【人教版】中职数学(拓展模块):1.1《和角公式》ppt课件(2)
- 格式:ppt
- 大小:705.50 KB
- 文档页数:45
【课题】 1.1两角和与差的正弦公式与余弦公式(二)【教学目标】知识目标:理解两角和与差的正切公式,了解二倍角公式,能正确运用各个公式进行简单的三角函数式的计算和化简.能力目标:学生逆向思维能力及灵活选用公式解决问题的能力得到提高.【教学重点】本节课的教学重点是二倍角公式.【教学难点】难点是公式的推导和运用.【教学设计】考虑到学生继续学习的需求,介绍两角和与差的正切公式。
例7是应用两角和正切公式的基本题目.例8的两道题目,对学生来说是比较困难的,但是这两道题目是非常关键的.要以他们为载体,提升学生的数学思维能力.对例8(2),要引导学生思考,将两个地方的1用tan 45︒替换,就可以利用两角和正切公式了.本例题所使用的方法,在三角式变形中经常使用.明确二倍角的概念.二倍角的实质是用一个角的三角函数表示这个角的二倍角的三角函数.二倍角余弦公式的三种形式同等重要,要分析这三种公式各自的形式特点.例9中,要想利用正弦二倍角公式,必须首先求出余弦函数值.求cos 2α时,使用的公式有利用同角三角函数关系、利用cos α和利用sin α的三类公式可供选择.选用公式2cos 212sin αα=-的主要原因是考虑到sin α是已知量.例10中,讨论2α角的范围是因为利用同角三角函数关系求sin 2α时需要开方.旨在让学生熟悉:只要具备二倍角关系,就可以使用公式.教材在求sin4α时,利用了升幂公式,由讨论2α角的范围来决定开方取正号还是负号.虽然这里就是实际上使用半角公式,但是教材与大纲中,都没有引入半角公式的要求,因此,不补充半角公式,只作为二倍角余弦变形的应用来介绍.例11是三角证明题.证明的基本思路是将角用半角来表示,再进行三角式的化简.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】可以将75°角看作-1tan30tan45;(2).25tan35)题可以逆用公式();(2)题可以利用tan(2525tan 35=tan 603==;tan151tan 45tan15=-tan(4515)tan603=+==.公式.要注意应用这种变形方法来解决问题.tan15tan15的值.的值.22.5【教师教学后记】。
人教版中职数学拓展模块《角公式的应用》教案 (一)《角公式的应用》教案是人教版中职数学拓展模块中的一课,该课程主要讲述了角度的概念以及角公式在几何问题中的运用。
本文将从以下方面对该教案进行分析和评价。
一、教案的结构本教案由导入、讲解、实践、总结等四部分组成。
导入部分主要通过让学生思考一个问题引起学生兴趣,讲解部分对角度的概念和角公式进行深入的解释,实践部分让学生通过练习题巩固所学知识,总结部分则对本课所学内容进行清晰的概括和总结。
二、教案的教学目标该教案旨在帮助学生掌握角度的概念和角公式在几何问题中的应用,让学生能够灵活运用已学知识解决实际问题。
三、教案的教学方法该教案采用了多种教学方法,包括讲解、演示、练习、讨论等,通过多种方式对学生进行知识的传授和学习效果的检测,能够提高学生的学习热情和学习效果。
四、教案的实际应用该教案在实际应用中具有一定的可操作性和实用性。
通过让学生进行练习,帮助学生巩固所学知识,同时也能够让学生了解到角公式在实际问题中的应用,对于学生的学习和日后的生活都具有一定的指导和帮助作用。
五、教案的改进点该教案虽然在总体上比较完善,但在实际运用中,仍有一些需要改进的地方。
例如在实践部分可以加入一些具体的实际问题供学生思考和解决,同时也可以对所涉及的概念和公式进行深入的解释和分析,以增强学生的理解和掌握。
综上所述,《角公式的应用》教案是一份比较完善的教案,通过导入、讲解、实践、总结等四个部分对学生进行知识传授和学习效果检测,同时也具有一定的可操作性和实用性。
在实际应用中,还可以根据具体情况进行进一步改进,以满足不同学生的学习需求。