线性二自由度汽车模型的运动微分方程
- 格式:docx
- 大小:108.76 KB
- 文档页数:5
10.16638/ki.1671-7988.2021.03.010基于MATLAB/Simulink的车辆转向稳定性的仿真研究马园杰,周旭(湖北汽车工业学院机械工程学院,湖北十堰442000)摘要:汽车的操纵稳定性是衡量汽车安全性最基本的指标之一,影响汽车行驶稳定性的基本因素主要有横摆角速度与质心侧偏角,将汽车简化为二自由度模型,建立关于横摆角速度与质心侧偏角的转向微分方程。
基于MA TLAB/Simulink软件建立仿真模型,对前轮转向与四轮转向典型的二自由度汽车模型进行仿真分析。
对比两轮转向和四轮转向的稳定性。
且四轮转向采用线控转向,将线控转向系统与四轮转向系统的优点结合起来,观察采用线控对汽车稳定性的影响。
关键词:二轮转向;四轮转向;横摆角速度;质心侧偏角中图分类号:TP391.9;U463.41 文献标示码:A 文章编号:1671-7988(2021)03-34-03 Simulation Research on Vehicle steering stability based on MATLAB/SimulinkMa Yuanjie, Zhou Xu(Department of Mechanical Engineering, Hubei University of Automotive Technology, Hubei Shiyan 442000)Abstract:Vehicle handing stability is the index to measure automobile safety. Yaw velocity and side slip angle are the basic factors that affect the vehicle handing stability. Simplify the car to two degree of freedom model. This paper establi -shed the differential equations of Yaw velocity and side slip angle. Using the MA TLAB/Simulinl to create the simulation model and analyze the stability of Vehicle steering system. Combine the advantage of the wire steering system with four wheel steering , Observe its effect on stability.Keywords: Two wheel steering; Four wheel steering; Yaw velocity; Side slip angleCLC NO.: TP391.9; U463.41 Document Code: A Article ID: 1671-7988(2021)03-34-03前言随着人们对现代汽车安全性及操纵稳定性的关注,汽车行驶稳定性越来越成为人们备受关注的焦点。
汽车二自由度动力学模型
汽车二自由度动力学模型是一种用于描述汽车运动的简化模型。
它考虑了两个自由度,通常是车辆的纵向(前进方向)和侧向(横向)运动。
在这个模型中,车辆被视为一个质量集中的刚体,通过两个自由度来描述其运动状态。
这两个自由度通常是车辆的速度(纵向)和横摆角速度(侧向)。
汽车二自由度动力学模型的建立基于一些基本的物理原理,如牛顿第二定律、动量守恒定律和刚体动力学。
通过对这些原理的应用,可以得到描述车辆运动的微分方程。
这些方程通常包括车辆的加速度、驱动力或制动力、转向力矩以及车辆的惯性参数等。
通过求解这些微分方程,可以预测车辆在不同工况下的运动响应,例如加速、制动、转弯等。
汽车二自由度动力学模型在车辆动力学研究、驾驶模拟器、自动驾驶系统等领域有广泛应用。
它可以帮助工程师和研究人员了解车辆的基本运动特性,评估车辆的操控稳定性、行驶安全性等方面的性能。
然而,需要注意的是,二自由度模型是一种简化的模型,它忽略了许多实际情况中的复杂因素,如悬挂系统、轮胎特性、空气动力学等。
在实际应用中,可能需要使用更复杂的多自由度模型或考虑更多的因素来更准确地描述汽车的运动。
总的来说,汽车二自由度动力学模型提供了一个简单而有用的工具,用于初步研究和理解汽车的运动行为,但在具体应用中,需要根据实际需求进行适当的修正和扩展。
如果你对汽车动力学模型有更深入的问题或需要进一步的讨论,我将很愿意提供帮助。
基于simulink的线性二自由度汽车模型稳态响应1.项目背景进行控制器的设计以及验证控制器是否正确的必要前提在于建立一个正确且可靠的整车数学模型。
如果能够建立同实际车辆更加接近的整车虚拟样机模型就能更好的反映车辆响应特性以及控制效果。
因此本实验将会在一定的假设条件之下,基于汽车理论以及牛顿力学在MATLAB/Simulink的环境下将整车动力学数学模型建立出来,在此基础上求前轮角输入下的响应曲线。
2.二自由度车辆模型如果要准确的对车辆的动力学状态进行描述,则需要知道车辆的上百个参数,譬如轮胎半径、前后轮的侧偏刚度等,但这当中有许多的参数是不变的,而有些却在车辆的行驶过程中会不断地发生变化,我们难以知道所有的参数的精确值,有些参数甚至于是不可以被测得的。
而且,车辆的动力学状态也受到外部的行驶环境的影响,譬如汽车和空气的相对运动所产生的空气阻力、地面坡度所产生的道路的阻力等都会对汽车的状态有明显的影响,然而这些力的大小方向都会实时发生变化,就算根据相关的经验公式也只能得到它们的估计值,不容易被直接地测出。
除此之外,汽车的许多参数相互之间都存在耦合关系,某一个参数的改变也可能会导致其它的参数改变,譬如汽车横向速度以及纵向速度间的耦合关系、非线性的轮胎横向力和纵向力间的耦合关系。
有的参数之间的耦合关系并不能够用准确的数学公式来表达,这会使得所创建的数学模型的精度受到严重的影响。
显而易见,如果要建立一个能精确地描述汽车的运动状态的车辆数学模型很明显是不太可能的。
本实验根据实际情况的需要进行适当地简化后把多自由度的整车模型简化成为二自由度车辆动力学模型。
在分析中,直接以前轮转角作为输入而忽略了转向系统的影响;也忽略了悬架的作用,认为汽车的车厢只作平行于地面的平面运动,汽车只有沿着y轴的侧向运动以及绕着z轴的横摆运动。
在建立运动微分方程的时候还假设:不考虑地面切向力对轮胎侧偏特性的影响,也忽略左右车轮的轮胎由于载荷变化而引起的轮胎特性的变化以及轮胎回正力矩的作用。
车辆二自由度模型状态空间方程一、车辆二自由度模型状态空间方程车辆二自由度模型是车辆动力学中常用的简化模型之一,它将车辆简化为一个在平面上运动的质点。
在这个模型中,车辆可以做平面上的平移和转动运动,因此被称为车辆的二自由度模型。
而状态空间方程则是描述这一模型运动规律的数学工具。
在车辆二自由度模型中,通常采用平移运动的位置和速度以及转动运动的姿态角和角速度作为描述车辆状态的变量。
通过对车辆动力学和控制理论的研究,可以得到描述车辆二自由度模型的状态空间方程。
这些方程包括车辆的位置、速度、姿态角和角速度之间的动态关系,可以用来描述车辆在不同行驶状态下的运动规律。
二、深度分析车辆二自由度模型状态空间方程车辆二自由度模型状态空间方程的深度分析需要从车辆动力学和控制理论的角度进行。
我们需要深入了解车辆的平移和转动运动规律,包括车辆在不同速度和转角条件下的运动特性,以及外部环境对车辆运动的影响。
我们需要探讨车辆控制系统对车辆状态的影响,包括如何通过控制输入来影响车辆的运动状态。
我们需要分析车辆二自由度模型状态空间方程的数学推导和物理意义,以深入理解车辆状态空间方程的结构和参数含义。
在具体的分析过程中,我们可以通过建立车辆运动的动力学模型和控制模型,使用数学工具进行模型分析和仿真验证,从而深入理解车辆二自由度模型状态空间方程的动态性质和稳定性。
三、撰写高质量车辆二自由度模型状态空间方程文章基于以上的深度分析,我们可以着手撰写一篇高质量的文章。
我们可以介绍车辆二自由度模型的基本原理和概念,然后逐步展开对车辆状态空间方程的分析和推导,包括车辆运动学和动力学的描述,以及状态空间方程的数学结构和物理意义。
在文章中,我们可以多次提及车辆二自由度模型状态空间方程的关键词,以加强文章的专业性和知识性。
我们还可以结合个人的观点和理解,对车辆二自由度模型状态空间方程进行综合性的总结和回顾,为读者提供全面、深刻和灵活的理解。
一篇关于车辆二自由度模型状态空间方程的高质量文章需要具备深度和广度兼具的分析能力,结合个人观点和实践经验,以及对读者的引导和启发。
线性二自由度汽车模型的运动微分方程
为了便于建立运动方程,做以下简化:
(1)忽略转向系统的影响,直接以前轮转角作为输入;
(2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z轴的位移、绕y轴的俯仰角和绕x轴的侧倾角均为零,且F Zr Fzi ;
(3)汽车前进速度u视为不变;
(4)侧向加速度限定在0.4g —下,确保轮胎侧偏特性处于线性围;
(5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。
閒代后护曲轮汽车枠即及车辆咐标丟
分析时,令车辆坐标系原点与汽车质心重合。
首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。
"T与W为车辆坐标系的纵轴和横轴。
质心速度V l于f时刻在轴上的分量为|/<,在°匸轴上的分量为
卜。
由于汽车转向行驶时伴有平移和转动,在'时刻,车辆坐标系中质心速度的大小与方向均发生变
化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿'■轴速度分量变化为:
(« + Av)sin A"
=u cos A6? + cos A 0 it -vsin 0 Avsin \0
考虑到△ 6很小并忽略二阶微量,上式变成:\u -K A0
除以Ar并取极限,便是汽车质心绝对加速度在车辆坐标系\ox上的分量
du dO *
a -- ----- v——= n-va)
x dt dt r
同理得:叭"刊叫
下面计算二自由度汽车的动力学方程
< ------------------------------ --------------------------------------- ih
二自由度汽车受到的外力沿匸"|轴方向的合力与绕质心的力矩和为
》禺=洛心方"二11
式中,如,比为地面对前后轮的侧向反作用力,即侧偏力;/为前轮转角考虑到’很小,上式可以写成:
=片碣 + kya z I 工恢=ak l a ]-bk 2a 2\ 下面计算二自由度汽车的动力学方程
二自由度汽车受到的外力沿 轴方向的合力与绕质心的力矩和为
£幵=F”£OM+尽 11
式中,呂|, F 伫为地面对前后轮的侧向反作用力,即侧偏力; 5为前轮转角 考虑到’很小,上式可以写成:
*冋+k 2a 2 工虽=
昭绚-风耳
汽车前后轮侧偏角与其运动参数有关。
如上图所示,汽车前后轴中点的速度为 场,,八;前后轮侧偏角为“|,
込;质心侧偏角为卩 G
为叫与x 轴的夹角,其值
为: ---------------- —— ------------------------------ ----------------
” 尸 卩“ u 卜盘他 丹 ctg
根据坐标系的关系,前后轮侧偏角为
碣=—3_疳)=0十竺「占
II
V -bq c 他
g = ------ 二# ----
li u 可以列岀外力,外力矩与汽车参数的关系式为
u U
工人役二确(0十竺一5)-加:(0—如
红
11 U
诚I (“+吆—$)-民5 - 处)=也
U " n 可以列岀外力,外力矩与汽车参数的关系式为
工片““十竺》)乜(0一处)
站(戸 + 竺L-占)+ k :(/3 一如L ) =
日&(0十竺_6_球,0■如)三匚心
w " w
上式可以变形为:
t y u Iz
$ =严厂牛_恤弋沁分亠 nut mu
mil 写成状态方程为:
由此, 所以, 二自由度汽车的运动微分方程为
由此, 所以, 二自由度汽车的运动微分方程为
也严透业啓+ 心%?-竺^
中。