杆件应力及强度计算
- 格式:ppt
- 大小:2.09 MB
- 文档页数:35
第6章 杆件的应力与强度计算6.1 轴向拉压杆的应力与强度计算6.1.1 应力的概念为了分析内力在截面上的分布情况,从而对杆件的强度进行计算,必须引入应力的概念。
图6-1(a )所示的受力体代表任一受力构件。
pc)F图6-1由于截面上内力的分布一般不是均匀的,所以平均应力m p 与所取小面积A ∆的大小有关。
令A ∆趋于零,取极限0limA Fp A∆→∆=∆ (b)6.1.2轴向拉压杆横截面上的应力拉压杆横截面上的内力为轴力N F ,与轴力N F 对应的应力为正应力σ。
NF Aσ=(6-1) 式(6-1)就是轴向拉压杆横截面上正应力的计算公式。
6.1.3轴向拉压杆的强度条件 1.强度条件材料所能承受的应力值有限,它所能承受的最大应力称为该材料的极限应力,用u σ表示。
材料在拉压时的极限应力由试验确定。
为了使材料具有一定的安全储备,将极限应力除以大于1的系数n ,作为材料允许承受的最大应力值,称为材料的许用应力,以符号[]σ表示,即u []nσσ=(6-2)式中n 称为安全系数。
为了确保拉压杆不致因强度不足而破坏,应使其最大工作应力max σ不超过材料的许用应力,即Nmax F Aσ=≤[]σ (6-3) 2.强度条件的三方面应用(1) 强度校核:杆件的最大工作应力不应超过许用应力,即Nmax F Aσ=≤[]σ (2) 选择截面尺寸 : 由强度条件式(6-3),可得A ≥N[]F σ 式中A 为实际选用的横截面积,(3) 确定许用荷载: 由强度条件可知,杆件允许承受的最大轴力N []F 的范围为N F ≤[]A σ6.2材料在轴向拉压时的力学性质在计算拉压杆的强度与变形时,要涉及材料的极限应力u σ和弹性模量E 等,这些反映材料在受力过程中所表现出的有关性质,统称为材料的力学性质。
6.2.1低碳钢在拉伸时的力学性质1.拉伸图与应力-应变曲线将试件装入试验机的夹头后启动机器,使试件受到从零开始缓慢增加的拉力F 作用,试件在标距l 长度内产生相应的变形l ∆。
杆件的强度计算公式1.应力:应力是杆件内部单位面积上的力,通常以帕斯卡(Pa)为单位。
应力被定义为负载除以横截面积。
在强度计算中,应力是一个重要的参数,用于评估杆件是否能够承受给定的负载。
2.截面形状:截面形状指的是杆件横截面的形状,如圆形、矩形、梯形等。
截面形状对杆件的强度计算有很大影响,因为不同的形状在承载能力方面具有不同的特点。
3.材料性质:杆件的材料性质包括弹性模量、屈服强度、抗拉强度等。
这些参数用于计算杆件在受力情况下的应力和应变,并评估其强度。
根据杆件的受力类型和计算方法的不同,强度计算公式可以有很多种形式。
以下是几个常见的强度计算公式示例:1.杆件的拉伸强度计算公式:拉伸强度=屈服强度/安全系数这个公式适用于纯拉伸情况下的杆件强度计算。
通常,设计中会采用一个安全系数,以确保杆件在实际应用中不会超过其屈服强度。
2.杆件的压缩强度计算公式:压缩强度=屈服强度/安全系数这个公式适用于纯压缩情况下的杆件强度计算。
与拉伸情况类似,设计中也会采用一个安全系数。
3.杆件的弯曲强度计算公式:弯曲强度=弯矩/抗弯矩弯曲强度计算涉及到杆件的几何形状和截面惯性矩等参数,以及杆件的材料性质。
通过计算弯矩和抗弯矩的比值,可以评估杆件在受弯应力作用下的强度。
此外,还有一些特殊情况下的杆件强度计算公式,如扭转、剪切、冲击等。
这些公式通常相对复杂,需要更详细的材料性质和截面形状参数。
需要注意的是,强度计算公式只是一种初步评估杆件承载能力的方法,它没有考虑杆件的缺陷、损伤和非均匀加载等因素。
因此,在实际工程中,还需要进行更为详细的强度分析和安全性评估,以确保杆件的可靠性和安全性。