,汽车高速行驶时的操纵稳定性。
评价参量为:转向灵敏度、转向盘力特性、转向功灵敏度。
4. 回正性转向盘力输入下的时域响应。
评价参量为:回正后剩余横摆角速度与剩余横摆角;达到剩余横摆角速度的时间。
轮胎的侧偏特性为:αk F Y =,k 为侧偏刚度,Y F 一定时,侧偏角越小越好,因此k 越大越好;前轮侧偏角在4度内时,轮胎侧偏特性呈线性变化。
图1线性二自由度汽车模型对前轮角输入的响应建模假设:忽略转向系统的影响,直接以前轮转角为输入;忽略悬架的作用,车身仅作平行于地面的平面运动,绕z 轴的位移、绕y 轴的俯仰角和绕x 轴的侧倾角均为零;汽车前进速度不变。
汽车被简化为只有侧向和横摆两个自由度的两轮汽车模型。
图2假定汽车g y 4.0≤α(质心加速度在y 轴的投影),轮胎侧偏特性处于线性范围内,不计地面切向力Fx 、外倾侧向力Fy γ、回正力矩Tz 、垂直载荷的变化对轮胎侧偏刚度的影响;简化后的两轮汽车模型及车辆坐标系如下:图3确定汽车质心加速度(绝对加速度)在车辆坐标系的分量x α和y α,图4沿OX 轴速度分量的变化为:()()θθθθθθ∆∆-∆--∆∆+∆=∆∆+--∆∆+sin sin cos cos sin cos v v u u u v v u u u考虑θ∆很小,忽略二阶微量,则有: θθθθθ∆-∆=∆∆-∆--∆∆+∆v u v v u u u sin sin cos cos 上式除t ∆,取极限得r x v u dtd v dt du a ωθ-=-=同理可得r y u va ω+=二自由度汽车运动力学分析2121cos cos Y Y Z Y Y Y bF aF M FF F -=+=∑∑δδ 考虑δ较小,1cos =δ111αk F Y =,222αk F Y =则有:22112211ααααbk ak M k k F Z Y -=+=∑∑ 质心侧偏角u v =β ua u a v r r ωβωξ+=+= ()δωβξδα-+=--=ua r 1 ub u b v r r ωβωα-=-=2⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=∑u b k u a k F rr Y ωβδωβ21 ⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=∑u b bk u a ak M r r Z ωβδωβ21 由于y Y ma F =∑,r Z Z I M ω=∑ ()r rr u v m u b k u a k ωωβδωβ+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+ 21 r Z r r I u b bk u a ak ωωβδωβ =⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+21 即()()()r r u v m k bk ak uk k ωδωβ+=--++ 121211 ()()r Z r I ak k b k a ubk ak ωδωβ =-++-12212211 动力学方程可变形为δβωωZZ r Z r I ak I bk ak u I k b k a 1212212--++=δβωβmu k mu k k mu bk ak r 1212211-++⎪⎭⎫ ⎝⎛--= 即状态空间为δβωβω⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡211122211211b b a a a a r r δβωβω⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡001001r r 其中uI k b k a a Z 221211+=,Z I bk ak a 2112-=,Z I ak b 111-= 122121--=mu bk ak a ,mu k k a 2122+=,muk b 121-=仿真参数设置:仿真时间1.5s 汽车总质量 m= 绕z 轴转动惯量I Z =3885Kgm 2轴距L= 质心至前轴距离a= 质心至后轴距离b=前轮总侧偏刚度k 1=-62618N/rad 后轮总侧偏刚度k 2=-110185N/rad仿真模型为:仿真工况1:前轮转角1度,车速80Km/h 下,仿真结果为:仿真工况2:车速80Km/h 下,前轮转角分别为1度、2度和3度,仿真模型为:由上图可见,在车速为80km/h下,随前轮转角的增大,汽车质心侧偏角明显增大且开始出现振荡,固有圆频率及阻尼比减小,超调量及稳定时间增加,因此应避免在高速行驶时急转方向盘产生大的前轮转角。
基于Simulink的车辆两自由度操纵稳定性模型汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。
本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。
研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。
车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。
客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。
1.二自由度汽车模型为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自由度的汽车模型,忽略转向系统的影响,直接一前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作用于地面的平面运动。
2.运动学分析分析时,令车辆坐标系原点与汽车质心重合。
首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。
确定汽车质心的(绝对)加速度在车辆坐标系的分量 和 。
Ox 与Oy 为车辆坐标系的纵轴与横轴。
质心速度 1与t 时刻在Ox 轴上的分量为u ,在Oy 轴上的分量为v 。
2.1 沿Ox 轴速度分量的变化为:由于汽车转向行驶时伴有平移和转动,在t+△t 时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿x 轴速度分量变化为:()cos ()sin cos cos sin sin u u u v v u u u v v θθθθθθ+∆∆--+∆∆=∆+∆∆---∆∆考虑到Δθ很小并忽略二阶微量,上式变成:Δu-v Δθ,除以Δt 并取极限,便是汽车质心绝对加速度在车辆坐标系Ox 和Oy 上的分量为:2.2 二自由度动力学方程因此我们可以得出两自由度的基本操纵模型的运动方程:由于假设侧片刚度在线性区域,所以F y = -K αα(公式2) 在单轨模型中,前轮的侧向速度为v f =v+ar后轮的侧向速度为v r =v-br当α很小的时候,可以认为tan α≈α 所以:() 1 r yf yrz r yf yrm v uw F F I w aF bF +=+⎧⎪⎨=-⎪⎩(公式) 3r r r f u bw u u aw u ααδ-⎧≈⎪⎪⎨+⎪≈-⎪⎩(公式)12121221212112()()()()()r rZ r r k k ak bk m v uw k v w u u ak bk a k b k I w ak v w u u k δδ+-⎧+=--⎪⎪⎨-+⎪=--⎪⎩其中k 为前轮侧偏刚度为后轮侧偏刚度将转向输入δ作为系统的输入放在方程右边,并以状态空间方程的形式来表示,则可得到系统的运动方程为:2.3 转化成标准的状态空间方程转化为标准的状态空间方程为:()121212211212()()00()()z r r k k ak bk mu u um v v k I w w ak ak bk a k b k u u δ+-⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎪+= ⎪⎪ ⎪ ⎪⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭11;;;r X AX BUv A P Q B P R X U w δ--=+⎛⎫=-=== ⎪⎝⎭其中输入矢量为()121222121211;()()()()010r z z z X AX BUY CX DU v X U w k k ak bk u mu muA ak bk a k b k I u I u k mBCD ak I δ=+=+⎛⎫== ⎪⎝⎭+-⎛⎫-+ ⎪⎪= ⎪-+ ⎪⎝⎭⎛⎫- ⎪⎪=== ⎪- ⎪⎝⎭其中M文件定义的参数值Simulink模型二自由度汽车Simulink模型横摆角速度阶跃响应2.4以状态方程建立的仿真图A=-inv(p)*QB=inv(p)*RC=[0 1];D=[0];得到的仿真结果如上图的阶跃响应结果一样,不再给出。
车辆稳定性滑模控制器设计
陈志勇
【期刊名称】《成都工业学院学报》
【年(卷),期】2024(27)2
【摘要】汽车的质心侧偏角和横摆角速度对车辆操纵稳定性控制起着至关重要的作用,通常两者都作为控制系统的状态变量。
为提高车辆的转向系统操纵性和行驶稳定性,通过简化车辆模型,分析理想二自由度汽车受力状况,将车辆线性二自由度模型作为理想控制目标,计算理想横摆角速度和理想质心侧偏角,同时在滑模控制的理论基础上,设计基于质心侧偏角和横摆角速度反馈的自适应趋近率滑模控制器。
最后使用Carsim搭建整车模型和提供仿真工况,通过与Simulink中的自适应趋近率滑模控制器进行联合仿真,验证所设计的控制器使双移线工况中的车辆横摆角速度响应和质心侧偏角响应在峰值处分别优化了5.5%左右和20.0%以上,能有效改善汽车质心侧偏角和横摆角速度对理想值的跟踪效果,提高汽车的操纵稳定性。
【总页数】5页(P1-5)
【作者】陈志勇
【作者单位】西华大学汽车与交通学院
【正文语种】中文
【中图分类】S229
【相关文献】
1.车辆-座椅主动悬架滑模控制器设计与优化
2.重型车辆主动悬架的滑模控制器设计及优化
3.多工况下车辆非线性悬架滑模控制器设计
因版权原因,仅展示原文概要,查看原文内容请购买。
1 路面模型的建立在分析主动悬架控制过程时,路面输入是一个不可忽略的重要因素,本文利用白噪声信号为路面输入激励,)(2)(2)(twUGtxftxggππ+-=•其中,f为下截止频率,Hz;G0为路面不平度系数,m3/cycle;U0为前进车速,m/sec;w为均值为零的随机输入单位白噪声。
上式表明,路面位移可以表示为一随机滤波白噪声信号。
这种表示方式来源于试验所测得的路面不平度功率谱密度(PSD)曲线的形状。
我们可以将路面输入以状态方程的形式加到模型中:⎪⎩⎪⎨⎧=+=•XCYWFXAXroadroadroadroadroad1,2,2,==-==roadroadroadgroadCUGBfAxXππ;D=0;考虑路面为普通路面,路面不平系数G=5e-6m3/cycle;车速U=20m/s;建模中,路面随机白噪声可以用随机数产生(Random Number)或者有限带宽白噪声(Band-Limited White Noise)来生成。
本文运用带宽白噪声生成,运用MATLAB/simulink建立仿真模型如下:图1 路面模型2 汽车2自由度系统建模图2 汽车2自由度系统模型根据图2所示,汽车2自由度系统模型,首先建立运动微分方程:()()()()()b b s b w s b w w w t w g s b w s b w m x K x x C x x m x K x x K x x C x x =----⎧⎪⎨=--+-+-⎪⎩整理得:⎪⎪⎩⎪⎪⎨⎧+--+-+-+-=-+-+-+-=gw t b w t s b w s b w s b w s w b b s b b s w b s b s bx m K x m K K x m K x m C x m C x x m K x m K x m C xb m C x式中:s C 为悬架阻尼,s K 为悬架刚度,t K 为轮胎刚度,b m 为车身质量,w m 为车轮质量,b b b x xx 、、分别为车身位移、速度、加速度,w w w x x x 、、分别为车轮位移、速度、加速度,g x 为路面输入。
基于操纵稳定性的扭矩分配方法(TVD)的硬件在环仿真实验1、概述2、实验步骤:2.1 车辆操纵稳定性的基本理论由汽车理论中的线性二自由度汽车模型对前轮角输入的响应,熟悉车辆的不足转向,中性转向和过多转向等概念,图1 二自由度汽车模型)(cos .12r y y u v m F F ωδ+=+(1)rz y y I bFaF.21cos ωδ=-(2)212221/)(1/KuLu k b k a Lmu Lu rd +⋅=-+⋅=δδω(3)))1()1((22222KuL k mauKuL b d +++=δβ(4)2、基于Bosch 的ESP 原理3、视频讲授实验原理及其方法3.1基于Simulink的扭矩分配策略设计3.2基于VeDYNA的计算机扭矩分配仿真Ve-DYNA提供了车辆动力学的实时模型,由高精度的车辆模型、三维路面模型、多种操纵控制行为模型以及虚拟的驾驶员模型组成,可以表现车辆在特定的环境下完成特定的驾驶任务。
VeDYNA设置主界面整车参数建模界面3.3基于Simulink和VeDYNA的联合仿真——控制器和整车模型的联合仿真设置典型工况下的仿真仿真的实时三维动画仿真数据的分析4.硬件在环仿真实验硬件在环试验系统结构4.1 TVD硬件在环仿真原理TVD硬件在环试验工作原理4.2 Simulink – Lab VIEW- NI-CompactDAQ软件的连接方法4.3 基于Simulink – LabVIEW的扭矩分配硬件在环仿真。
线性二自由度汽车操纵稳定性Simulink 仿真
汽车的操纵稳定性是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能够遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且遇到外界干扰时,汽车能够抵抗干扰而保持稳定行驶的能力,汽车的操纵稳定性是汽车主动安全性的重要评价指标之一。
操纵稳定性包括:汽车在转向盘输入或外界干扰输入下的侧向运动响应随时间而变化的特性称为时域响应特性;转向盘输入有角位移输入和力矩输入;外界干扰输入主要指侧向风和路面不平产生的侧向力。
1. 转向盘角阶跃输入下的响应
稳态响应,评价参量为 横摆角度速度增益—转向灵敏度
瞬态响应,评价参量为 反应时间;横摆角速度波动的无阻尼园频率。
2. 横摆角速度频率响应特性
转向盘转角正弦输入下,频率由0至∞变化时,汽车横摆角速度与转向盘转角的振幅比及相位差的变化规律。
评价参量为:共振峰频率;共振时的振幅比;相位滞后角;稳态增益。
3. 转向盘中间位置操纵稳定性
转向盘小转角、低频正弦输入下,汽车高速行驶时的操纵稳定性。
评价参量为:转向灵敏度、转向盘力特性、转向功灵敏度。
4. 回正性
转向盘力输入下的时域响应。
评价参量为:回正后剩余横摆角速度与剩余横摆角;达到剩余横摆角速度的时间。
轮胎的侧偏特性为:αk F Y =,k 为侧偏刚度,Y F 一定时,侧偏角越小越好,因此k 越大越好;前轮侧偏角在4度内时,轮胎侧偏特性呈线性变化。
图1
线性二自由度汽车模型对前轮角输入的响应
建模假设:忽略转向系统的影响,直接以前轮转角为输入;忽略悬架的作用,车身仅作平行于地面的平面运动,绕z 轴的位移、绕y 轴的俯仰角和绕x 轴的侧倾角均为零;汽车前进速度不变。
汽车被简化为只有侧向和横摆两个自由度的两轮汽车模型。
图2
假定汽车g y 4.0≤α(质心加速度在y 轴的投影),轮胎侧偏特性处于线性范围内,不计地面切向力Fx 、外倾侧向力Fy γ、回正力矩Tz 、垂直载荷的变化对轮胎侧偏刚度的影响;简化后的两轮汽车模型及车辆坐标系如下:
图3
确定汽车质心加速度(绝对加速度)在车辆坐标系的分量x α和y α,
图4
沿OX 轴速度分量的变化为:
()()θ
θθθθ
θ∆∆-∆--∆∆+∆=∆∆+--∆∆+sin sin cos cos sin cos v v u u u v v u u u
考虑θ∆很小,忽略二阶微量,则有: θ
θθθθ∆-∆=∆∆-∆--∆∆+∆v u v v u u u sin sin cos cos 上式除t ∆,取极限得r x v u dt
d v dt du a ωθ-=-= 同理可得r y u v
a ω+=
二自由度汽车运动力学分析
2
121cos cos Y Y Z Y Y Y bF aF M F
F F -=+=∑∑δδ 考虑δ较小,1cos =δ
111αk F Y =,222αk F Y =
则有:
2
2112
211ααα
αbk ak M k k F Z Y -=+=∑∑ 质心侧偏角u
v =β u a u a v r r ωβωξ+=+= ()δωβξδα-+=--=u
a r 1 u
b u b v r r ωβωα-=-=2
⎪⎭
⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=∑u b k u a k F r r Y ωβδωβ21 ⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=∑u b bk u a ak M r r Z ωβδωβ21 由于y Y ma F =∑,r Z Z I M ω
=∑ ()r r r u v m u b k u a k ωωβδωβ+=⎪⎭⎫ ⎝
⎛-+⎪⎭⎫ ⎝⎛-+ 21 r Z r r I u b bk u a ak ωωβδωβ =⎪⎭⎫ ⎝
⎛--⎪⎭⎫ ⎝⎛-+21
即
()()()r r u v m k bk ak u k k ωδωβ+=--++ 121211 ()()r Z r I ak k b k a u
bk ak ωδωβ =-++-12212211 动力学方程可变形为
δβωωZ
Z r Z r I ak I bk ak u I k b k a 1212212--++= δβωβmu k mu k k mu bk ak r 1212211-++⎪⎭
⎫ ⎝⎛--= 即状态空间为
δβωβω⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡211122211211b b a a a a r r δβωβω⎥⎦
⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡001001r r 其中
u
I k b k a a Z 221211+=,Z I bk ak a 2112-=,Z I ak b 111-= 122121--=mu bk ak a ,mu k k a 2122+=,mu
k b 121-=
仿真参数设置:
仿真时间1.5s 汽车总质量 m=1818.2Kg 绕z 轴转动惯量I Z =3885Kgm 2
轴距L=3.084m 质心至前轴距离a=1.463m 质心至后轴距离b=1.585m
前轮总侧偏刚度k 1=-62618N/rad 后轮总侧偏刚度k 2=-110185N/rad
仿真模型为:
仿真工况1:前轮转角1度,车速80Km/h 下,仿真结果为:
仿真工况2:车速80Km/h下,前轮转角分别为1度、2度和3度,仿真模型为:
由上图可见,在车速为80km/h下,随前轮转角的增大,汽车质心侧偏角明显增大且开始出现振荡,固有圆频率及阻尼比减小,超调量及稳定时间增加,因此应避免在高速行驶时急转方向盘产生大的前轮转角。
仿真工况3:前轮转角为2度,不同车速60km/h、80km/h、100km/h下横摆角速度和质心侧偏角响应曲线。
仿真模型为:
由图可知,降低汽车行驶速度,可以减小质心侧偏角,使固有圆频率及阻尼比增加,超调量及稳定时间减小,而增加行驶速度,可使反应时间缩短。
因此较低的行驶速度使汽车具有更好的瞬态响应特性。