线性二自由度汽车模型的运动微分方程
- 格式:doc
- 大小:1.98 MB
- 文档页数:5
车辆的运动学模型和动⼒学模型系统建模是系统控制的前提和基础,对于⽆⼈车的横向控制(控制车辆转向,使其沿期望路径⾏驶),通过对车辆模型进⾏合理的简化和解耦,建⽴合适的车辆模型,对实现⽆⼈车的路径跟踪⾄关重要。
所谓车辆模型,即描述车辆运动状态的模型,⼀般可分为两类:运动学车辆模型;动⼒学车辆模型。
研究表明,在低速时,车辆的运动学特性较为突出;⽽在⾼速时,车辆的动⼒学特性对⾃⾝的运动状态影响较⼤。
1、运动学车辆模型车辆运动学模型如下图所⽰。
车辆运动学模型这⾥假定车辆是⼀个刚体,根据上图所⽰的⼏何关系,可以得到下⾯的车辆运动学数学模型。
运动学模型的数学公式其中,x0 和 y0 表⽰车辆质⼼的位置,v 为质⼼的纵向速度,r 为车辆的横摆⾓速度,Ψ为车辆的航向⾓,β为车辆的质⼼侧偏⾓。
在低速情况下,车辆在垂直⽅向的运动通常可以忽略,也即车辆的质⼼侧偏⾓为零,车辆的结构就像⾃⾏车⼀样,因此上述模型可以简化⼀个⾃⾏车模型,如下图所⽰:⾃⾏车模型整个模型的控制量可以简化为 v 和δ,即纵向车速和前轮偏⾓。
通常车辆的转向控制量为⽅向盘⾓度,因此需要根据转向传动⽐,将前轮偏⾓转化为⽅向盘⾓度。
上述的⾃⾏车车辆模型适⽤范围⾮常⼴,可以解决⼤部分问题。
但当车辆⾼速⾏驶时,使⽤简单的⼆⾃由度车辆模型通常⽆法满⾜横向控制的精确性和稳定性,这时就需要⽤到车辆的动⼒学模型。
2、动⼒学车辆模型汽车实际的动⼒学特性⾮常复杂,为精确描述车辆的运⾏状态,相关研究学者提出了多种多⾃由度的动⼒学模型。
不过,复杂的车辆动⼒学模型虽然较好的反映车辆的实际运动状态,但并不适⽤于⽆⼈车的横向控制。
其中,单轨模型是⼀个应⽤⽐较多的动⼒学车辆模型。
单轨模型是在忽略了空⽓动⼒学、车辆悬架系统、转向系统等的基础上,将前后轮分别⽤⼀个等效的前轮和后轮来代替,从⽽得到的车辆模型。
单轨模型的具体受⼒分析如下图所⽰。
单轨模型上图中的车⾝坐标系oxy,是以车辆质⼼为坐标原点,以沿车⾝向前的⽅向为x的正⽅向,以垂直于横轴的向左的⽅向为y的正⽅向。
车辆二自由度模型状态空间方程一、车辆二自由度模型状态空间方程车辆二自由度模型是车辆动力学中常用的简化模型之一,它将车辆简化为一个在平面上运动的质点。
在这个模型中,车辆可以做平面上的平移和转动运动,因此被称为车辆的二自由度模型。
而状态空间方程则是描述这一模型运动规律的数学工具。
在车辆二自由度模型中,通常采用平移运动的位置和速度以及转动运动的姿态角和角速度作为描述车辆状态的变量。
通过对车辆动力学和控制理论的研究,可以得到描述车辆二自由度模型的状态空间方程。
这些方程包括车辆的位置、速度、姿态角和角速度之间的动态关系,可以用来描述车辆在不同行驶状态下的运动规律。
二、深度分析车辆二自由度模型状态空间方程车辆二自由度模型状态空间方程的深度分析需要从车辆动力学和控制理论的角度进行。
我们需要深入了解车辆的平移和转动运动规律,包括车辆在不同速度和转角条件下的运动特性,以及外部环境对车辆运动的影响。
我们需要探讨车辆控制系统对车辆状态的影响,包括如何通过控制输入来影响车辆的运动状态。
我们需要分析车辆二自由度模型状态空间方程的数学推导和物理意义,以深入理解车辆状态空间方程的结构和参数含义。
在具体的分析过程中,我们可以通过建立车辆运动的动力学模型和控制模型,使用数学工具进行模型分析和仿真验证,从而深入理解车辆二自由度模型状态空间方程的动态性质和稳定性。
三、撰写高质量车辆二自由度模型状态空间方程文章基于以上的深度分析,我们可以着手撰写一篇高质量的文章。
我们可以介绍车辆二自由度模型的基本原理和概念,然后逐步展开对车辆状态空间方程的分析和推导,包括车辆运动学和动力学的描述,以及状态空间方程的数学结构和物理意义。
在文章中,我们可以多次提及车辆二自由度模型状态空间方程的关键词,以加强文章的专业性和知识性。
我们还可以结合个人的观点和理解,对车辆二自由度模型状态空间方程进行综合性的总结和回顾,为读者提供全面、深刻和灵活的理解。
一篇关于车辆二自由度模型状态空间方程的高质量文章需要具备深度和广度兼具的分析能力,结合个人观点和实践经验,以及对读者的引导和启发。
基于MATLAB的车辆两自由度操纵稳定性模型及分析汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。
本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。
研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。
车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。
客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。
1二自由度汽车模为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自由度的汽车模型,忽略转向系统的影响,直接一前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作用于地面的平面运动。
2 运动学分析确定汽车质心的(绝对)加速度在车辆坐标系的分量 和 。
Ox 与Oy 为车辆坐标系的纵轴与横轴。
质心速度 与t 时刻在Ox 轴上的分量为u ,在oy 轴上的分量为v 。
2.1 沿Ox 轴速度分量的变化为:()()cos sin cos cos sin sin u u u v v u u u v v θθθθθθ+∆∆--+∆∆=∆+∆∆---∆∆考虑到 很小并忽略二阶微量,上式变成:除以 并取极限,便是汽车质心绝对加速度在车辆坐标系。
沿Ox 轴速度分量的变化为:u x r d d v u v dt dt a θω=-=-同理,汽车质心绝对加速度沿横轴oy 上的分量为:y rv u a ω=+2.2 二自由度动力学方程二自由度汽车受到的外力沿y 轴方向的合力与绕质心的力矩和为:1212cos a cos YY Y ZY Y b F F FM F Fδδ=+=-∑∑式中, , 为地面对前后轮的侧向反作用力; 为前轮转角。
线性二自由度汽车模型的运动微分方程为了便于建立运动方程,做以下简化:(1)忽略转向系统的影响,直接以前轮转角作为输入;(2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z轴的位移、绕y轴的俯仰角和绕x轴的侧倾角均为零,且F Zr Fzi ;(3)汽车前进速度u视为不变;(4)侧向加速度限定在0.4g —下,确保轮胎侧偏特性处于线性围;(5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。
閒代后护曲轮汽车枠即及车辆咐标丟分析时,令车辆坐标系原点与汽车质心重合。
首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。
"T与W为车辆坐标系的纵轴和横轴。
质心速度V l于f时刻在轴上的分量为|/<,在°匸轴上的分量为卜。
由于汽车转向行驶时伴有平移和转动,在'时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿'■轴速度分量变化为:(« + Av)sin A"=u cos A6? + cos A 0 it -vsin 0 Avsin \0考虑到△ 6很小并忽略二阶微量,上式变成:\u -K A0除以Ar并取极限,便是汽车质心绝对加速度在车辆坐标系\ox上的分量du dO *a -- ----- v——= n-va)x dt dt r同理得:叭"刊叫下面计算二自由度汽车的动力学方程< ------------------------------ --------------------------------------- ih二自由度汽车受到的外力沿匸"|轴方向的合力与绕质心的力矩和为》禺=洛心方"二11式中,如,比为地面对前后轮的侧向反作用力,即侧偏力;/为前轮转角考虑到’很小,上式可以写成:=片碣 + kya z I 工恢=ak l a ]-bk 2a 2\ 下面计算二自由度汽车的动力学方程二自由度汽车受到的外力沿 轴方向的合力与绕质心的力矩和为£幵=F”£OM+尽 11式中,呂|, F 伫为地面对前后轮的侧向反作用力,即侧偏力; 5为前轮转角 考虑到’很小,上式可以写成:*冋+k 2a 2 工虽=昭绚-风耳汽车前后轮侧偏角与其运动参数有关。
线性二自由度汽车模型的运动微分方程为了便于建立运动方程,做以下简化:1忽略转向系统的影响,直接以前轮转角作为输入;2忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且l r Z Z F F ;3汽车前进速度u 视为不变;4侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围;5驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用;在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型;分析时,令车辆坐标系原点与汽车质心重合;首先确定汽车质心的绝对加速度在车辆坐标系中的分量; 与为车辆坐标系的纵轴和横轴;质心速度于时刻在轴上的分量为,在轴上的分量为;由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿轴速度分量变化为: 考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 同理得:下面计算二自由度汽车的动力学方程二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角;考虑到很小,上式可以写成:下面计算二自由度汽车的动力学方程二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角;考虑到很小,上式可以写成:汽车前后轮侧偏角与其运动参数有关;如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为,;质心侧偏角为,;为与轴的夹角,其值为:根据坐标系的关系,前后轮侧偏角为由此,可以列出外力,外力矩与汽车参数的关系式为所以,二自由度汽车的运动微分方程为由此,可以列出外力,外力矩与汽车参数的关系式为所以,二自由度汽车的运动微分方程为上式可以变形为:写成状态方程为:中。
线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化:
(1)忽略转向系统的影响,直接以前轮转角作为输入;
(2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且
l r Z Z F F ;
(3)汽车前进速度u 视为不变;
(4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围;
(5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。
在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。
分析时,令车辆坐标系原点与汽车质心重合。
首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。
与
为车辆坐标系的纵轴和横轴。
质心速度
于时刻在
轴上的分量为
,在
轴上的分量为。
由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变
化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿
轴速度分量变化为:
考虑到很小并忽略二阶微量,上式变成:
除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量
同理得:
下面计算二自由度汽车的动力学方程
二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为
式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。
考虑到很小,上式可以写成:
下面计算二自由度汽车的动力学方程
二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为
式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。
考虑到很小,上式可以写成:
汽车前后轮侧偏角与其运动参数有关。
如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为,;质心侧偏角为,;为与轴的夹角,其值为:
根据坐标系的关系,前后轮侧偏角为
由此,可以列出外力,外力矩与汽车参数的关系式为所以,二自由度汽车的运动微分方程为
由此,可以列出外力,外力矩与汽车参数的关系式为所以,二自由度汽车的运动微分方程为
上式可以变形为:
写成状态方程为:
中。