教案教学设计中职数学拓展模块3.1.1排列
- 格式:docx
- 大小:28.23 KB
- 文档页数:7
【课题】3.1排列与组合(三)
【教学目标】
知识目标:
利用排列数组合数计算公式解决简单的应用问题.
能力目标:
学生的数学计算技能、计算工具使用技能和数学思维能力得到提高.
【教学重点】
排列与组合的综合应用.
【教学难点】
排列与组合的综合应用.
【教学设计】
实际应用过程中,要注意区分以下3点:(1)元素是否允许重复.元素不允许重复的是排列与组合问题;元素允许重复的是直接应用计数原理的问题.(2)元素是否有序.有序是排列问题,无序是组合问题.(3)是否需要分类或分步骤来进行研究.例7是简单的排列与组合训练题.要注意分清是排列问题还是组合问题.例8是产品检验的抽样计算问题,是组合应用的典型问题.在题目的说明中,介绍了对立事件.例9是照相排队问题,是排列应用的典型问题.要注意“先考虑特殊元素或特殊位置,再考虑一般元素或位置”这种分步骤研究方法的使用.例10是排列组合综合应用问题.“先取出元素,然后再安排”是这类问题的典型方法.例11元素可以重复,不是排列与组合问题,直接应用分步计数原理计算.【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
【教师教学后记】。
中职数学拓展模块全册教案目录1.1.1.1两角和与差的余弦公式 (1)1.1.1.2两角和与差的正弦公式 (6)1.1.2 二倍角公式 (10)1.2 正弦型函数 (16)1.3 .1余弦定理 (22)1.3 .2正弦定理 (27)2.1.1椭圆的标准方程 (32)2.1.2椭圆的几何性质 (40)2.2.1双曲线的标准方程 (45)2.2.2双曲线的几何性质 (52)2.3.1抛物线的标准方程 (61)2.3.2抛物线的性质 (69)3.1.1排列 (75)3.1.2 组合 (82)3.1.3二项式定理 (88)3.2.1离散型随机变量及其分布 (95)3.2.2二项分布 (102)课时教学设计首页(试用)授课时间:年月太原市教研科研中心研制太原市教研科研中心研制☆补充设计☆教师行为学生行为设计意图 导入:创设情境 兴趣导入问题: 我们知道,13cos60cos3022︒=︒=,,显然()cos 6030cos60cos30︒-︒≠︒︒-.由此可知 ()cos cos cos αβαβ-≠-. 新课:动脑思考 探索新知在单位圆(如上图)中,设向量OA 、OB 与x 轴正半轴的夹角分别为α和β,则点A 的坐标为(cos ,sin αα),点B 的坐标为(cos ,sin ββ).因此向量(cos ,sin )OA αα=,向量(cos ,sin )OB ββ=,且1OA =,1OB =.于是cos()cos()OA OB OA OB αβαβ⋅=⋅⋅-=-,又cos cos sin sin OA OB αβαβ⋅=⋅+⋅,1、回顾三角函数相关知识2、复习向量的有关知识3、学生计算三角函数值并验证猜想思考:如何计算出)cos(βα-)的值?回顾向量的坐标运算、数量积运算太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制课时教学设计首页(试用)太原市教研科研中心研制课时教学设计首页(试用)太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制BC AC AB=-,所以)•=-•-()(BC BC AC AB AC AB22=+-•2AC AB AC AB22+-AC AB AC AB A2cos222cos=+-.b c bc A2222=+-a b c同理可得2222=+-b ac acBC BA AC =+, 两边取与单的数量积,得BC BA BC BA BC •••=+()=+.j j j90BC B BA AC A >=︒-⊥>=-,,,,j <j 设与角A ,B ,C 相对应的边长分别为a c ,故 cos(90)0cos(90)a B b A ︒-=+-︒, sin sin a B b A =,中职中专数学教学设计教案☆补充设计☆教 师行为学生行为 设计意图*揭示课题2.1 椭圆. *创设情境 兴趣导入我们已经学习过直线与圆的方程.知道二元一次方程0Ax By C ++=为直线的方程,二元二次方程22220(40)x y Dx Ey F D E F ++++=+->为圆的方程.下面将陆续研究一些新的二元二次方程及其对应的曲线.了解观看 课件 思考引导启发学生得出结果*动脑思考 探索新知先来做一个实验:准备一条一定线绳、两枚钉子和一支铅笔按照下面的步骤画一个椭圆:(1)如图2-1所示,将绳子的两端固定在画板上的1F 和2F 两点,并使绳长大于1F 和2F 的距离.(2)用铅笔尖将线绳拉紧,并保持线绳的拉紧状态,笔尖在画板上慢慢移动一周,观察所画出的图形.从实验中可以看到,笔尖(即点M )在移动过程中,与两个定点1F 和2F 的距离之和始终保持不变(等于这条绳子的长度). 我们将平面内与两个定点12F F 、的距离之和为常数(大于12F F )的点的轨迹(或集合)叫做椭圆.这两个定点叫做椭圆的焦点,两个焦点间的距离叫做焦距.思考引导学生发现解决问题方法实验画出的图形就是椭圆.下面我们根据实验的步骤来研究椭圆的方程.取过焦点12F F 、的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系,如图2-2所示.设M (x ,y )是椭圆上的任意一点,椭圆的焦距为2c (c >0),椭圆上的点与两个定点12F F 、的距离之和为2a (a >0),则12F F ,的坐标分别为(-c ,0),(c ,0),由条件122MF MF a +=,得2222()()2x c y x c y a +++-+=,移项得2222()2()x c y a x c y ++=--+,两边平方得2222222()44()()x c y a a x c y x c y ++=--++-+, 整理得 222()a cx a x c y -=-+, 两边平方后,整理得 22222222()()a c x a y a a c -+=-, 由椭圆的定义得2a >2c >0,即a >c >0,所以220a c ->,设222(0)a c b b -=>,则222222b x a y a b +=,【小提示】设222a c b -=,不仅使得方程变得简单规整,同时在后面讨论椭圆的集合性质时,还会看到它有明确的几何意义.22理解 记忆图2-2222210x y a b a b += (>>) (2.1) 方程(2.1)叫做焦点在x 轴上的椭圆的标准方程.它所表示的椭圆的焦点是12(0)(0)F c F c -,,,,并且222a c b -=.如图2-3所示,如果取过焦点12F F 、的直线为y 轴,线段12F F 的垂直平分线为x 轴,建立平面直角坐标系,用类似的方法可以得到椭圆的标准方程为222210y x a b a b+= (>>) (2.2)图2-3方程(2.2)叫做焦点在y 轴上的椭圆的标准方程.字母a 、b 的意义同上,并且222a c b -=. 【想一想】已知一个椭圆的标准方程,如何判定焦点在x 轴还是在y 轴?*巩固知识 典型例题例1 已知椭圆的焦点在x 轴上,焦距为8,椭圆上的点到两个焦点的距离之和为10.求椭圆的标准方程.解 由于2c =8,2a =10,即c =4,a =5,所以 2229b a c =-=,由于椭圆的焦点在x 轴上,因此椭圆的标准方程为2222153x y+=,观察思考主动 求解注意观察学生是否理解知识点太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制太原市教研科研中心研制2.了解了研究椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系太原市教研科研中心研制太原市教研科研中心研制课 时 教 学 流 程太原市教研科研中心研制☆补充设计☆教 学 过 程学生行为 设计意图 *揭示课题2.2 双曲线.*创设情境 兴趣导入我们先来做一个实验.取一条两边长度不等的拉链(如图2-8),将拉链的两边分别固定在两个定点12F F 、(拉链两边的长度之差小于12F F 、的距离)上,把铅笔尖固定在拉链锁口处,慢慢拉开拉链,使铅笔尖慢慢移动,画出图形的一部分;再将拉链的两边交换位置分别固定在21F F 、处,用同样的方法可以画出图形的另一部分.图2-8从实验中发现:笔尖(即点M )在移动过程中,与两个定点12F F 、的距离之差的绝对值始终保持不变(等于拉链两边的长度之差). 了解观看 课件思考引导 启发学生得出结果*动脑思考 探索新知我们将平面内到两个定点12F F 、的距离之差的绝对值为常数(小于12F F )的点的轨迹(或集合)叫做双曲线. 这两个定点叫做双曲线的焦点,两焦点的距离叫做焦距.实验画出的图形就是双曲线.下面我们根据实验的步骤来研究双曲线的方程.M太原市教研科研中心研制意图图2-9取过焦点12F F 、的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系,如图2-9,设双曲线的焦距为2c ,则两个焦点12F F 、的坐标分别为(-c ,0),(c ,0).设M (x ,y )为双曲线上的任意一点,M 与两个焦点12F F 、的距离之差的绝对值为2a ,则122MF MF a -=,即 122MF MF a -=±. 于是有2222()()2x c y x c y a +++-+=±. 将上式化简(类似于求椭圆的方程),得22222222()()c a x a y a c a --=-.由双曲线的定义知,2c >2a ,即c >a ,因此220c a ->.令222(0)c a b b -=>,则上式变为222222b x a y a b -=两边同时除以22a b ,得22221(00)x y a b a b -= >,> (2.3) 方程(2.3)叫做焦点在x 轴上的双曲线的标准方程.它所表示的双曲线的焦点是12(0)(0)F c F c -,,,,并且思考理解引导学生发现解决问题方法太原市教研科研中心研制意图222b c a =-.图2-10如图2-10所示,如果取过焦点12F F 、的直线为y 轴,线段12F F 的垂直平分线为x 轴,建立平面直角坐标系,那么用类似的方法可以得到双曲线的方程22221(00)y x a b a b -= >,> (2.4) 方程(2.4)叫做焦点在y 轴上的双曲线的标准方程.焦点为12(0)(0)F c F c -,,,.字母a ,b 意义同上,并且222b c a =-.【想一想】已知一个双曲线的标准方程,如何判定焦点在x 轴还是在y 轴? 记忆*巩固知识 典型例题例1 已知双曲线的焦点在x 轴上,且焦距为14,双曲线上一点到两个焦点距离之差的绝对值等于8,请写出双曲线的标准方程. 解 由已知得 2c = 14,2a = 8,即c = 7,a = 4,所以22233b c a =-=.观察思考主动 求解注意 观察 学生 是否 理解 知识 点太原市教研科研中心研制。
排列教学设计
【指导思想】
排列是初等数学中一个非常重要的知识点,它是《概率论和数理统计》的基础,该知识展示给人的印象有两个:一是抽象性,二是灵活性。
学生不容易学好。
心理学告诉我们:青少年在知识的形成和掌握上是一个循序渐进、螺旋式上升的过程。
在本节课的内容设计上,本人遵循这一原则,采用范例教学,例题、练习的设计有梯度。
在教学方法上,以启发式教学为主,讲练结合,多方面调动学生的积极性,让学生在愉快中学习。
【教学方法和手段】
“授人以鱼,不如授人以渔”。
在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。
教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。
【教学目标】
1.知识与技能目标:
⑴理解排列的定义;
⑵掌握排列计算公式。
2.过程与方法目标:
通过创设问题情境,激发学生的求知欲望;通过引导探究,开发学生的创新潜能;通过实例讲解,巩固学生的认知水平。
3.情感、态度与价值观目标:
⑴培养学生观察、领悟能力,以及发现问题、探索问题、解决问题能力;
⑵培养学生的抽象思维能力。
【教学重点、难点】
1.排列定义
2.排列计算公式
【辅助工具】
多媒体课件
【板书设计】
【教学反思】。