INDUCTIVE LEARNING SUPPORT FOR DECISION MAKING Extended Abstract
- 格式:pdf
- 大小:55.66 KB
- 文档页数:4
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
THE EFFECTS OF DEDUCTIVE AND INDUCTIVE APPROACHES OF TEACHING ON JORDANIAN UNIVERSITY STUDENTS' USE OF THEACTIVE AND PASSIVE VOICE IN ENGLISHBy: Mohammed, Azmi Adel, Jaber, Hanna Abu, College Student Journal, 01463934, Jun2008 Part B, Vol. 42, Issue 2. Database: Academic Search Premier1.Related LiteratureThis empirical study presented the description of two teaching methods called "deductive" and "inductive" approaches. The first involved providing a group of participants with rules and then examples directly and separately, but the second approach involves providing another group of participants with examples or content without offering explicit grammar rules, and so the students should induce such rules by themselves. This study investigated the effects of each approach and the interaction between "the type of teaching approach" and "the use of the active and passive voice sentences" in English as a foreign language (EFL). Ninety-three freshman and junior university students participated in this study. They were chosen randomly from three classes in two universities in Jordan. The method of the study included a pretest, two lessons for each group in the three classes and a posttest. The results of the study reveal a significant statistical result at the level of 0.05 between the two approaches for the deductive group. But there is no significant difference between classes for the same type of approach. There is also no significant effect for the interaction between approach and class.1.1 The Importance of Teaching GrammarEnglish is today the world's most widely used language. The desire to learn it is at the present is so immense. The future of English as an international language has always been said to rest on the practicability of teaching the language. For more than 2000 years of debate regarding whether grammar should be a primary focus of language instruction or should be eliminated entirely, or should be subordinated to meaning-focused use of the target language is continuing in the tradition. But once again, the need for grammar instruction is attracting the attention of researchers and teachers of second language acquisition. A debate was theoretically represented by Krashen's (1981) distinction between conscious learning and unconscious acquisition of language. The claim was that language should be acquired through natural exposure, not learned through formal instruction (Ellis, 2002; Skehan, 1998). Despite such research findings, Nassaji and Fotos (2004) indicate that current research in second language learning, however, has led to a reconsideration of the role of grammar in second language classroom. The research suggests that some types of focus on grammatical forms were necessary if learners were to develop high levels of accuracy in the target language.Most second language investigators agree that noticing or awareness of target structures and forms plays an essential role in second language learning was necessary if learners were to develop high levels of accuracy in the target language (Doughty, 2001; Ellis, 2002). Briefly, the reconsideration of grammar teaching in second language classroom, according to many researchers and investigators, is evidence for the positive effects of grammar instruction as their empirical and classroom based studies.1.2 The Deductive Approach of TeachingThe deductive approach of teaching English grammar refers to the style of teaching students by introducing the grammatical rules first, and then applying them by the students. This means that a teacher works from the more general to the more specific in a deductive approach called informally a "top down" approach. Decoo (1996) understands education as a process that goes from the general to the specific. Whereas Mountone (2004) states that the deductive methods seem to work best if you want students to be able to quickly and accurately solve problems like those worked out in class or in the work. Younie (1974) believes that the deductive approach is more predictable because the teacher selects the information and the sequence of presentation.Shaffer (1989) criticizes the deductive approach clarifying that the problem many students have applying these various rules indicates that they may not fully understand the concepts involved and that the deductive approach tends to emphasize grammar at the expense of meaning and to promote passive rather than active participation of the students. But Goner et al (1978) state that the deductive approach can be effective with students of a higher level, who already know the basic structures of the language, or with students who are accustomed to a very traditional style of learning." Schrampfer and Spack (2005) introduce a program where the presentation-practice-production-evaluation pattern adopted by the program is a feature of the deductive approach to the teaching grammar assuming that potential users will understand the rule governing the target grammar pattern.1.3 The Inductive Approach of TeachingThe inductive approach refers to the style of introducing language context containing the target rules where students can induce such rules through the context and practical examples. In other words, the sequence in this approach goes from creating a situation and giving examples to the generalization where students should discover such generalization by themselves or with the teacher's help. Mautone (2004) says that with an inductive approach, teachers show their students a series of examples and non-examples, and then guide them toward noticing a pattern and coming up with the generalization or concept rule.Some scholars such as Ausubel (1963) and Carroll (1964) indicated that the inductive approach was too difficult for weaker or slower students, and that only brighter students were capable of discovering the underlying patterns of a structure, but the results of Shaffer's research (1989) indicate that weaker students do benefit from an inductive approach.Among several studies supporting the idea that the inductive approach has proved its success in achieving students' retention or memory and deep understanding, Younie's (1974) states that students tend to remember when learning occurs inductively. Some teachers support such ideas and believe that engaging with the meaning of forms and words through an inductive approach leads to better understanding and retention. Bluedorn (1989), and Shaffer (1989) view that it has been very successful in teaching adults conversational ability with modern foreign languages, but not with classical languages. No doubt, we agree with those researchers and teachers who focus on the importance of student’s involvement, which may come through the inductive approach of teaching. We also share them the idea that students should depend upon their mental ability and prior information as this approach may sometimes represent a kind of challenge for learners.1.4 Comparison: the Deductive and Inductive ApproachesTeacher' approaches of teaching English grammar play an important role in classrooms where students should understand what they are taught and how to use it correctly. Here, we are interested in the deductive and inductive approaches. This interest leads us to review some previous studies which compared between the two of them, or focused on their advantages and disadvantages.In comparing between the two approaches, one of the differences is that a deductive approach is most close with the grammar-translation method of teaching languages, while an inductive approach is considered close to audio-lingualism, where meaning and grammar induced from practice with examples in situations and substitution tables (Gollin, 1998). According to Shaffer (1989) an inductive approach was formerly always equated with the audio-lingual method of the sixties, defined as habit-formation unless the teacher gave the students at the end of the lesson the appropriate rule.The second main difference between these two approaches is regarding the steps or procedures of each one. Whereas the deductive approach begins with the step of introducing rules or principles, the inductive approach begins with language context involving application of such rules. In the deductive sequence, ideas proceed from generalizations, principles, rules, laws, propositions, or theories to specific applications. The deductive sequence involves presenting generalization and then seeking or providing examples as Younie (1974) states.The third difference is related to what is explicit and implicit of knowledge or grammar through the teaching-learning process. Donate and Adair-Hauck (1992) relate between deductive approach and explicit explanations by the teacher, and also between modalities of inductive approaches and implicit learning by the student. In a comparison of explicit and implicit teaching strategies, Chaudron (1988) points at the large number of product-studies that have investigated the effects of explicit versus implicit grammar instruction on achievement calling the implicit approach "pattern practice or inductive". In a follow-up study, however, Scott (1990) defines the explicit strategy as the " deliberate study of a grammar rule, either by deductive analysis or inductive analogy."Littlewood's (1975) viewpoint is that the approach that makes the grammar explicit is one of these two ways: 1) when the rule is regarded as a summary of behavior, which comes after presenting a piece of language, and may be after practicing it for a time. 2) when "command of the rule through explanation is regarded as the starting-point for language use", but "it does not exclude using inductive classroom techniques", which means that the grammar explicit can come through the two approaches.Age is the fourth difference or controversial issue discussed by scholars. Rivers (1975) finds the use of the deductive approach most useful for mature, well-motivated student, or for adult student in intensive courses, and finds the inductive approach more appropriate for young language learners. In fact, we don't know the exact ages suggested by Rivers who recommends using age as a factor of choice between the two approaches.But time is the fifth difference, which distinguishes between the two approaches. Younie (1974) hypothesizes that the deductive approach is faster and can be an efficient way to teach large numbers of facts and concretes. We agree with Younie that "the deductive approach sticks directly to the point, and so it saves time." In other words, explaining the offered rules or generalizations takes less time than leaving them to be elicited by the learners themselves. Therefore, the learners have more time for practice or application.The sixth different factor between the deductive and the inductive approaches is student involvement. It is available when teaching inductively but passive rather active when teaching deductively (Shaffer 1989). This conclusion is also given by other researchers or teachers who see that in the deductive approach the teacher explanation in a classroom often minimizes student involvement and interaction. But in the inductive approach students are more actively involved in the learning process, rather than simply passive recipients.The seventh difference or controversial factor is related to the terms "easy" or simple and "difficult" or complex. The similarity and dissimilarity between the rules in the first language and the rules in the foreign language should be taken into consideration Traditionally, deductive approach is used to teach grammar because it is easy to control, and efficient, but it becomes boring when used repeatedly. Inductive approach, on the other hand, is rather demanding and rewarding, but it needs more time and more effort to control. Fischer (1979) comes to the criteria that if the foreign language grammar rule is simpler than the native language rule, then an inductive approach is the most appropriate; if the foreign language of equal or greater complexity than the native language rule, a deductive approach is to be preferred.2. MethodologyIt is noticed that teachers of English as a foreign language (EFL) often tend to use a deductive approach in teaching parts of speech or grammatical structures, that is, by presenting rules before giving examples. But those who want their students to be creative through their deep thinking tend to use an inductive approach, that is, by presenting examples and asking the students to induce rules by themselves. We, as teachers of EFL as well as researchers, tend to use both approaches eclectically according to content or goals or situation.2.1 Questions of the StudyThis empirical study focuses on the effects of the deductive and inductive approaches of teaching the passive and the active voice for university students as learners of EFL. The deductive approach is based on providing the learners with rules and explanation with examples. But the inductive approach is based on giving examples without providing the learners with rules where they should induce such rules by themselves. The questions of this study are as follows:A. Is there a significant difference between the results of the students taught the active and the passive voice by the deductive approach and those taught by the inductive approach?B. Is there a significant difference between the results of the classes taught the active and the passive voice by the deductive approach?C. Is there a significant difference between the results of the classes taught the active and the passive voice by the inductive approach?2.2 ParticipantsThis study was conducted in two universities in Jordan: Al-Balqa' Applied University and Jerash Private University. Three classes (sections) of students shared in the study. Two classes from Amman Faculty of Engineering Technology in the first university and one class from the Faculty of Arts (English Department) in the second university. The first class consists of freshman students studying English skills 99 (Elementary English Course); the second class consists of junior students studying English skills 102 (Intermediate English course); and the third class consists of freshman students studying English skills 101 (Pre-intermediate English course). All the students of the three classes studied the active and the passive voice during the secondary stage when they were secondary students.The students of each class were divided randomly into two groups: one group was taught the passive and the active voice by "deductive approach" and the other group by "inductive approach", so we call them "deductive group" and "inductive group". Those who were taught deductively were exposed to specific grammatical rules where they paid conscious attention to language so as to understand such rules. But those who were taught inductively were given examples without being exposed to such rules. Instead, they were left to induce the rules by themselves.All together, ninety-three students from the three classes in the two Jordanian universities participated. The three classes were divided randomly into six groups. The age of the students ranged from eighteen to twenty. Two teachers who are the researchers of this study participated in the study. It should be noticed that two students didn't perform the posttest, and so they were not involved in the results.3.TestingA pre-test was used as a means of feasible evaluation. The participants completed the pretest a few days before being taught two lessons about the active and the passive voice. One group was taught deductively, and the other group inductively. A posttest was completed by the participants about one week after the instructional lessons. All the pretest and posttest exams completed by the three classes took place during timetabled university lecture hours. The version used as a pretest or as a posttest consisted of two main questions: the first was a multiple-choice question where the participants answered twenty items by circling a, b, c or d that represents the best answer (distracter) and the second consisted of twenty items and was about changing the active voice sentences into the passive voice wherever possible. The full mark for the first question was 40 marks whereas it was 60 marks for the second question.4.Conclusion and DiscussionThe statistical results of this study showed that students in the deductive group made significant better gains than those in the inductive group on the use of the passive and the active voice. These results came to support Ausubel (1974) and Carrol (1964) whose idea is that since adults are endowed with a cognitive network enabling them to understand abstract concepts, teachers should speed up the language acquisitionby giving the learners explicit rules in a deductive learning framework. Similar results were given by Erlam (2003) revealing a significant advantage for the deductive instruction group. The study highlighted the difficulty of designing language measures that access implicit language knowledge.The results which showed a greater effect for deductive than for inductive instruction made this study in contrast to ideas in papers for researchers such as Dulay and Burt (1973) and Krashen (1980) who believed that teachers could provide their students with comprehensive input without a need for explicit rules. We noticed that the deductive approach groups showed that they were able to apply the rules immediately after given written questions and their answers were approximately accurate whereas the inductive approach group needed more time to answer the questions during the lessons.It may be argued that students are not involved enough when a deductive approach is used, but this is up to the teachers who can make their involvement more through discussing exercises with the class, giving them enough time to think deeply before choosing the most appropriate answer. This minimizes the role of the teacher, which is well-known as the center of the class when the traditional deductive approach is used. The conclusion of the study makes us agree with the hypothesis saying that when teaching grammar for the sake of grammar, the deductive approach helps more than the inductive approach. We can also claim that writing all the rules on the board, giving the model answers of the exercises and discussing the differences and similarities with the class led to successful lesson taught deductively.This study proposes both approaches can be used in the teaching-learning processes, but before teaching the active and passive voice, it seemed that the deductive approach was more appropriate because the nature of the content is based on the grammatical rules of the active and the passive voice. But in other cases, particularly, when the teaching-learning process of grammar is complex some improvements might be needed, such as introducing concepts using a combination of both deductive and inductive approaches and reviewing patterns so as to avoid an entirely linear presentation (Schrampfer and Spack, 2005). Regarding the problem that applying rules indicates that students may not in fact fully understand the concepts involved where the deductive approach tends to emphasize grammar at the expense of meaning and to promote passive rather than active participation (Shaffer), we were able to solve such a problem by asking the students questions related to the meaning of active and passive sentences and why or when should we use one of them and not the other so as to keep the better meaning.Among other reasons behind getting higher marks by the deductive group is that the deductive group were able to get more feedback when comparing their answers with the teachers model answers on one hand and with the given rules on the other hand. We agree with Bluedorn, (1998) that the deductive method is effective to the degree it is clear, comprehensive and digestible, and Rivers (1975), who finds the use of the deductive approach most useful for mature, well-motivated students, or for adult students in intensive courses.。
机器学习与人工智能领域中常用的英语词汇1.General Concepts (基础概念)•Artificial Intelligence (AI) - 人工智能1)Artificial Intelligence (AI) - 人工智能2)Machine Learning (ML) - 机器学习3)Deep Learning (DL) - 深度学习4)Neural Network - 神经网络5)Natural Language Processing (NLP) - 自然语言处理6)Computer Vision - 计算机视觉7)Robotics - 机器人技术8)Speech Recognition - 语音识别9)Expert Systems - 专家系统10)Knowledge Representation - 知识表示11)Pattern Recognition - 模式识别12)Cognitive Computing - 认知计算13)Autonomous Systems - 自主系统14)Human-Machine Interaction - 人机交互15)Intelligent Agents - 智能代理16)Machine Translation - 机器翻译17)Swarm Intelligence - 群体智能18)Genetic Algorithms - 遗传算法19)Fuzzy Logic - 模糊逻辑20)Reinforcement Learning - 强化学习•Machine Learning (ML) - 机器学习1)Machine Learning (ML) - 机器学习2)Artificial Neural Network - 人工神经网络3)Deep Learning - 深度学习4)Supervised Learning - 有监督学习5)Unsupervised Learning - 无监督学习6)Reinforcement Learning - 强化学习7)Semi-Supervised Learning - 半监督学习8)Training Data - 训练数据9)Test Data - 测试数据10)Validation Data - 验证数据11)Feature - 特征12)Label - 标签13)Model - 模型14)Algorithm - 算法15)Regression - 回归16)Classification - 分类17)Clustering - 聚类18)Dimensionality Reduction - 降维19)Overfitting - 过拟合20)Underfitting - 欠拟合•Deep Learning (DL) - 深度学习1)Deep Learning - 深度学习2)Neural Network - 神经网络3)Artificial Neural Network (ANN) - 人工神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Autoencoder - 自编码器9)Generative Adversarial Network (GAN) - 生成对抗网络10)Transfer Learning - 迁移学习11)Pre-trained Model - 预训练模型12)Fine-tuning - 微调13)Feature Extraction - 特征提取14)Activation Function - 激活函数15)Loss Function - 损失函数16)Gradient Descent - 梯度下降17)Backpropagation - 反向传播18)Epoch - 训练周期19)Batch Size - 批量大小20)Dropout - 丢弃法•Neural Network - 神经网络1)Neural Network - 神经网络2)Artificial Neural Network (ANN) - 人工神经网络3)Deep Neural Network (DNN) - 深度神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Feedforward Neural Network - 前馈神经网络9)Multi-layer Perceptron (MLP) - 多层感知器10)Radial Basis Function Network (RBFN) - 径向基函数网络11)Hopfield Network - 霍普菲尔德网络12)Boltzmann Machine - 玻尔兹曼机13)Autoencoder - 自编码器14)Spiking Neural Network (SNN) - 脉冲神经网络15)Self-organizing Map (SOM) - 自组织映射16)Restricted Boltzmann Machine (RBM) - 受限玻尔兹曼机17)Hebbian Learning - 海比安学习18)Competitive Learning - 竞争学习19)Neuroevolutionary - 神经进化20)Neuron - 神经元•Algorithm - 算法1)Algorithm - 算法2)Supervised Learning Algorithm - 有监督学习算法3)Unsupervised Learning Algorithm - 无监督学习算法4)Reinforcement Learning Algorithm - 强化学习算法5)Classification Algorithm - 分类算法6)Regression Algorithm - 回归算法7)Clustering Algorithm - 聚类算法8)Dimensionality Reduction Algorithm - 降维算法9)Decision Tree Algorithm - 决策树算法10)Random Forest Algorithm - 随机森林算法11)Support Vector Machine (SVM) Algorithm - 支持向量机算法12)K-Nearest Neighbors (KNN) Algorithm - K近邻算法13)Naive Bayes Algorithm - 朴素贝叶斯算法14)Gradient Descent Algorithm - 梯度下降算法15)Genetic Algorithm - 遗传算法16)Neural Network Algorithm - 神经网络算法17)Deep Learning Algorithm - 深度学习算法18)Ensemble Learning Algorithm - 集成学习算法19)Reinforcement Learning Algorithm - 强化学习算法20)Metaheuristic Algorithm - 元启发式算法•Model - 模型1)Model - 模型2)Machine Learning Model - 机器学习模型3)Artificial Intelligence Model - 人工智能模型4)Predictive Model - 预测模型5)Classification Model - 分类模型6)Regression Model - 回归模型7)Generative Model - 生成模型8)Discriminative Model - 判别模型9)Probabilistic Model - 概率模型10)Statistical Model - 统计模型11)Neural Network Model - 神经网络模型12)Deep Learning Model - 深度学习模型13)Ensemble Model - 集成模型14)Reinforcement Learning Model - 强化学习模型15)Support Vector Machine (SVM) Model - 支持向量机模型16)Decision Tree Model - 决策树模型17)Random Forest Model - 随机森林模型18)Naive Bayes Model - 朴素贝叶斯模型19)Autoencoder Model - 自编码器模型20)Convolutional Neural Network (CNN) Model - 卷积神经网络模型•Dataset - 数据集1)Dataset - 数据集2)Training Dataset - 训练数据集3)Test Dataset - 测试数据集4)Validation Dataset - 验证数据集5)Balanced Dataset - 平衡数据集6)Imbalanced Dataset - 不平衡数据集7)Synthetic Dataset - 合成数据集8)Benchmark Dataset - 基准数据集9)Open Dataset - 开放数据集10)Labeled Dataset - 标记数据集11)Unlabeled Dataset - 未标记数据集12)Semi-Supervised Dataset - 半监督数据集13)Multiclass Dataset - 多分类数据集14)Feature Set - 特征集15)Data Augmentation - 数据增强16)Data Preprocessing - 数据预处理17)Missing Data - 缺失数据18)Outlier Detection - 异常值检测19)Data Imputation - 数据插补20)Metadata - 元数据•Training - 训练1)Training - 训练2)Training Data - 训练数据3)Training Phase - 训练阶段4)Training Set - 训练集5)Training Examples - 训练样本6)Training Instance - 训练实例7)Training Algorithm - 训练算法8)Training Model - 训练模型9)Training Process - 训练过程10)Training Loss - 训练损失11)Training Epoch - 训练周期12)Training Batch - 训练批次13)Online Training - 在线训练14)Offline Training - 离线训练15)Continuous Training - 连续训练16)Transfer Learning - 迁移学习17)Fine-Tuning - 微调18)Curriculum Learning - 课程学习19)Self-Supervised Learning - 自监督学习20)Active Learning - 主动学习•Testing - 测试1)Testing - 测试2)Test Data - 测试数据3)Test Set - 测试集4)Test Examples - 测试样本5)Test Instance - 测试实例6)Test Phase - 测试阶段7)Test Accuracy - 测试准确率8)Test Loss - 测试损失9)Test Error - 测试错误10)Test Metrics - 测试指标11)Test Suite - 测试套件12)Test Case - 测试用例13)Test Coverage - 测试覆盖率14)Cross-Validation - 交叉验证15)Holdout Validation - 留出验证16)K-Fold Cross-Validation - K折交叉验证17)Stratified Cross-Validation - 分层交叉验证18)Test Driven Development (TDD) - 测试驱动开发19)A/B Testing - A/B 测试20)Model Evaluation - 模型评估•Validation - 验证1)Validation - 验证2)Validation Data - 验证数据3)Validation Set - 验证集4)Validation Examples - 验证样本5)Validation Instance - 验证实例6)Validation Phase - 验证阶段7)Validation Accuracy - 验证准确率8)Validation Loss - 验证损失9)Validation Error - 验证错误10)Validation Metrics - 验证指标11)Cross-Validation - 交叉验证12)Holdout Validation - 留出验证13)K-Fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation - 留一法交叉验证16)Validation Curve - 验证曲线17)Hyperparameter Validation - 超参数验证18)Model Validation - 模型验证19)Early Stopping - 提前停止20)Validation Strategy - 验证策略•Supervised Learning - 有监督学习1)Supervised Learning - 有监督学习2)Label - 标签3)Feature - 特征4)Target - 目标5)Training Labels - 训练标签6)Training Features - 训练特征7)Training Targets - 训练目标8)Training Examples - 训练样本9)Training Instance - 训练实例10)Regression - 回归11)Classification - 分类12)Predictor - 预测器13)Regression Model - 回归模型14)Classifier - 分类器15)Decision Tree - 决策树16)Support Vector Machine (SVM) - 支持向量机17)Neural Network - 神经网络18)Feature Engineering - 特征工程19)Model Evaluation - 模型评估20)Overfitting - 过拟合21)Underfitting - 欠拟合22)Bias-Variance Tradeoff - 偏差-方差权衡•Unsupervised Learning - 无监督学习1)Unsupervised Learning - 无监督学习2)Clustering - 聚类3)Dimensionality Reduction - 降维4)Anomaly Detection - 异常检测5)Association Rule Learning - 关联规则学习6)Feature Extraction - 特征提取7)Feature Selection - 特征选择8)K-Means - K均值9)Hierarchical Clustering - 层次聚类10)Density-Based Clustering - 基于密度的聚类11)Principal Component Analysis (PCA) - 主成分分析12)Independent Component Analysis (ICA) - 独立成分分析13)T-distributed Stochastic Neighbor Embedding (t-SNE) - t分布随机邻居嵌入14)Gaussian Mixture Model (GMM) - 高斯混合模型15)Self-Organizing Maps (SOM) - 自组织映射16)Autoencoder - 自动编码器17)Latent Variable - 潜变量18)Data Preprocessing - 数据预处理19)Outlier Detection - 异常值检测20)Clustering Algorithm - 聚类算法•Reinforcement Learning - 强化学习1)Reinforcement Learning - 强化学习2)Agent - 代理3)Environment - 环境4)State - 状态5)Action - 动作6)Reward - 奖励7)Policy - 策略8)Value Function - 值函数9)Q-Learning - Q学习10)Deep Q-Network (DQN) - 深度Q网络11)Policy Gradient - 策略梯度12)Actor-Critic - 演员-评论家13)Exploration - 探索14)Exploitation - 开发15)Temporal Difference (TD) - 时间差分16)Markov Decision Process (MDP) - 马尔可夫决策过程17)State-Action-Reward-State-Action (SARSA) - 状态-动作-奖励-状态-动作18)Policy Iteration - 策略迭代19)Value Iteration - 值迭代20)Monte Carlo Methods - 蒙特卡洛方法•Semi-Supervised Learning - 半监督学习1)Semi-Supervised Learning - 半监督学习2)Labeled Data - 有标签数据3)Unlabeled Data - 无标签数据4)Label Propagation - 标签传播5)Self-Training - 自训练6)Co-Training - 协同训练7)Transudative Learning - 传导学习8)Inductive Learning - 归纳学习9)Manifold Regularization - 流形正则化10)Graph-based Methods - 基于图的方法11)Cluster Assumption - 聚类假设12)Low-Density Separation - 低密度分离13)Semi-Supervised Support Vector Machines (S3VM) - 半监督支持向量机14)Expectation-Maximization (EM) - 期望最大化15)Co-EM - 协同期望最大化16)Entropy-Regularized EM - 熵正则化EM17)Mean Teacher - 平均教师18)Virtual Adversarial Training - 虚拟对抗训练19)Tri-training - 三重训练20)Mix Match - 混合匹配•Feature - 特征1)Feature - 特征2)Feature Engineering - 特征工程3)Feature Extraction - 特征提取4)Feature Selection - 特征选择5)Input Features - 输入特征6)Output Features - 输出特征7)Feature Vector - 特征向量8)Feature Space - 特征空间9)Feature Representation - 特征表示10)Feature Transformation - 特征转换11)Feature Importance - 特征重要性12)Feature Scaling - 特征缩放13)Feature Normalization - 特征归一化14)Feature Encoding - 特征编码15)Feature Fusion - 特征融合16)Feature Dimensionality Reduction - 特征维度减少17)Continuous Feature - 连续特征18)Categorical Feature - 分类特征19)Nominal Feature - 名义特征20)Ordinal Feature - 有序特征•Label - 标签1)Label - 标签2)Labeling - 标注3)Ground Truth - 地面真值4)Class Label - 类别标签5)Target Variable - 目标变量6)Labeling Scheme - 标注方案7)Multi-class Labeling - 多类别标注8)Binary Labeling - 二分类标注9)Label Noise - 标签噪声10)Labeling Error - 标注错误11)Label Propagation - 标签传播12)Unlabeled Data - 无标签数据13)Labeled Data - 有标签数据14)Semi-supervised Learning - 半监督学习15)Active Learning - 主动学习16)Weakly Supervised Learning - 弱监督学习17)Noisy Label Learning - 噪声标签学习18)Self-training - 自训练19)Crowdsourcing Labeling - 众包标注20)Label Smoothing - 标签平滑化•Prediction - 预测1)Prediction - 预测2)Forecasting - 预测3)Regression - 回归4)Classification - 分类5)Time Series Prediction - 时间序列预测6)Forecast Accuracy - 预测准确性7)Predictive Modeling - 预测建模8)Predictive Analytics - 预测分析9)Forecasting Method - 预测方法10)Predictive Performance - 预测性能11)Predictive Power - 预测能力12)Prediction Error - 预测误差13)Prediction Interval - 预测区间14)Prediction Model - 预测模型15)Predictive Uncertainty - 预测不确定性16)Forecast Horizon - 预测时间跨度17)Predictive Maintenance - 预测性维护18)Predictive Policing - 预测式警务19)Predictive Healthcare - 预测性医疗20)Predictive Maintenance - 预测性维护•Classification - 分类1)Classification - 分类2)Classifier - 分类器3)Class - 类别4)Classify - 对数据进行分类5)Class Label - 类别标签6)Binary Classification - 二元分类7)Multiclass Classification - 多类分类8)Class Probability - 类别概率9)Decision Boundary - 决策边界10)Decision Tree - 决策树11)Support Vector Machine (SVM) - 支持向量机12)K-Nearest Neighbors (KNN) - K最近邻算法13)Naive Bayes - 朴素贝叶斯14)Logistic Regression - 逻辑回归15)Random Forest - 随机森林16)Neural Network - 神经网络17)SoftMax Function - SoftMax函数18)One-vs-All (One-vs-Rest) - 一对多(一对剩余)19)Ensemble Learning - 集成学习20)Confusion Matrix - 混淆矩阵•Regression - 回归1)Regression Analysis - 回归分析2)Linear Regression - 线性回归3)Multiple Regression - 多元回归4)Polynomial Regression - 多项式回归5)Logistic Regression - 逻辑回归6)Ridge Regression - 岭回归7)Lasso Regression - Lasso回归8)Elastic Net Regression - 弹性网络回归9)Regression Coefficients - 回归系数10)Residuals - 残差11)Ordinary Least Squares (OLS) - 普通最小二乘法12)Ridge Regression Coefficient - 岭回归系数13)Lasso Regression Coefficient - Lasso回归系数14)Elastic Net Regression Coefficient - 弹性网络回归系数15)Regression Line - 回归线16)Prediction Error - 预测误差17)Regression Model - 回归模型18)Nonlinear Regression - 非线性回归19)Generalized Linear Models (GLM) - 广义线性模型20)Coefficient of Determination (R-squared) - 决定系数21)F-test - F检验22)Homoscedasticity - 同方差性23)Heteroscedasticity - 异方差性24)Autocorrelation - 自相关25)Multicollinearity - 多重共线性26)Outliers - 异常值27)Cross-validation - 交叉验证28)Feature Selection - 特征选择29)Feature Engineering - 特征工程30)Regularization - 正则化2.Neural Networks and Deep Learning (神经网络与深度学习)•Convolutional Neural Network (CNN) - 卷积神经网络1)Convolutional Neural Network (CNN) - 卷积神经网络2)Convolution Layer - 卷积层3)Feature Map - 特征图4)Convolution Operation - 卷积操作5)Stride - 步幅6)Padding - 填充7)Pooling Layer - 池化层8)Max Pooling - 最大池化9)Average Pooling - 平均池化10)Fully Connected Layer - 全连接层11)Activation Function - 激活函数12)Rectified Linear Unit (ReLU) - 线性修正单元13)Dropout - 随机失活14)Batch Normalization - 批量归一化15)Transfer Learning - 迁移学习16)Fine-Tuning - 微调17)Image Classification - 图像分类18)Object Detection - 物体检测19)Semantic Segmentation - 语义分割20)Instance Segmentation - 实例分割21)Generative Adversarial Network (GAN) - 生成对抗网络22)Image Generation - 图像生成23)Style Transfer - 风格迁移24)Convolutional Autoencoder - 卷积自编码器25)Recurrent Neural Network (RNN) - 循环神经网络•Recurrent Neural Network (RNN) - 循环神经网络1)Recurrent Neural Network (RNN) - 循环神经网络2)Long Short-Term Memory (LSTM) - 长短期记忆网络3)Gated Recurrent Unit (GRU) - 门控循环单元4)Sequence Modeling - 序列建模5)Time Series Prediction - 时间序列预测6)Natural Language Processing (NLP) - 自然语言处理7)Text Generation - 文本生成8)Sentiment Analysis - 情感分析9)Named Entity Recognition (NER) - 命名实体识别10)Part-of-Speech Tagging (POS Tagging) - 词性标注11)Sequence-to-Sequence (Seq2Seq) - 序列到序列12)Attention Mechanism - 注意力机制13)Encoder-Decoder Architecture - 编码器-解码器架构14)Bidirectional RNN - 双向循环神经网络15)Teacher Forcing - 强制教师法16)Backpropagation Through Time (BPTT) - 通过时间的反向传播17)Vanishing Gradient Problem - 梯度消失问题18)Exploding Gradient Problem - 梯度爆炸问题19)Language Modeling - 语言建模20)Speech Recognition - 语音识别•Long Short-Term Memory (LSTM) - 长短期记忆网络1)Long Short-Term Memory (LSTM) - 长短期记忆网络2)Cell State - 细胞状态3)Hidden State - 隐藏状态4)Forget Gate - 遗忘门5)Input Gate - 输入门6)Output Gate - 输出门7)Peephole Connections - 窥视孔连接8)Gated Recurrent Unit (GRU) - 门控循环单元9)Vanishing Gradient Problem - 梯度消失问题10)Exploding Gradient Problem - 梯度爆炸问题11)Sequence Modeling - 序列建模12)Time Series Prediction - 时间序列预测13)Natural Language Processing (NLP) - 自然语言处理14)Text Generation - 文本生成15)Sentiment Analysis - 情感分析16)Named Entity Recognition (NER) - 命名实体识别17)Part-of-Speech Tagging (POS Tagging) - 词性标注18)Attention Mechanism - 注意力机制19)Encoder-Decoder Architecture - 编码器-解码器架构20)Bidirectional LSTM - 双向长短期记忆网络•Attention Mechanism - 注意力机制1)Attention Mechanism - 注意力机制2)Self-Attention - 自注意力3)Multi-Head Attention - 多头注意力4)Transformer - 变换器5)Query - 查询6)Key - 键7)Value - 值8)Query-Value Attention - 查询-值注意力9)Dot-Product Attention - 点积注意力10)Scaled Dot-Product Attention - 缩放点积注意力11)Additive Attention - 加性注意力12)Context Vector - 上下文向量13)Attention Score - 注意力分数14)SoftMax Function - SoftMax函数15)Attention Weight - 注意力权重16)Global Attention - 全局注意力17)Local Attention - 局部注意力18)Positional Encoding - 位置编码19)Encoder-Decoder Attention - 编码器-解码器注意力20)Cross-Modal Attention - 跨模态注意力•Generative Adversarial Network (GAN) - 生成对抗网络1)Generative Adversarial Network (GAN) - 生成对抗网络2)Generator - 生成器3)Discriminator - 判别器4)Adversarial Training - 对抗训练5)Minimax Game - 极小极大博弈6)Nash Equilibrium - 纳什均衡7)Mode Collapse - 模式崩溃8)Training Stability - 训练稳定性9)Loss Function - 损失函数10)Discriminative Loss - 判别损失11)Generative Loss - 生成损失12)Wasserstein GAN (WGAN) - Wasserstein GAN(WGAN)13)Deep Convolutional GAN (DCGAN) - 深度卷积生成对抗网络(DCGAN)14)Conditional GAN (c GAN) - 条件生成对抗网络(c GAN)15)Style GAN - 风格生成对抗网络16)Cycle GAN - 循环生成对抗网络17)Progressive Growing GAN (PGGAN) - 渐进式增长生成对抗网络(PGGAN)18)Self-Attention GAN (SAGAN) - 自注意力生成对抗网络(SAGAN)19)Big GAN - 大规模生成对抗网络20)Adversarial Examples - 对抗样本•Encoder-Decoder - 编码器-解码器1)Encoder-Decoder Architecture - 编码器-解码器架构2)Encoder - 编码器3)Decoder - 解码器4)Sequence-to-Sequence Model (Seq2Seq) - 序列到序列模型5)State Vector - 状态向量6)Context Vector - 上下文向量7)Hidden State - 隐藏状态8)Attention Mechanism - 注意力机制9)Teacher Forcing - 强制教师法10)Beam Search - 束搜索11)Recurrent Neural Network (RNN) - 循环神经网络12)Long Short-Term Memory (LSTM) - 长短期记忆网络13)Gated Recurrent Unit (GRU) - 门控循环单元14)Bidirectional Encoder - 双向编码器15)Greedy Decoding - 贪婪解码16)Masking - 遮盖17)Dropout - 随机失活18)Embedding Layer - 嵌入层19)Cross-Entropy Loss - 交叉熵损失20)Tokenization - 令牌化•Transfer Learning - 迁移学习1)Transfer Learning - 迁移学习2)Source Domain - 源领域3)Target Domain - 目标领域4)Fine-Tuning - 微调5)Domain Adaptation - 领域自适应6)Pre-Trained Model - 预训练模型7)Feature Extraction - 特征提取8)Knowledge Transfer - 知识迁移9)Unsupervised Domain Adaptation - 无监督领域自适应10)Semi-Supervised Domain Adaptation - 半监督领域自适应11)Multi-Task Learning - 多任务学习12)Data Augmentation - 数据增强13)Task Transfer - 任务迁移14)Model Agnostic Meta-Learning (MAML) - 与模型无关的元学习(MAML)15)One-Shot Learning - 单样本学习16)Zero-Shot Learning - 零样本学习17)Few-Shot Learning - 少样本学习18)Knowledge Distillation - 知识蒸馏19)Representation Learning - 表征学习20)Adversarial Transfer Learning - 对抗迁移学习•Pre-trained Models - 预训练模型1)Pre-trained Model - 预训练模型2)Transfer Learning - 迁移学习3)Fine-Tuning - 微调4)Knowledge Transfer - 知识迁移5)Domain Adaptation - 领域自适应6)Feature Extraction - 特征提取7)Representation Learning - 表征学习8)Language Model - 语言模型9)Bidirectional Encoder Representations from Transformers (BERT) - 双向编码器结构转换器10)Generative Pre-trained Transformer (GPT) - 生成式预训练转换器11)Transformer-based Models - 基于转换器的模型12)Masked Language Model (MLM) - 掩蔽语言模型13)Cloze Task - 填空任务14)Tokenization - 令牌化15)Word Embeddings - 词嵌入16)Sentence Embeddings - 句子嵌入17)Contextual Embeddings - 上下文嵌入18)Self-Supervised Learning - 自监督学习19)Large-Scale Pre-trained Models - 大规模预训练模型•Loss Function - 损失函数1)Loss Function - 损失函数2)Mean Squared Error (MSE) - 均方误差3)Mean Absolute Error (MAE) - 平均绝对误差4)Cross-Entropy Loss - 交叉熵损失5)Binary Cross-Entropy Loss - 二元交叉熵损失6)Categorical Cross-Entropy Loss - 分类交叉熵损失7)Hinge Loss - 合页损失8)Huber Loss - Huber损失9)Wasserstein Distance - Wasserstein距离10)Triplet Loss - 三元组损失11)Contrastive Loss - 对比损失12)Dice Loss - Dice损失13)Focal Loss - 焦点损失14)GAN Loss - GAN损失15)Adversarial Loss - 对抗损失16)L1 Loss - L1损失17)L2 Loss - L2损失18)Huber Loss - Huber损失19)Quantile Loss - 分位数损失•Activation Function - 激活函数1)Activation Function - 激活函数2)Sigmoid Function - Sigmoid函数3)Hyperbolic Tangent Function (Tanh) - 双曲正切函数4)Rectified Linear Unit (Re LU) - 矩形线性单元5)Parametric Re LU (P Re LU) - 参数化Re LU6)Exponential Linear Unit (ELU) - 指数线性单元7)Swish Function - Swish函数8)Softplus Function - Soft plus函数9)Softmax Function - SoftMax函数10)Hard Tanh Function - 硬双曲正切函数11)Softsign Function - Softsign函数12)GELU (Gaussian Error Linear Unit) - GELU(高斯误差线性单元)13)Mish Function - Mish函数14)CELU (Continuous Exponential Linear Unit) - CELU(连续指数线性单元)15)Bent Identity Function - 弯曲恒等函数16)Gaussian Error Linear Units (GELUs) - 高斯误差线性单元17)Adaptive Piecewise Linear (APL) - 自适应分段线性函数18)Radial Basis Function (RBF) - 径向基函数•Backpropagation - 反向传播1)Backpropagation - 反向传播2)Gradient Descent - 梯度下降3)Partial Derivative - 偏导数4)Chain Rule - 链式法则5)Forward Pass - 前向传播6)Backward Pass - 反向传播7)Computational Graph - 计算图8)Neural Network - 神经网络9)Loss Function - 损失函数10)Gradient Calculation - 梯度计算11)Weight Update - 权重更新12)Activation Function - 激活函数13)Optimizer - 优化器14)Learning Rate - 学习率15)Mini-Batch Gradient Descent - 小批量梯度下降16)Stochastic Gradient Descent (SGD) - 随机梯度下降17)Batch Gradient Descent - 批量梯度下降18)Momentum - 动量19)Adam Optimizer - Adam优化器20)Learning Rate Decay - 学习率衰减•Gradient Descent - 梯度下降1)Gradient Descent - 梯度下降2)Stochastic Gradient Descent (SGD) - 随机梯度下降3)Mini-Batch Gradient Descent - 小批量梯度下降4)Batch Gradient Descent - 批量梯度下降5)Learning Rate - 学习率6)Momentum - 动量7)Adaptive Moment Estimation (Adam) - 自适应矩估计8)RMSprop - 均方根传播9)Learning Rate Schedule - 学习率调度10)Convergence - 收敛11)Divergence - 发散12)Adagrad - 自适应学习速率方法13)Adadelta - 自适应增量学习率方法14)Adamax - 自适应矩估计的扩展版本15)Nadam - Nesterov Accelerated Adaptive Moment Estimation16)Learning Rate Decay - 学习率衰减17)Step Size - 步长18)Conjugate Gradient Descent - 共轭梯度下降19)Line Search - 线搜索20)Newton's Method - 牛顿法•Learning Rate - 学习率1)Learning Rate - 学习率2)Adaptive Learning Rate - 自适应学习率3)Learning Rate Decay - 学习率衰减4)Initial Learning Rate - 初始学习率5)Step Size - 步长6)Momentum - 动量7)Exponential Decay - 指数衰减8)Annealing - 退火9)Cyclical Learning Rate - 循环学习率10)Learning Rate Schedule - 学习率调度11)Warm-up - 预热12)Learning Rate Policy - 学习率策略13)Learning Rate Annealing - 学习率退火14)Cosine Annealing - 余弦退火15)Gradient Clipping - 梯度裁剪16)Adapting Learning Rate - 适应学习率17)Learning Rate Multiplier - 学习率倍增器18)Learning Rate Reduction - 学习率降低19)Learning Rate Update - 学习率更新20)Scheduled Learning Rate - 定期学习率•Batch Size - 批量大小1)Batch Size - 批量大小2)Mini-Batch - 小批量3)Batch Gradient Descent - 批量梯度下降4)Stochastic Gradient Descent (SGD) - 随机梯度下降5)Mini-Batch Gradient Descent - 小批量梯度下降6)Online Learning - 在线学习7)Full-Batch - 全批量8)Data Batch - 数据批次9)Training Batch - 训练批次10)Batch Normalization - 批量归一化11)Batch-wise Optimization - 批量优化12)Batch Processing - 批量处理13)Batch Sampling - 批量采样14)Adaptive Batch Size - 自适应批量大小15)Batch Splitting - 批量分割16)Dynamic Batch Size - 动态批量大小17)Fixed Batch Size - 固定批量大小18)Batch-wise Inference - 批量推理19)Batch-wise Training - 批量训练20)Batch Shuffling - 批量洗牌•Epoch - 训练周期1)Training Epoch - 训练周期2)Epoch Size - 周期大小3)Early Stopping - 提前停止4)Validation Set - 验证集5)Training Set - 训练集6)Test Set - 测试集7)Overfitting - 过拟合8)Underfitting - 欠拟合9)Model Evaluation - 模型评估10)Model Selection - 模型选择11)Hyperparameter Tuning - 超参数调优12)Cross-Validation - 交叉验证13)K-fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation (LOOCV) - 留一法交叉验证16)Grid Search - 网格搜索17)Random Search - 随机搜索18)Model Complexity - 模型复杂度19)Learning Curve - 学习曲线20)Convergence - 收敛3.Machine Learning Techniques and Algorithms (机器学习技术与算法)•Decision Tree - 决策树1)Decision Tree - 决策树2)Node - 节点3)Root Node - 根节点4)Leaf Node - 叶节点5)Internal Node - 内部节点6)Splitting Criterion - 分裂准则7)Gini Impurity - 基尼不纯度8)Entropy - 熵9)Information Gain - 信息增益10)Gain Ratio - 增益率11)Pruning - 剪枝12)Recursive Partitioning - 递归分割13)CART (Classification and Regression Trees) - 分类回归树14)ID3 (Iterative Dichotomiser 3) - 迭代二叉树315)C4.5 (successor of ID3) - C4.5(ID3的后继者)16)C5.0 (successor of C4.5) - C5.0(C4.5的后继者)17)Split Point - 分裂点18)Decision Boundary - 决策边界19)Pruned Tree - 剪枝后的树20)Decision Tree Ensemble - 决策树集成•Random Forest - 随机森林1)Random Forest - 随机森林2)Ensemble Learning - 集成学习3)Bootstrap Sampling - 自助采样4)Bagging (Bootstrap Aggregating) - 装袋法5)Out-of-Bag (OOB) Error - 袋外误差6)Feature Subset - 特征子集7)Decision Tree - 决策树8)Base Estimator - 基础估计器9)Tree Depth - 树深度10)Randomization - 随机化11)Majority Voting - 多数投票12)Feature Importance - 特征重要性13)OOB Score - 袋外得分14)Forest Size - 森林大小15)Max Features - 最大特征数16)Min Samples Split - 最小分裂样本数17)Min Samples Leaf - 最小叶节点样本数18)Gini Impurity - 基尼不纯度19)Entropy - 熵20)Variable Importance - 变量重要性•Support Vector Machine (SVM) - 支持向量机1)Support Vector Machine (SVM) - 支持向量机2)Hyperplane - 超平面3)Kernel Trick - 核技巧4)Kernel Function - 核函数5)Margin - 间隔6)Support Vectors - 支持向量7)Decision Boundary - 决策边界8)Maximum Margin Classifier - 最大间隔分类器9)Soft Margin Classifier - 软间隔分类器10) C Parameter - C参数11)Radial Basis Function (RBF) Kernel - 径向基函数核12)Polynomial Kernel - 多项式核13)Linear Kernel - 线性核14)Quadratic Kernel - 二次核15)Gaussian Kernel - 高斯核16)Regularization - 正则化17)Dual Problem - 对偶问题18)Primal Problem - 原始问题19)Kernelized SVM - 核化支持向量机20)Multiclass SVM - 多类支持向量机•K-Nearest Neighbors (KNN) - K-最近邻1)K-Nearest Neighbors (KNN) - K-最近邻2)Nearest Neighbor - 最近邻3)Distance Metric - 距离度量4)Euclidean Distance - 欧氏距离5)Manhattan Distance - 曼哈顿距离6)Minkowski Distance - 闵可夫斯基距离7)Cosine Similarity - 余弦相似度8)K Value - K值9)Majority Voting - 多数投票10)Weighted KNN - 加权KNN11)Radius Neighbors - 半径邻居12)Ball Tree - 球树13)KD Tree - KD树14)Locality-Sensitive Hashing (LSH) - 局部敏感哈希15)Curse of Dimensionality - 维度灾难16)Class Label - 类标签17)Training Set - 训练集18)Test Set - 测试集19)Validation Set - 验证集20)Cross-Validation - 交叉验证•Naive Bayes - 朴素贝叶斯1)Naive Bayes - 朴素贝叶斯2)Bayes' Theorem - 贝叶斯定理3)Prior Probability - 先验概率4)Posterior Probability - 后验概率5)Likelihood - 似然6)Class Conditional Probability - 类条件概率7)Feature Independence Assumption - 特征独立假设8)Multinomial Naive Bayes - 多项式朴素贝叶斯9)Gaussian Naive Bayes - 高斯朴素贝叶斯10)Bernoulli Naive Bayes - 伯努利朴素贝叶斯11)Laplace Smoothing - 拉普拉斯平滑12)Add-One Smoothing - 加一平滑13)Maximum A Posteriori (MAP) - 最大后验概率14)Maximum Likelihood Estimation (MLE) - 最大似然估计15)Classification - 分类16)Feature Vectors - 特征向量17)Training Set - 训练集18)Test Set - 测试集19)Class Label - 类标签20)Confusion Matrix - 混淆矩阵•Clustering - 聚类1)Clustering - 聚类2)Centroid - 质心3)Cluster Analysis - 聚类分析4)Partitioning Clustering - 划分式聚类5)Hierarchical Clustering - 层次聚类6)Density-Based Clustering - 基于密度的聚类7)K-Means Clustering - K均值聚类8)K-Medoids Clustering - K中心点聚类9)DBSCAN (Density-Based Spatial Clustering of Applications with Noise) - 基于密度的空间聚类算法10)Agglomerative Clustering - 聚合式聚类11)Dendrogram - 系统树图12)Silhouette Score - 轮廓系数13)Elbow Method - 肘部法则14)Clustering Validation - 聚类验证15)Intra-cluster Distance - 类内距离16)Inter-cluster Distance - 类间距离17)Cluster Cohesion - 类内连贯性18)Cluster Separation - 类间分离度19)Cluster Assignment - 聚类分配20)Cluster Label - 聚类标签•K-Means - K-均值1)K-Means - K-均值2)Centroid - 质心3)Cluster - 聚类4)Cluster Center - 聚类中心5)Cluster Assignment - 聚类分配6)Cluster Analysis - 聚类分析7)K Value - K值8)Elbow Method - 肘部法则9)Inertia - 惯性10)Silhouette Score - 轮廓系数11)Convergence - 收敛12)Initialization - 初始化13)Euclidean Distance - 欧氏距离14)Manhattan Distance - 曼哈顿距离15)Distance Metric - 距离度量16)Cluster Radius - 聚类半径17)Within-Cluster Variation - 类内变异18)Cluster Quality - 聚类质量19)Clustering Algorithm - 聚类算法20)Clustering Validation - 聚类验证•Dimensionality Reduction - 降维1)Dimensionality Reduction - 降维2)Feature Extraction - 特征提取3)Feature Selection - 特征选择4)Principal Component Analysis (PCA) - 主成分分析5)Singular Value Decomposition (SVD) - 奇异值分解6)Linear Discriminant Analysis (LDA) - 线性判别分析7)t-Distributed Stochastic Neighbor Embedding (t-SNE) - t-分布随机邻域嵌入8)Autoencoder - 自编码器9)Manifold Learning - 流形学习10)Locally Linear Embedding (LLE) - 局部线性嵌入11)Isomap - 等度量映射12)Uniform Manifold Approximation and Projection (UMAP) - 均匀流形逼近与投影13)Kernel PCA - 核主成分分析14)Non-negative Matrix Factorization (NMF) - 非负矩阵分解15)Independent Component Analysis (ICA) - 独立成分分析16)Variational Autoencoder (VAE) - 变分自编码器17)Sparse Coding - 稀疏编码18)Random Projection - 随机投影19)Neighborhood Preserving Embedding (NPE) - 保持邻域结构的嵌入20)Curvilinear Component Analysis (CCA) - 曲线成分分析•Principal Component Analysis (PCA) - 主成分分析1)Principal Component Analysis (PCA) - 主成分分析2)Eigenvector - 特征向量3)Eigenvalue - 特征值4)Covariance Matrix - 协方差矩阵。
人工智能专业重要词汇表1、A开头的词汇:Artificial General Intelligence/AGI通用人工智能Artificial Intelligence/AI人工智能Association analysis关联分析Attention mechanism注意力机制Attribute conditional independence assumption属性条件独立性假设Attribute space属性空间Attribute value属性值Autoencoder自编码器Automatic speech recognition自动语音识别Automatic summarization自动摘要Average gradient平均梯度Average-Pooling平均池化Accumulated error backpropagation累积误差逆传播Activation Function激活函数Adaptive Resonance Theory/ART自适应谐振理论Addictive model加性学习Adversarial Networks对抗网络Affine Layer仿射层Affinity matrix亲和矩阵Agent代理/ 智能体Algorithm算法Alpha-beta pruningα-β剪枝Anomaly detection异常检测Approximation近似Area Under ROC Curve/AUC R oc 曲线下面积2、B开头的词汇Backpropagation Through Time通过时间的反向传播Backpropagation/BP反向传播Base learner基学习器Base learning algorithm基学习算法Batch Normalization/BN批量归一化Bayes decision rule贝叶斯判定准则Bayes Model Averaging/BMA贝叶斯模型平均Bayes optimal classifier贝叶斯最优分类器Bayesian decision theory贝叶斯决策论Bayesian network贝叶斯网络Between-class scatter matrix类间散度矩阵Bias偏置/ 偏差Bias-variance decomposition偏差-方差分解Bias-Variance Dilemma偏差–方差困境Bi-directional Long-Short Term Memory/Bi-LSTM双向长短期记忆Binary classification二分类Binomial test二项检验Bi-partition二分法Boltzmann machine玻尔兹曼机Bootstrap sampling自助采样法/可重复采样/有放回采样Bootstrapping自助法Break-Event Point/BEP平衡点3、C开头的词汇Calibration校准Cascade-Correlation级联相关Categorical attribute离散属性Class-conditional probability类条件概率Classification and regression tree/CART分类与回归树Classifier分类器Class-imbalance类别不平衡Closed -form闭式Cluster簇/类/集群Cluster analysis聚类分析Clustering聚类Clustering ensemble聚类集成Co-adapting共适应Coding matrix编码矩阵COLT国际学习理论会议Committee-based learning基于委员会的学习Competitive learning竞争型学习Component learner组件学习器Comprehensibility可解释性Computation Cost计算成本Computational Linguistics计算语言学Computer vision计算机视觉Concept drift概念漂移Concept Learning System /CLS概念学习系统Conditional entropy条件熵Conditional mutual information条件互信息Conditional Probability Table/CPT条件概率表Conditional random field/CRF条件随机场Conditional risk条件风险Confidence置信度Confusion matrix混淆矩阵Connection weight连接权Connectionism连结主义Consistency一致性/相合性Contingency table列联表Continuous attribute连续属性Convergence收敛Conversational agent会话智能体Convex quadratic programming凸二次规划Convexity凸性Convolutional neural network/CNN卷积神经网络Co-occurrence同现Correlation coefficient相关系数Cosine similarity余弦相似度Cost curve成本曲线Cost Function成本函数Cost matrix成本矩阵Cost-sensitive成本敏感Cross entropy交叉熵Cross validation交叉验证Crowdsourcing众包Curse of dimensionality维数灾难Cut point截断点Cutting plane algorithm割平面法4、D开头的词汇Data mining数据挖掘Data set数据集Decision Boundary决策边界Decision stump决策树桩Decision tree决策树/判定树Deduction演绎Deep Belief Network深度信念网络Deep Convolutional Generative Adversarial Network/DCGAN深度卷积生成对抗网络Deep learning深度学习Deep neural network/DNN深度神经网络Deep Q-Learning深度Q 学习Deep Q-Network深度Q 网络Density estimation密度估计Density-based clustering密度聚类Differentiable neural computer可微分神经计算机Dimensionality reduction algorithm降维算法Directed edge有向边Disagreement measure不合度量Discriminative model判别模型Discriminator判别器Distance measure距离度量Distance metric learning距离度量学习Distribution分布Divergence散度Diversity measure多样性度量/差异性度量Domain adaption领域自适应Downsampling下采样D-separation (Directed separation)有向分离Dual problem对偶问题Dummy node哑结点Dynamic Fusion动态融合Dynamic programming动态规划5、E开头的词汇Eigenvalue decomposition特征值分解Embedding嵌入Emotional analysis情绪分析Empirical conditional entropy经验条件熵Empirical entropy经验熵Empirical error经验误差Empirical risk经验风险End-to-End端到端Energy-based model基于能量的模型Ensemble learning集成学习Ensemble pruning集成修剪Error Correcting Output Codes/ECOC纠错输出码Error rate错误率Error-ambiguity decomposition误差-分歧分解Euclidean distance欧氏距离Evolutionary computation演化计算Expectation-Maximization期望最大化Expected loss期望损失Exploding Gradient Problem梯度爆炸问题Exponential loss function指数损失函数Extreme Learning Machine/ELM超限学习机6、F开头的词汇Factorization因子分解False negative假负类False positive假正类False Positive Rate/FPR假正例率Feature engineering特征工程Feature selection特征选择Feature vector特征向量Featured Learning特征学习Feedforward Neural Networks/FNN前馈神经网络Fine-tuning微调Flipping output翻转法Fluctuation震荡Forward stagewise algorithm前向分步算法Frequentist频率主义学派Full-rank matrix满秩矩阵Functional neuron功能神经元7、G开头的词汇Gain ratio增益率Game theory博弈论Gaussian kernel function高斯核函数Gaussian Mixture Model高斯混合模型General Problem Solving通用问题求解Generalization泛化Generalization error泛化误差Generalization error bound泛化误差上界Generalized Lagrange function广义拉格朗日函数Generalized linear model广义线性模型Generalized Rayleigh quotient广义瑞利商Generative Adversarial Networks/GAN生成对抗网络Generative Model生成模型Generator生成器Genetic Algorithm/GA遗传算法Gibbs sampling吉布斯采样Gini index基尼指数Global minimum全局最小Global Optimization全局优化Gradient boosting梯度提升Gradient Descent梯度下降Graph theory图论Ground-truth真相/真实8、H开头的词汇Hard margin硬间隔Hard voting硬投票Harmonic mean调和平均Hesse matrix海塞矩阵Hidden dynamic model隐动态模型Hidden layer隐藏层Hidden Markov Model/HMM隐马尔可夫模型Hierarchical clustering层次聚类Hilbert space希尔伯特空间Hinge loss function合页损失函数Hold-out留出法Homogeneous同质Hybrid computing混合计算Hyperparameter超参数Hypothesis假设Hypothesis test假设验证9、I开头的词汇ICML国际机器学习会议Improved iterative scaling/IIS改进的迭代尺度法Incremental learning增量学习Independent and identically distributed/i.i.d.独立同分布Independent Component Analysis/ICA独立成分分析Indicator function指示函数Individual learner个体学习器Induction归纳Inductive bias归纳偏好Inductive learning归纳学习Inductive Logic Programming/ILP归纳逻辑程序设计Information entropy信息熵Information gain信息增益Input layer输入层Insensitive loss不敏感损失Inter-cluster similarity簇间相似度International Conference for Machine Learning/ICML国际机器学习大会Intra-cluster similarity簇内相似度Intrinsic value固有值Isometric Mapping/Isomap等度量映射Isotonic regression等分回归Iterative Dichotomiser迭代二分器10、K开头的词汇Kernel method核方法Kernel trick核技巧Kernelized Linear Discriminant Analysis/KLDA核线性判别分析K-fold cross validation k 折交叉验证/k 倍交叉验证K-Means Clustering K –均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base知识库Knowledge Representation知识表征11、L开头的词汇Label space标记空间Lagrange duality拉格朗日对偶性Lagrange multiplier拉格朗日乘子Laplace smoothing拉普拉斯平滑Laplacian correction拉普拉斯修正Latent Dirichlet Allocation隐狄利克雷分布Latent semantic analysis潜在语义分析Latent variable隐变量Lazy learning懒惰学习Learner学习器Learning by analogy类比学习Learning rate学习率Learning Vector Quantization/LVQ学习向量量化Least squares regression tree最小二乘回归树Leave-One-Out/LOO留一法linear chain conditional random field线性链条件随机场Linear Discriminant Analysis/LDA线性判别分析Linear model线性模型Linear Regression线性回归Link function联系函数Local Markov property局部马尔可夫性Local minimum局部最小Log likelihood对数似然Log odds/logit对数几率Logistic Regression Logistic 回归Log-likelihood对数似然Log-linear regression对数线性回归Long-Short Term Memory/LSTM长短期记忆Loss function损失函数12、M开头的词汇Machine translation/MT机器翻译Macron-P宏查准率Macron-R宏查全率Majority voting绝对多数投票法Manifold assumption流形假设Manifold learning流形学习Margin theory间隔理论Marginal distribution边际分布Marginal independence边际独立性Marginalization边际化Markov Chain Monte Carlo/MCMC马尔可夫链蒙特卡罗方法Markov Random Field马尔可夫随机场Maximal clique最大团Maximum Likelihood Estimation/MLE极大似然估计/极大似然法Maximum margin最大间隔Maximum weighted spanning tree最大带权生成树Max-Pooling最大池化Mean squared error均方误差Meta-learner元学习器Metric learning度量学习Micro-P微查准率Micro-R微查全率Minimal Description Length/MDL最小描述长度Minimax game极小极大博弈Misclassification cost误分类成本Mixture of experts混合专家Momentum动量Moral graph道德图/端正图Multi-class classification多分类Multi-document summarization多文档摘要Multi-layer feedforward neural networks多层前馈神经网络Multilayer Perceptron/MLP多层感知器Multimodal learning多模态学习Multiple Dimensional Scaling多维缩放Multiple linear regression多元线性回归Multi-response Linear Regression /MLR多响应线性回归Mutual information互信息13、N开头的词汇Naive bayes朴素贝叶斯Naive Bayes Classifier朴素贝叶斯分类器Named entity recognition命名实体识别Nash equilibrium纳什均衡Natural language generation/NLG自然语言生成Natural language processing自然语言处理Negative class负类Negative correlation负相关法Negative Log Likelihood负对数似然Neighbourhood Component Analysis/NCA近邻成分分析Neural Machine Translation神经机器翻译Neural Turing Machine神经图灵机Newton method牛顿法NIPS国际神经信息处理系统会议No Free Lunch Theorem/NFL没有免费的午餐定理Noise-contrastive estimation噪音对比估计Nominal attribute列名属性Non-convex optimization非凸优化Nonlinear model非线性模型Non-metric distance非度量距离Non-negative matrix factorization非负矩阵分解Non-ordinal attribute无序属性Non-Saturating Game非饱和博弈Norm范数Normalization归一化Nuclear norm核范数Numerical attribute数值属性14、O开头的词汇Objective function目标函数Oblique decision tree斜决策树Occam’s razor奥卡姆剃刀Odds几率Off-Policy离策略One shot learning一次性学习One-Dependent Estimator/ODE独依赖估计On-Policy在策略Ordinal attribute有序属性Out-of-bag estimate包外估计Output layer输出层Output smearing输出调制法Overfitting过拟合/过配Oversampling过采样15、P开头的词汇Paired t-test成对t 检验Pairwise成对型Pairwise Markov property成对马尔可夫性Parameter参数Parameter estimation参数估计Parameter tuning调参Parse tree解析树Particle Swarm Optimization/PSO粒子群优化算法Part-of-speech tagging词性标注Perceptron感知机Performance measure性能度量Plug and Play Generative Network即插即用生成网络Plurality voting相对多数投票法Polarity detection极性检测Polynomial kernel function多项式核函数Pooling池化Positive class正类Positive definite matrix正定矩阵Post-hoc test后续检验Post-pruning后剪枝potential function势函数Precision查准率/准确率Prepruning预剪枝Principal component analysis/PCA主成分分析Principle of multiple explanations多释原则Prior先验Probability Graphical Model概率图模型Proximal Gradient Descent/PGD近端梯度下降Pruning剪枝Pseudo-label伪标记16、Q开头的词汇Quantized Neural Network量子化神经网络Quantum computer量子计算机Quantum Computing量子计算Quasi Newton method拟牛顿法17、R开头的词汇Radial Basis Function/RBF径向基函数Random Forest Algorithm随机森林算法Random walk随机漫步Recall查全率/召回率Receiver Operating Characteristic/ROC受试者工作特征Rectified Linear Unit/ReLU线性修正单元Recurrent Neural Network循环神经网络Recursive neural network递归神经网络Reference model参考模型Regression回归Regularization正则化Reinforcement learning/RL强化学习Representation learning表征学习Representer theorem表示定理reproducing kernel Hilbert space/RKHS再生核希尔伯特空间Re-sampling重采样法Rescaling再缩放Residual Mapping残差映射Residual Network残差网络Restricted Boltzmann Machine/RBM受限玻尔兹曼机Restricted Isometry Property/RIP限定等距性Re-weighting重赋权法Robustness稳健性/鲁棒性Root node根结点Rule Engine规则引擎Rule learning规则学习18、S开头的词汇Saddle point鞍点Sample space样本空间Sampling采样Score function评分函数Self-Driving自动驾驶Self-Organizing Map/SOM自组织映射Semi-naive Bayes classifiers半朴素贝叶斯分类器Semi-Supervised Learning半监督学习semi-Supervised Support Vector Machine半监督支持向量机Sentiment analysis情感分析Separating hyperplane分离超平面Sigmoid function Sigmoid 函数Similarity measure相似度度量Simulated annealing模拟退火Simultaneous localization and mapping同步定位与地图构建Singular Value Decomposition奇异值分解Slack variables松弛变量Smoothing平滑Soft margin软间隔Soft margin maximization软间隔最大化Soft voting软投票Sparse representation稀疏表征Sparsity稀疏性Specialization特化Spectral Clustering谱聚类Speech Recognition语音识别Splitting variable切分变量Squashing function挤压函数Stability-plasticity dilemma可塑性-稳定性困境Statistical learning统计学习Status feature function状态特征函Stochastic gradient descent随机梯度下降Stratified sampling分层采样Structural risk结构风险Structural risk minimization/SRM结构风险最小化Subspace子空间Supervised learning监督学习/有导师学习support vector expansion支持向量展式Support Vector Machine/SVM支持向量机Surrogat loss替代损失Surrogate function替代函数Symbolic learning符号学习Symbolism符号主义Synset同义词集19、T开头的词汇T-Distribution Stochastic Neighbour Embedding/t-SNE T–分布随机近邻嵌入Tensor张量Tensor Processing Units/TPU张量处理单元The least square method最小二乘法Threshold阈值Threshold logic unit阈值逻辑单元Threshold-moving阈值移动Time Step时间步骤Tokenization标记化Training error训练误差Training instance训练示例/训练例Transductive learning直推学习Transfer learning迁移学习Treebank树库Tria-by-error试错法True negative真负类True positive真正类True Positive Rate/TPR真正例率Turing Machine图灵机Twice-learning二次学习20、U开头的词汇Underfitting欠拟合/欠配Undersampling欠采样Understandability可理解性Unequal cost非均等代价Unit-step function单位阶跃函数Univariate decision tree单变量决策树Unsupervised learning无监督学习/无导师学习Unsupervised layer-wise training无监督逐层训练Upsampling上采样21、V开头的词汇Vanishing Gradient Problem梯度消失问题Variational inference变分推断VC Theory VC维理论Version space版本空间Viterbi algorithm维特比算法Von Neumann architecture冯·诺伊曼架构22、W开头的词汇Wasserstein GAN/WGAN Wasserstein生成对抗网络Weak learner弱学习器Weight权重Weight sharing权共享Weighted voting加权投票法Within-class scatter matrix类内散度矩阵Word embedding词嵌入Word sense disambiguation词义消歧23、Z开头的词汇Zero-data learning零数据学习Zero-shot learning零次学习。
2023年-2024年教师资格之中学英语学科知识与教学能力强化训练试卷B卷附答案单选题(共45题)1、Reading is to the mind__________ food is to the body.A.thatB.whichC.asD.what【答案】 D2、David has tried 3 times to repair the clock.He willtry__________time after having a rest.A.fourB.fourthC.the fourthD.a fourth【答案】 D3、The inductive method differs from the deductive one in that it enables learners to arrive at _______on the basis ofA.generalizationsB.solutionsC.understandingD.decision【答案】 A4、In componential analysis, __________ may be shown as PARENT (x, y) & MALE (x).A.fatherB.motherC.sonD.daughter【答案】 A5、请阅读Passage 1。
完成第小题。
A.African Elephants and the Ivory TradeB.A Bid to Save the ElephantC.The PoachersD.Elephants in Danger【答案】 B6、It was not until he came back_________he knew the police were looking for him.A.whichB.sinceC.thatD.before【答案】 C7、Passage 2A.revive historical termsB.promote company imageC.foster corporate cooperationD.strengthen employee loyalty【答案】 D8、请阅读Passage 2,完成第小题。
统计学习理论的本质:英中文术语对照表来源:张学工译, VN Vapnik原著, 统计学习理论的本质, 清华大学出版社, 2000使用范围:南京师范大学计算机科学与技术学院研究生。
声明:任何人在其出版物使用或者上载到互连网都必须得到译者及出版社的许可。
AdaBoost algorithm (AdaBoost(自举)算法)163admissible structure (容许结构) 95algorithmic complexity (算法复杂度) 10annealed entropy (退火熵) 55ANOVA decomposition (ANOVA分解) 199a posteriori information (后验信息) 120a priori information (先验信息) 120approximately defined operator (近似定义的算子) 230 approximation rate (逼近速率) 98artificial intelligence (人工智能) 13axioms of probability theory (概率理论的公理) 60back propagation method (后向传播方法) 126basic problem of probability theory (概率论的基本问题) 62basic problem of statistics (统计学的基本问题) 63Bayesian approach (贝叶斯方法) 119Bayesian inference (贝叶斯推理) 34bound on the distance to the smallest risk (与最小风险的距离的界) 77 bound on the values of achieved risk (所得风险值的界) 77bounds on generalization ability of a learning machine (学习机器推广能力的界) 76canonical separating hyperplanes (标准分类超平面) 132capacity control problem (容量控制问题) 116cause-effect relation (因果关系) 9choosing the best sparse algebraic polynomial (选择最佳稀疏多项式)117choosing the degree of polynomial (选择多项式阶数) 116 classification error (分类错误) 19codebook (码本) 106complete (Popper's) nonfalsifiability (完全(波普)不可证伪性) 52 compression coefficient (压缩系数) 107consistency of inference (推理的一致性) 36constructive distribution-independent bound on the rate of convergence (构造性的不依赖于分布的收敛速度界) 69convolution of inner production (内积回旋) 140criterion of nonfalsifiability (不可证伪性判据) 47data smoothing problem (数据平滑问题) 209decision-making problem (决策选择问题) 296decision trees (决策树) 7deductive inference (演绎推理) 47density estimation problem (密度估计问题):parametric(Fisher-Wald) setting(参数化(Fisher-Wald)表示) 20nonparametric setting (非参数表示) 28discrepancy (差异) 18discriminant analysis (判别分析) 24discriminant function (判别函数) 25distribution-dependent bound on the rate of convergence (依赖于分布的收敛速度界) 69distribution-independent bound on the rate of convergence (不依赖于分布的收敛速度界) 69ΔΔ-margin separating hyperplane (间隔分类超平面) 132 empirical distribution function (经验分布函数) 28empirical processes (经验过程) 40empirical risk functional (经验风险泛函) 20empirical risk minimization inductive principle (经验风险最小化归纳原则) 20ensemble of support vector machines (支持向量机的组合) 163 entropy of the set of functions (函数集的熵) 42entropy on the set of indicator functions (指示函数集的熵) 42 equivalence classes (等价类) 292estimation of the values of a function at the given points (估计函数在给定点上的值) 292expert systems (专家系统) 7ε-insensitivity (ε不敏感性) 181ε-insensitive loss function (ε不敏感损失函数) 181feature selection problem (特征选择问题) 118function approximation (函数逼近) 98function estimation model (函数估计模型) 17Gaussian (高斯函数) 26generalized Glivenko-Cantelli problem (广义Glivenko-Cantelli问题)66generalized growth function (广义生长函数) 85generator random vectors (随机向量产生器) 17Glivenko-Cantelli problem (Glivenko-Cantelli问题) 66growth function (生长函数) 55Hamming distance (汉明距离) 104handwritten digit recognition (手写数字识别) 146hard threshold vicinity function (硬限邻域函数) 103hard vicinity function (硬领域函数) 269hidden Markov models (隐马尔可夫模型) 7hidden units (隐结点) 101Huber loss function (Huber损失函数) 183ill-posed problems (不适定问题): 9solution by variation method (变分方法解) 236solution by residual method (残差方法解) 236solution by quasi-solution method (拟解方法解) 236 independent trials (独立试验) 62inductive inference (归纳推理) 50inner product in Hilbert space (希尔伯特空间中的内积) 140 integral equations (积分方程):solution for exact determined equations (精确确定的方程的解)237solution for approximately determined equations (近似确定的方程的解) 237kernel function (核函数) 27Kolmogorov-Smirnov distribution (Kolmogorov-Smirnov分布) 87 Kulback-Leibler distance (Kulback-Leibler距离) 32Kuhn-Tücker conditions (库恩-塔克条件) 134Lagrangian multiplier (拉格朗日乘子) 133Lagrangian (拉格朗日函数) 133Laplacian (拉普拉斯函数) 277law of large number in the functional space (泛函空间中的大数定律)41law of large numbers (大数定律) 39law of large numbers in vector space (向量空间中的大数定律) 41 Lie derivatives (Lie导数) 20learning matrices (学习矩阵) 7least-squares method (最小二乘方法) 21least-modulo method (最小模方法) 182linear discriminant function (学习判别函数) 31linearly nonseparable case (线性不可分情况) 135local approximation (局部逼近) 104local risk minimization (局部风险最小化) 103locality parameter (局部性参数) 103loss-function (损失函数):for AdaBoost algorithm (AdaBoost算法的损失函数) 163for density estimation (密度估计的损失函数) 21for logistic regression (逻辑回归的损失函数) 156for pattern recognition (模式识别的损失函数) 21for regression estimation (回归估计的损失函数) 21 madaline(Madaline自适应学习机) 7main principle for small sample size problems (小样本数问题的基本原则) 28maximal margin hyperplane (最大间隔超平面) 131maximum likehood method (最大似然方法) 24McCulloch-Pitts neuron model (McCulloch-Pitts神经元模型) 2 measurements with the additive noise (加性噪声下的测量) 25 metric ε-entropy (ε熵度量) 44minimum description length principle (最小描述长度原则) 104 mixture of normal densities (正态密度的组合) 26National Institute of Standard and Technology (NIST) digit database (美国国家标准技术研究所(NIST)数字数据库) 173neural networks (神经网络) 126non-trivially consistent inference (非平凡一致推理) 36 nonparametric density estimation (非参数密度估计) 27normal discriminant function (正态判别函数) 31one-sided empirical process (单边经验过程) 40optimal separating hyperplane (最优分类超平面) 131overfitting phenomenon (过学习现象) 14parametric methods of density estimation (密度估计的参数方法) 24 partial nonfalsifiability (部分不可证伪性) 51Parzen's windows method (Parzen窗方法) 27pattern recognition problem (模式识别问题) 19perceptron (感知器) 1perceptron's stopping rule (感知器迭代终止规则) 6polynomial approximation of regression (回归的多项式逼近) 116 polynomial machine (多项式机器) 143potential nonfalsifiability (潜在不可证伪性) 53probability measure (概率测度) 59probably approximately correct (PAC) model (可能近似正确(PAC)模型) 13problem of demarcation (区分问题) 49pseudo-dimension (伪维) 90quadratic programming problem (二次规划问题) 133quantization of parameters (参数的量化) 110quasi-solution (拟解) 112radial basis function machine (径向基函数机器) 144random entropy (随机熵) 42radnom string (随机串) 10randomness concept (随机性概念) 10regression estimation problem (回归估计问题) 19regression function (回归函数) 19regularization theory (正则化理论) 9regularized functional (正则化泛函) 9reproducing kernel Hilbert space (再生核希尔伯特空间) 244 residual principle (残差原则) 236rigorous (distribution-dependent) bounds (严格(依赖于分布的)界) 85 risk functional (风险泛函) 18risk minimization from empirical data problem (基于经验数据最小化风险的问题) 20robust estimators (鲁棒估计) 26robust regression (鲁棒回归) 26Rosenblatt's algorithm (Rosenblatt算法) 5set of indicators (指示器集合) 73set of unbounded functions (无界函数集合) 77σ-algebra (σ代数) 60sigmoid function (S型(sigmoid)函数) 125small samples size (小样本数) 93smoothing kernel (平滑核) 100smoothness of functions (函数的平滑性) 100soft threshold vicinity function (软阈值领域函数) 103soft vicinity function (软领域函数) 269soft-margin separating hyperplane (软间隔分类超平面) 135spline function (样条函数):with a finite number of nodes (有限结点的样条函数) 194with an infinite number of nodes (无穷多结点的样条函数) 195 stochastic approximation stopping rule (随机逼近终止规则) 34 stochastic ill-posed problems (随机不适定问题) 113strong mode estimating a probability measure (强方式概率度量估计)63structural risk minimization principle (结构风险最小化原则) 94 structure (结构) 94structure of growth function (生长函数的结构) 79supervisor (训练器) 17support vector machines (支持向量机) 137support vectors (支持向量) 134support vector ANOVA decomposition (支持向量ANOVA分解) 199 SVM n approximation of the logistic regression (逻辑回归的SVM n逼近) 155SVM density estimator (SVM密度估计) 246SVM conditional probability estimator (SVM条件概率估计) 257 tails of distribution (分布的尾部) 78tangent distance (切距) 149training set (训练集) 18transductive inference (转导推理) 293Turing-Church thesis (Turing-Church理论) 177two layer neural networks machine (两层神经网络机器) 145two-sided empirical process (双边经验过程) 40U.S. Postal Service digit database (美国邮政数字数据库) 173 uniform one-sided convergence (一致单边收敛) 39uniform two-sided convergence (一致双边收敛) 39VC dimension of a set of indictor functions (指示函数集的VC维) 79 VC dimension of a set of real functions (实函数集的VC维) 81VC entropy (VC熵) 44VC subgraph (VC子图) 90vicinal risk minimization method(领域风险最小化) 268vicinity kernel(领域核):273one-vicinal kernel (单领域核) 273two-vicinal kernel (双领域核) 273VRM method (VRM方法):for pattern recognition (模式识别的VRM方法) 273for regression estimation (回归估计的VRM方法) 282for density estimation (密度估计的VRM方法) 284for conditional probability estimation (条件概率估计的VRM方法) 285for conditional density estimation (条件密度估计的VRM方法)286weak mode estimating a probability measure (弱方式概率度量估计)63weight decay procedure (权值衰减过程) 102。
人工智能原理_北京大学中国大学mooc课后章节答案期末考试题库2023年1.Turing Test is designed to provide what kind of satisfactory operationaldefinition?图灵测试旨在给予哪一种令人满意的操作定义?答案:machine intelligence 机器智能2.Thinking the differences between agent functions and agent programs, selectcorrect statements from following ones.考虑智能体函数与智能体程序的差异,从下列陈述中选择正确的答案。
答案:An agent program implements an agent function.一个智能体程序实现一个智能体函数。
3.There are two main kinds of formulation for 8-queens problem. Which of thefollowing one is the formulation that starts with all 8 queens on the boardand moves them around?有两种8皇后问题的形式化方式。
“初始时8个皇后都放在棋盘上,然后再进行移动”属于哪一种形式化方式?答案:Complete-state formulation 全态形式化4.What kind of knowledge will be used to describe how a problem is solved?哪种知识可用于描述如何求解问题?答案:Procedural knowledge 过程性知识5.Which of the following is used to discover general facts from trainingexamples?下列中哪个用于训练样本中发现一般的事实?答案:Inductive learning 归纳学习6.Which statement best describes the task of “classification” in machinelearning?哪一个是机器学习中“分类”任务的正确描述?答案:To assign a category to each item. 为每个项目分配一个类别。
模拟ai英文面试题目及答案模拟AI英文面试题目及答案1. 题目: What is the difference between a neural network anda deep learning model?答案: A neural network is a set of algorithms modeled loosely after the human brain that are designed to recognize patterns. A deep learning model is a neural network with multiple layers, allowing it to learn more complex patterns and features from data.2. 题目: Explain the concept of 'overfitting' in machine learning.答案: Overfitting occurs when a machine learning model learns the training data too well, including its noise and outliers, resulting in poor generalization to new, unseen data.3. 题目: What is the role of a 'bias' in an AI model?答案: Bias in an AI model refers to the systematic errors introduced by the model during the learning process. It can be due to the choice of model, the training data, or the algorithm's assumptions, and it can lead to unfair or inaccurate predictions.4. 题目: Describe the importance of data preprocessing in AI.答案: Data preprocessing is crucial in AI as it involves cleaning, transforming, and reducing the data to a suitableformat for the model to learn effectively. Proper preprocessing can significantly improve the performance of AI models by ensuring that the input data is relevant, accurate, and free from noise.5. 题目: How does reinforcement learning differ from supervised learning?答案: Reinforcement learning is a type of machine learning where an agent learns to make decisions by performing actions in an environment to maximize a reward signal. It differs from supervised learning, where the model learns from labeled data to predict outcomes based on input features.6. 题目: What is the purpose of a 'convolutional neural network' (CNN)?答案: A convolutional neural network (CNN) is a type of deep learning model that is particularly effective for processing data with a grid-like topology, such as images. CNNs use convolutional layers to automatically and adaptively learn spatial hierarchies of features from input images.7. 题目: Explain the concept of 'feature extraction' in AI.答案: Feature extraction in AI is the process of identifying and extracting relevant pieces of information from the raw data. It is a crucial step in many machine learning algorithms, as it helps to reduce the dimensionality of the data and to focus on the most informative aspects that can be used to make predictions or classifications.8. 题目: What is the significance of 'gradient descent' in training AI models?答案: Gradient descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In the context of AI, it is used to minimize the loss function of a model, thus refining the model's parameters to improve its accuracy.9. 题目: How does 'transfer learning' work in AI?答案: Transfer learning is a technique where a pre-trained model is used as the starting point for learning a new task. It leverages the knowledge gained from one problem to improve performance on a different but related problem, reducing the need for large amounts of labeled data and computational resources.10. 题目: What is the role of 'regularization' in preventing overfitting?答案: Regularization is a technique used to prevent overfitting by adding a penalty term to the loss function, which discourages overly complex models. It helps to control the model's capacity, forcing it to generalize better to new data by not fitting too closely to the training data.。
Independent learning is a crucial aspect of education that empowers students to take charge of their own learning process.It is a skill that is not only essential for academic success but also for personal and professional development throughout ones life.Here are some key points that highlight the importance of independent learning:1.SelfDirected Learning:Independent learning allows students to set their own goals and pace of learning.This selfdirected approach fosters a sense of ownership and motivation, which can lead to a deeper understanding and retention of knowledge.2.Critical Thinking Skills:When students are responsible for their own learning,they are required to think critically about the material they are studying.This helps in developing analytical skills,problemsolving abilities,and the capacity to evaluate information critically.3.Adaptability:In a rapidly changing world,the ability to learn and adapt is essential. Independent learners are better equipped to adjust to new situations and continue learning throughout their lives,which is crucial for personal and professional growth.4.Time Management:Independent learning requires students to manage their time effectively.They must prioritize tasks,set deadlines,and allocate time for studying, which are skills that are invaluable in both academic and professional settings.5.Resourcefulness:Independent learners must know how to find and utilize resources effectively.This includes using libraries,online databases,and other educational tools to gather information and enhance their understanding of a subject.6.Lifelong Learning:The concept of lifelong learning is becoming increasingly important in todays society.Independent learners are more likely to continue seeking knowledge and skills beyond their formal education,which can lead to personal fulfillment and professional advancement.7.SelfConfidence:Successfully navigating the challenges of independent learning can boost a students selfconfidence.This confidence can translate into other areas of life, such as taking on leadership roles or pursuing new career opportunities.8.Resilience:Independent learners often face setbacks and must learn to overcome them. This resilience is a valuable trait that can help individuals persevere through challenges in both their personal and professional lives.9.Creativity:When students are not confined to a strict curriculum,they have thefreedom to explore topics that interest them,which can lead to creative thinking and innovative problemsolving.10.Personalized Learning Experience:Each student has unique learning needs and preferences.Independent learning allows for a more personalized approach,where students can focus on areas they are passionate about or where they need additional support.In conclusion,independent learning is not just about acquiring knowledge it is about developing a set of skills that are essential for success in the modern world.It prepares students to be proactive,selfreliant,and adaptable individuals who can contribute positively to society.。
正确答案:A、B 你选对了Quizzes for Chapter 11 单选(1 分)图灵测试旨在给予哪一种令人满意的操作定义得分/ 5 多选(1 分)选择下列计算机系统中属于人工智能的实例得分/总分总分A. Web搜索引擎A. 人类思考B.超市条形码扫描器B. 人工智能C.声控电话菜单该题无法得分/1.00C.机器智能 1.00/1.00D.智能个人助理该题无法得分/1.00正确答案:A、D 你错选为C、DD.机器动作正确答案: C 你选对了6 多选(1 分)选择下列哪些是人工智能的研究领域得分/总分2 多选(1 分)选择以下关于人工智能概念的正确表述得分/总分A.人脸识别0.33/1.00A. 人工智能旨在创造智能机器该题无法得分/1.00B.专家系统0.33/1.00B. 人工智能是研究和构建在给定环境下表现良好的智能体程序该题无法得分/1.00C.图像理解C.人工智能将其定义为人类智能体的研究该题无法D.分布式计算得分/1.00正确答案:A、B、C 你错选为A、BD.人工智能是为了开发一类计算机使之能够完成通7 多选(1 分)考察人工智能(AI) 的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分常由人类所能做的事该题无法得分/1.00正确答案:A、B、D 你错选为A、B、C、DA.以竞技水平玩德州扑克游戏0.33/1.003 多选(1 分)如下学科哪些是人工智能的基础?得分/总分B.打一场像样的乒乓球比赛A. 经济学0.25/1.00C.在Web 上购买一周的食品杂货0.33/1.00B. 哲学0.25/1.00D.在市场上购买一周的食品杂货C.心理学0.25/1.00正确答案:A、B、C 你错选为A、CD.数学0.25/1.008 填空(1 分)理性指的是一个系统的属性,即在_________的环境下正确答案:A、B、C、D 你选对了做正确的事。
得分/总分正确答案:已知4 多选(1 分)下列陈述中哪些是描述强AI (通用AI )的正确答案?得1 单选(1 分)图灵测试旨在给予哪一种令人满意的操作定义得分/ 分/总分总分A. 指的是一种机器,具有将智能应用于任何问题的A.人类思考能力0.50/1.00B.人工智能B. 是经过适当编程的具有正确输入和输出的计算机,因此有与人类同样判断力的头脑0.50/1.00C.机器智能 1.00/1.00C.指的是一种机器,仅针对一个具体问题D.机器动作正确答案: C 你选对了D.其定义为无知觉的计算机智能,或专注于一个狭2 多选(1 分)选择以下关于人工智能概念的正确表述得分/总分窄任务的AIA. 人工智能旨在创造智能机器该题无法得分/1.00B.专家系统0.33/1.00B. 人工智能是研究和构建在给定环境下表现良好的C.图像理解智能体程序该题无法得分/1.00D.分布式计算C.人工智能将其定义为人类智能体的研究该题无法正确答案:A、B、C 你错选为A、B得分/1.00 7 多选(1 分)考察人工智能(AI) 的一些应用,去发现目前下列哪些任务可以通过AI 来解决得分/总分D.人工智能是为了开发一类计算机使之能够完成通A.以竞技水平玩德州扑克游戏0.33/1.00常由人类所能做的事该题无法得分/1.00正确答案:A、B、D 你错选为A、B、C、DB.打一场像样的乒乓球比赛3 多选(1 分)如下学科哪些是人工智能的基础?得分/总分C.在Web 上购买一周的食品杂货0.33/1.00A. 经济学0.25/1.00D.在市场上购买一周的食品杂货B. 哲学0.25/1.00正确答案:A、B、C 你错选为A、CC.心理学0.25/1.008 填空(1 分)理性指的是一个系统的属性,即在_________的环境下D.数学0.25/1.00 做正确的事。
INDUCTIVE LEARNING SUPPORT FOR DECISION MAKINGVassilis S.Moustakis,DSc.and George Potamias,PhDDepartment of Production and Management EngineeringTechnical University of Crete,Chania,GreeceandInstitute of Computer Science,FORTH,Heraklion,GreeceE-MAIL:moustaki@ics.forth.grExtended AbstractIn this paper we review the applicability of representative inductive machine learning approaches in multicriteria decision making.We limit our review to four systems.We use SICLA and KBG as representative conceptual clustering systems and ID3and CN2as representative learning from examples systems.We demonstrate our results by way of two real world decision making exemplars.Thefirst exemplar concerns the evaluation of retail outlets[15].The second exemplar concerns venture capital assessment[16].We discuss the conditions under which inductive learning methodologies can be effectively implemented to support decision making.Inductive machine learning was pioneered by Michalski[9].It aims at the derivation of knowledge from a set of observations,or facts.In cases where facts are known to belong to a certain class we speak of concept acquisition or learning from examples.In such an instance we target our inquiry towards the derivation of concept identification rules. Rules may be either discriminant or characteristic.When concept classes underlying fact membership are not known we speak of learning from observations,or conceptual clustering. Accordingly,we look forward toward the partitioning of facts into a meaningful and disjoint set of clusters.A cluster represents a“coming together in space and time so that the density of whatever is clustered contrasts with the density around”[6,p.33].Generalization and specialization are essential processes when making inductive inferences.The basic premise characterizing any inductive inference is falsity preservation.The derivation of a hypothesis1H from facts E is falsity preserving in the sense that“if some facts falsify E,then they must also falsify H”[9,p.89].Although inductive machine learning is a rather newfield there are several and successful‘fielded’applications[7,8].Carter and Catlett[2]propose a methodology for credit card assessment using inductive learning techniques.Also,Shaw and Gentry[14] present an approach for company risk assessment that is based on inductive learning.Both applications are exploratory;they,however,stress the potential of inductive learning in decision making support.We maintain that learning is a trait of decision making:“quite often the decision maker is interested infinding out what his weights are or what they should be under different decision circumstances.In this sense,the weights of importance could be considered as desirable outputs rather than independent inputs of an analysis. Weights must be revealed or learned through a careful interactive process”,[17,p.22]-emphasis is ours.In this paper we discuss the methodological issues underlying the application of inductive learning techniques in business decision making.We limit our endeavor to four representative and well-known inductive learning systems,ID3[12,11,13],CN2[5,4],KBG [1]and SICLA[3].These systems are part of the Machine Learning Toolbox[7,18].We explore inductive system suitability by way of three decision making exemplars.We draw our exemplars from retail outlet evaluation and venture capital assessment.We target our inquiry toward the evaluation of pros and cons,concerning the application of the selected inductive learning systems,in real world business decision making.Specifically,our research focuses around the following lines:1.Grouping of alternatives into disjoint cluster groups.We use a Lexicographic Evalu-ation Functional,LEF,criterion to optimize clustering[10].2.Identification of the most significant criteria for either alternative discrimination oralternative characterization.Suppose that we have two alternative courses of action, a1and a2.We are interested in differences between a1and a2,or in what a1and a2 are all about.Furthermore,we present a methodology for inducing criteria weights.23.Identification of relevant and accurate discrimination and recognition rules.We asso-ciate this line with the previous one.4.Identification of the most representative alternative for each decision class.We steerour venture in the direction of deriving a conceptual indexing scheme for alternative courses of action.5.Identification of bias and error resulting from contextual factors.We define contextto represent the decision making environment.Furthermore,we explore the implications of our research in decision making.We place emphasis upon the expert critiquing and case based reasoning paradigms.References[1]G.Bisson.Conceptual clustering in afirst order logic representation.In ECAI’92Proceedings,pages458–462,Wien,Austria,August1992.Wiley.[2]C Carter and J Catlett.Assessing credit card applications using machine learning.IEEE Expert,pages71–79,Fall1987.[3]G.Celeux,E.Diday,aert,Y.Lechevallier,and H.Ralambondrainy.Classifcation au-tomatique des donnees.Dunod Informatique,1989.[4]P Clark and R Boswell.Rule Induction with CN2:Some Recent Improvements.In Proceedingsof the Fifth Working Session on Learning,pages151–163,Porto,Portugal,March1991.Springer Verlag.[5]P Clark and T Niblett.The CN2induction algorithm.Machine Learning,3:261–283,1989.[6]E de Bono.Wordpower.Penguin Books,1977.[7]Y Kodratoff,D Sleeman,M Uszynski,K Gausse,and S Craw.Building a machine learningtoolbox.In B Le Pape and L Steels,editors,Enhancing the Knowledge Engineering Process-Contributions from ESPRIT.Elsevier,1992.[8]P Langley.Areas of applications for machine learning.In Proceedings of thefifth InternationalSymposium on Knowledge Engineering,Sevilla,Spain,1992.3[9]RS.Michalski.A theory and methodology of inductive learning.In RS Michalski,JG Carbonell,and TM Mitchell,editors,Machine Learning:An Artificial Intelligence Approach,chapter4, pages83–132.Tioga,Palo Alto,California,1983.[10]RS.Michalski and RE.Stepp.Learning from observation:conceptual clustering.In RS Michal-ski,JG Carbonell,and TM Mitchell,editors,Machine Learning:An Artificial Intelligence Approach:Volume I,chapter11,pages331–363.Tioga,Palo Alto,California,1983.[11]JR Quinlan.Generating production rules from decision trees.In IJCAI1987,pages304–307,Milan,August1987.Morgan Kaufmann.[12]JR.Quinlan.Decision Trees and Decisionmaking.IEEE Transactions on Systems,Man andCybernetics,20(2):339–347,March/April1990.[13]JR.Quinlan.Decision Trees and Decisionmaking.IEEE TRans.on Systems,Man,and Cyber-netics,20(2):339–345,1990.[14]MJ Shaw and JA Gentry.Inductive learning for risk classification.IEEE Expert,pages47–53,February1990.[15]J.Siskos.Evaluating a system of furniture retails outlets using an interactive ordinal regressionmethod.European Journal of Operational Research,23:179–193,1986.[16]J.Siskos and C.Zopounidis.The evaluation criteria for the venture capital investment activity:an interactive assessment.European Journal of Operational Research,31:304–313,1987.[17]MK Starr and M Zeleny.MCDM:State and future of the arts.In MK Starr and M Zeleny,editors,TIMS Studies in Management Sciences6:Multiple Criteria Decision Making,pages 5–29.North Holland,1977.[18]M Uszynski.Mlt Third Annual Public Report.Public Report D9.3.3,P2154,Alcatel AlsthomReserche,Marcoussis,France,April1992.Contact:Vassilis MoustakisFORTHInstitute of Computer SciencePO Box1385Tel:+30(81)22934671110Heraklion Fax:+30(81)229342Greece Email:moustaki@ics.forth.gr4。