合金凝固的二相流数值模拟
- 格式:pdf
- 大小:617.01 KB
- 文档页数:8
循环流化床气固两相流动数值模拟的研究进展刘洪鹏;肖剑波;王敬斌;王擎【摘要】对循环流化床气固两相流动数值模拟的研究进展进行介绍,包括传统的欧拉双流体模型、基于颗粒动力学理论的双流体模型、基于拉格朗日坐标系下的颗粒轨道模型、能量最小多尺度模型和小室模型,并对上述模型的原理、发展和优缺点进行了描述.【期刊名称】《化工机械》【年(卷),期】2014(041)001【总页数】4页(P6-8,33)【关键词】循环流化床;气固两相流动;欧拉双流体;能量最小多尺度【作者】刘洪鹏;肖剑波;王敬斌;王擎【作者单位】油页岩综合利用教育部工程研究中心,东北电力大学能源与动力工程学院;华能应城热电有限责任公司;河北华热工程设计有限公司;油页岩综合利用教育部工程研究中心,东北电力大学能源与动力工程学院【正文语种】中文【中图分类】TQ051.1循环流化床以其燃料适应性广、燃烧效率高、污染物排放低以及负荷调节范围大等优点在能源和化工领域得到广泛应用[1]。
因此,详细研究其炉内气固两相流动特性对循环流化床的发展具有重要意义,也有部分学者致力于研究气固流化床中的气泡行为[2]。
然而对于大型的工业化内循环流化床来说,进行详细的气固流动特性的试验研究是非常困难的,随着计算机性能的不断提高,基于计算流体力学的数值方法得到长足发展,并对循环流化床复杂多相流系统结构和运行的优化、大型化起到至关重要的作用[3]。
据此,许多学者针对循环流化床提出了许多数学模型。
根据对气固两相流离散相处理的不同,可分为双流体模型和颗粒轨道模型。
双流体模型是基于欧拉方法坐标系建立的,该模型将颗粒视为拟流体,认为颗粒与流体是互相渗透的连续介质;颗粒轨道模型是基于拉格朗日坐标系建立的,把流体作为连续介质,颗粒作为离散介质,在拉格朗日坐标系下研究颗粒的运动。
此外,近年来一些学者还在上述两种模型的基础上发展了小室模型和能量最小多尺度模型[4]。
1 双流体模型双流体模型主要包括连续流体模型、传统双流体模型和基于颗粒动力学理论的欧拉双流体模型。
摘 要凝固组织对铸件的性能有重要影响,对凝固组织的控制研究,过去一般采用物理实验的方法,浪费了大量的人力和物力,实验周期长,使得该方法在实际应用中的范围受到了一定限制。
随着金属凝固理论的日益完善以及计算机技术在材料科学、冶金学上应用的迅猛发展,使得计算机技术对凝固组织进行准确的模拟成为可能。
本文建立了有限元(Finite Element)和元胞自动机法(Cellular Automaton)相结合的宏微观耦合的CA-FE模型,采用有限元法(FE)计算宏观温度场,元胞自动机法(CA)计算微观凝固组织形成,与宏观传热进行耦合。
在微观计算中,形核计算采用了基于高斯分布的连续形核模型,生长计算采用了扩展的KGT模型,使其适用范围由二元合金扩展至多元合金。
应用CA-FE模型模拟了Al-Si合金的三维凝固组织,并进行了热态验证实验,应用修正的数学模型模拟并分析了原始成分、形核参数、浇注条件和铸模对凝固组织的影响。
研究结果表明:(1)模拟结果能够较为准确地反映出等轴晶和柱状晶的分布位置、比例和大小,并能较好描述凝固过程中晶粒生长情况,说明CA-FE模型是模拟凝固组织的有效模型;(2)降低原始成分Si含量以及提高过冷度是有利于柱状晶的发展,而增大形核密度是有利于等轴晶的发展,且能细化晶粒;(3)提高浇注温度,凝固组织中柱状晶增多,且晶粒明显变得粗大,而铸模外界冷却强度对铸件凝固组织的影响不大;(4)增大铸模厚度和使用冷却能力强的铸模都将使凝固组织中柱状晶比例增大,当使用冷却能力差的硅砂模时,凝固组织没有柱状晶而全为等轴晶。
关键词:有限元;元胞自动机法;数值模拟;凝固组织;等轴晶;柱状晶AbstractSolidification structure has an important influence on the performance of casting. In the past, the method of physical experiment was applied to the research of controling the solidification structure generally, however, a great deal of time and efforts should be put while using this method. so it is limited in the practical application. With the improvement of metal solidification theory and the rapid development of computer technology used in materials science and metallurgy, it has become possible to simulate the solidification structure accurately with computer technology.The CA-FE model was built through coupling the finite element and cellular automaton method. The finite element method was used to calculate macro temperature, and the cellular automaton method was used to simulate solidification microstructure with coupling the macro temperature calculation. In microstructure simulation, the nucleation adopts the continuous nucleation model based on Gaussian distribution, and the growth adopt the extended KGT model which fit complex alloy expanded from binary alloy. The three-dimensional solidification structures of Al-Si alloy was simulated by CA-FE model with hot verification test. In addition, the effects of primitive composition, nucleation parameters, casting conditions and the mold on solidification structures were analysised.The results show as follows:(1) The simulated results can accurately reflect the distribution, proportion, size of equiaxed grain and columnar grain,and can describe the grain growth well in the solidification process, so the CA-FE model is a effective model to simulate the solidification structure.(2) Reducing primitive composition of Si element and increasing undercooling are conducive to the development of columnar grains, but increasing nucleation density is conducive to the development of equiaxed grains, and can fine grains.(3) Raising the casting temperature, the proportion of columnar grain will increase, and the grains become coarse obviously,but the effect of the cooling intensity outside the mold on solidification structure is slight.(4) Enlarging the thickness of the mold or using the mold with strong cooling capacity, the proportion of columnar grain will increase. While using the Silica Sand mold with weak cooling capacity, the solidification structure were composed with all equiaxed grains and without columnar grain.Key words:finite element; cellular automaton; numerical simulation; solidification structure;equiaxed grain; columnar grain目 录第一章文献综述 (1)1.1 引言 (1)1.2 凝固组织的形成与控制 (2)1.2.1 铸件的凝固组织 (2)1.2.2 凝固组织的形成及影响因素 (3)1.2.3 凝固组织对铸件性能的影响 (4)1.2.4 凝固组织的控制 (5)1.3 凝固组织模拟的研究方法 (7)1.3.1 确定性方法(Deterministic Method) (7)1.3.2 随机性(概率)方法( Stochastic Method) (8)1.3.3 相场法(Phase field Method) (10)1.3.4 三种方法的对比 (11)1.4 凝固组织数值模拟的国内外研究进展 (12)1.4.1 国外研究 (12)1.4.2 国内研究 (15)1.4.3 存在问题及今后发展趋势 (16)1.5 本文所研究的主要工作 (17)第二章铸件凝固过程宏微观耦合模型 (19)2.1 宏观温度场计算模型 (19)2.1.1 热传递的基本方式 (19)2.1.2 热传导微分方程 (20)2.1.3 瞬态温度场的有限元解法 (21)2.2 微观动力学模型 (23)2.2.1 形核模型 (23)2.2.2 枝晶尖端动力学模型 (26)2.3 耦合计算模型 (29)2.3.1 耦合计算流程 (29)2.3.2 凝固潜热处理 (31)2.3.3 固相分数的确定 (32)2.4 本章小结 (33)第三章数学模型的计算与验证 (34)3.1 实验 (34)3.1.1 实验材料 (34)3.1.2 实验设备 (34)3.1.3 实验步骤 (35)3.1.4 实验结果 (35)3.2 数值模拟过程 (35)3.2.1 网格划分 (35)3.2.2 热物性参数 (35)3.2.3 初始条件 (36)3.2.4 边界条件 (37)3.2.5 生长系数 (37)3.2.6 形核参数 (38)3.3 模拟结果及分析 (38)3.3.1 模拟结果 (38)3.3.2 柱状晶生长 (40)3.3.3 中心等轴晶生长 (42)3.4 本章小结 (43)第四章 AL-SI合金凝固组织的数值模拟与分析 (44)4.1 原始成分对凝固组织的影响 (44)4.2 形核参数对凝固组织的影响 (45)4.2.1 过冷度对凝固组织的影响 (45)4.2.2 形核密度对凝固组织的影响 (46)4.3 浇注条件对凝固组织的影响 (47)4.3.1 浇注温度对凝固组织的影响 (47)4.3.2 外界冷却强度对凝固组织的影响 (49)4.4 铸模对凝固组织的影响 (50)4.4.1 铸模厚度对凝固组织的影响 (50)4.4.2 铸模材料对凝固组织的影响 (52)4.5 本章小结 (53)第五章:结论 (54)参考文献 (55)致谢 (58)附录:发表的论文 (59)第一章文献综述1.1 引言众所周知,决定铸件产品机械性能的最本质因素是铸件内部晶粒在宏观上的几何形态,即铸件的凝固组织结构,包括晶粒的形貌、大小、取向和分布等情况。
金属液流动与凝固过程数值模拟分析方法研究金属液流动和凝固过程数值模拟分析方法研究概述金属液流动和凝固过程是金属材料加工中的重要环节,对于金属制品的质量和性能有着重要影响。
因此,研究金属液流动和凝固过程的数值模拟分析方法具有重要的理论价值和实际应用价值。
本文将针对金属液流动和凝固过程的数值模拟分析方法进行研究,探讨其原理、步骤和应用。
一、数值模拟方法原理数值模拟方法是通过将物理系统离散化为有限的控制体积或网格,建立物理方程组,并使用数值计算方法求解,从而获得系统的增量或离散化解。
在金属液流动和凝固过程的数值模拟中,通常采用的是计算流体力学方法(CFD)或有限元方法(FEM)。
计算流体力学方法以连续介质力学为基础,通过对连续介质流动进行方程建模和求解,获得流动场的信息,进而研究流动的性质和变化规律。
在金属液流动和凝固过程的数值模拟中,流动方程通常采用Navier-Stokes方程,并结合运动边界条件、控制方程和物理方程对金属液流动过程进行数值模拟。
有限元方法是通过将物理系统划分为有限个单元,通过使用多项式近似解的方法,得到局部解之后,通过求解单元间的关系得到整体解。
在金属液流动和凝固过程的数值模拟中,有限元方法通常采用二维或三维的网格划分方法,将金属液的流动与凝固过程离散化为有限个单元,然后针对每个单元进行方程建模和求解,最终获得整体的解。
二、数值模拟方法步骤1. 建立几何模型:首先需要建立金属液流动和凝固过程的几何模型,通过CAD软件或者网格生成软件能够实现。
2. 网格划分:将几何模型离散为有限个单元或控制体积,进行网格划分。
在金属液流动和凝固过程的数值模拟中,网格划分需要根据流场的特点和凝固过程的要求进行合理的选择。
3. 建立物理模型:在金属液流动和凝固过程的数值模拟中,需要对流动方程、凝固方程和物理方程进行建模。
根据流动的性质和过程的要求,可以选择不同的物理模型。
4. 边界条件和初始条件:通过观察实验或实际生产中的数据,确定流场和凝固过程的初始条件和边界条件,以供数值模拟求解时使用。
颗粒拟流体模型中的颗粒拟流体的静压力、颗粒相的切应力的各种表达方法、物理基础、优缺点1•颗粒拟流体模型的简介:颗粒拟流体模型又叫多流体(双流体)模型。
该模型将弥散颗粒相与连续流体相看作是连续介质,对颗粒相的处理方法与对连续介质相的处理方法类似,认为颗粒相是欧拉坐标系中与连续相流体相互渗透的一种“假想”流体,称为拟流体。
因此,这种模型又叫做颗粒拟流体模型。
该模型不仅考虑连续流体相与颗粒相之间存在的显著速度滑移和温度滑移,并且认为这种滑移与颗粒相的扩散是两种完全不同的作用,而且颗粒相的扩散是独立于流体相扩散之外的另一种运动特性。
该模型还引入了颗粒相粘性、扩散和导热系数这些与连续流体类似的物理性质。
颗粒拟流体模型的基本假设包括:(1)在流场中弥散颗粒相与连续流体相共存并且相互渗透,连续流体相和弥散相在计算区域中的任何一点共存,占据同一空间,但分别具有各自的速度、浓度、温度和体积分数等,而且在每个计算单元内只有一个值;若是将颗粒相按尺寸分组,则每个尺寸组的颗粒具有相同的速度和温度。
(2)在做体积平均后,每一尺寸组的颗粒相在空间中具有连续的速度分布、温度分布和容积分数的分布。
(3)每一个尺寸组的颗粒相除了与连续流体相具有质量、动量和能量间的相互作用之外,还具有自身的湍流脉动,并由此造成颗粒相自身的质量、动量和能量的湍流运输,因而具有其自身的湍流粘性、扩散和导热等湍流输运性质;对于稠密颗粒悬浮体,颗粒相之间的碰撞还会引起附加的颗粒粘性、扩散和热传导;因此,颗粒相具有类似于连续流体相的“拟”物理性质。
(4)弥散颗粒相可按初始尺寸分布分为不同的群组。
(5)连续流体相和颗粒相都在欧拉坐标系内描述,因此该模型也称为“双流体模型”,也叫“欧拉-欧拉模型”。
颗粒拟流体模型的基本方程组包括下述一些方程。
连续流体相的连续方程dp d / 、v1示+鬲Mr $—2/皿弥散颗粒相的连续方程连续流体相动量方程弥散颗粒相动量方程d d , 、无(n k v ki ) + 苏(n k v kj v ki J = n k (Vi 一 v ki )/T rk + n k gi连续流体相能量方程专(PCpT )+右 3jCpT )dxj 匕丁幽弥散颗粒相能量方程 —(n k c k T k ) + ^(n k v kj c k T k ) = n k (Q h 一 Qk - Qrk)/m kd流体的组分方程 爲(P 。