中职数学拓展模块双曲线几何性质(上课)
- 格式:ppt
- 大小:638.50 KB
- 文档页数:12
《双曲线的几何性质》教学设计方案(第一课时)一、教学目标1. 知识与技能:掌握双曲线的几何性质,包括开口方向、焦点位置、离心率等,能够运用双曲线知识解决相关问题。
2. 过程与方法:通过观察、分析、探究双曲线的几何性质,提高观察、分析和解决问题的能力。
3. 情感态度与价值观:培养数学兴趣和探究精神,增强对数学与生活的联系认识。
二、教学重难点1. 教学重点:掌握双曲线的几何性质,如开口方向、焦点位置、离心率等。
2. 教学难点:如何引导学生观察、分析、探究双曲线的几何性质,提高解决问题的能力。
三、教学准备1. 准备教学用具:黑板、白板、投影仪等教学设备,以及双曲线标准图象。
2. 制作课件:包括双曲线标准图象以及相关问题的示例和解答。
3. 搜集资料:收集与双曲线几何性质相关的实际应用案例,用于课堂讲解和讨论。
四、教学过程:本节课是双曲线的几何性质第一课时,是在学生学习了椭圆性质的基础上进行学习的,学习目的是通过类比学习,培养学生自主学习和探究的能力。
为了达成目标,结合本节课内容,我设计如下五个环节:1. 创设情境,引入课题以刘翔跨栏的视频情境为切入点,请学生回想如何计算位移与时间。
将刘翔百米跨栏比赛的视频进行回顾剪辑,给学生展示赛前与比赛结束的栏杆间距和所用时间,引导学生回忆计算位移的方法。
教师给出实际问题:在离地面3米高处要安装一个灯箱,离地面5米高处再安装一个灯箱,如果要求灯箱与地面距离差不超过2米,问两条灯箱的位置应如何设置?请用数学语言描述这个问题。
学生尝试用学过的知识解决这个问题。
通过类比问题,引入双曲线概念和简单几何性质。
设计意图:以刘翔跨栏视频创设情境,有利于激发学生的学习兴趣和求知欲,让学生体会到数学与体育的关系无处不在,同时也自然地引入课题。
2. 自主学习,合作探究将学生分成小组,结合课件通过多媒体网络自学教材内容,对双曲线的定义及几何性质进行自主探究,解决在自学中遇到的疑难问题。
在此过程中教师巡回指导,帮助学生解决疑难问题。
《双曲线的几何性质》学历案(第一课时)一、学习主题本课学习主题为《双曲线的几何性质》。
双曲线是中职数学课程中的重要内容,它不仅在数学本身有着广泛的应用,而且在物理、工程等领域也有着重要的意义。
本课将围绕双曲线的定义、性质、几何图像以及相关计算进行学习。
二、学习目标1. 知识与技能:理解双曲线的定义和标准方程,掌握双曲线的基本几何性质;能利用双曲线的性质解决简单的数学问题。
2. 过程与方法:通过观察双曲线的图像,培养学生利用数形结合的思想理解数学概念的能力;通过解决实际问题,培养学生应用数学知识解决实际问题的能力。
3. 情感态度与价值观:通过本课学习,激发学生对数学的兴趣和好奇心,培养他们认真、严谨的学习态度和良好的学习习惯。
三、评价任务1. 知识评价:通过课堂提问、随堂测验等方式,评价学生对双曲线定义、性质及标准方程的理解程度。
2. 能力评价:通过课堂练习、小组讨论等形式,评价学生利用双曲线知识解决实际问题的能力。
3. 过程评价:通过观察学生在课堂上的表现,评价他们的学习态度和学习习惯,包括参与度、合作能力、探究精神等。
四、学习过程1. 导入新课:通过回顾之前学习的内容(如直线、圆等),引出双曲线的概念,为学习新知做铺垫。
2. 新课学习:首先介绍双曲线的定义和标准方程,然后通过具体例子讲解双曲线的几何性质。
在此过程中,可以结合图像和动画,帮助学生更好地理解双曲线的形状和性质。
3. 课堂练习:布置相关练习题,让学生运用所学知识解决问题。
教师巡视指导,及时解答学生疑问。
4. 小组讨论:分组进行讨论,让学生分享自己的解题思路和方法,互相学习、互相启发。
5. 总结归纳:对本次课的学习内容进行总结归纳,强调重点和难点内容。
五、检测与作业1. 课堂检测:通过课堂小测验或作业的方式,检测学生对双曲线知识的掌握情况。
2. 课后作业:布置相关练习题和思考题,让学生巩固所学知识并拓展思维。
六、学后反思1. 学生反思:引导学生对本次课的学习过程进行反思,总结自己的收获和不足。
课时教学设计首页(试用)☆补充设计☆教 师 行 为学 生 行 为教学意图*揭示课题2.2 双曲线. *创设情境 兴趣导入我们用于研究椭圆的性质相类似的方法来,根据双曲线的标准方程22221(00)x y a b a b-=>>, 来研究双曲线的性质.了解 观看 课件 思考引导 启发学生得出结果*动脑思考 探索新知1.范围因为220y b ≥,所以由双曲线的标准方程知道,双曲线上的点的横坐标满足221x a≥,即22x a ≥.于是有x ≤-a 或x ≥a .这说明双曲线位于直线x =-a 的左侧与直线x =a 的右侧(如图2-11)图2-11 2.对称性在双曲线的标准方程中,将y 换成-y ,方程依然成立.这说明双曲线关于x 轴对称.同理可知,双曲线关于y 轴对称,也关于坐标原点对称.x轴与y 轴都叫做双曲线的对称轴,坐标原点叫做双曲线的对称中心(简称中心).3.顶点思考引导学生发现解决问题方法图2-12【说明】焦点在y 轴的双曲线22221(0,0)y x a b a b-=>>的渐近线方程为ay x b=±. 5.离心率双曲线的焦距与实轴长的比22c ca a=叫做双曲线的离心率,记作e .即 c e a=.因为0c a >>,所以双曲线的离心率1e >. 由2222211b c a c e a a a-==-=- 可以看到,e 越大,ba 的值越大,即渐近线by x a=±的斜率的绝对值越大,这是双曲线的“张口”就越大(如图2-12).因此,离心率e 的值可以刻画出双曲线“张口”的大小. 【想一想】等轴双曲线的离心率是多少?*巩固知识 典型例题图2-13【说明】画双曲线的草图时,可以首先确定顶点,再画出双曲线的渐近线,然后根据双曲线与其渐近线逐渐接近的特点画出图形.例 4 已知双曲线的焦点为(6,0),渐近线方程为255y x =±,求双曲线的标准方程.解 由已知条件知双曲线的焦点在y 轴.所以有2236255a b b a⎧+=⎪⎨=⎪⎩解得 254a b ==,. 故所求的双曲线方程为2212016x y -=.【注意】不能由渐近线方程255y x =±直接得到5,25a b ==.想一想为什么?例5 已知双曲线的两个顶点坐标为(0,-4),(0,4)离心率为32,求双曲线的标准方程及其渐近线方程.。