弯曲杆件正应力计算公式
- 格式:ppt
- 大小:331.50 KB
- 文档页数:12
弯矩与应力的关系公式【实用版】目录1.弯矩与应力的基本概念2.弯矩与应力的关系公式推导3.弯矩与应力的关系在实际工程中的应用正文1.弯矩与应力的基本概念弯矩是描述杆件受力产生弯曲的物理量,它是力矩的一种表现形式。
在结构力学中,弯矩通常用 M 表示,单位为牛顿米(N·m)或千牛顿米(kN·m)。
应力是描述材料内部受力情况的物理量,它是单位面积上受到的力。
在结构力学中,应力通常用σ表示,单位为帕斯卡(Pa)或兆帕(MPa)。
2.弯矩与应力的关系公式推导弯矩与应力之间的关系可以通过杆件的弯曲变形来推导。
对于一个长为 L 的杆件,在受到弯矩 M 的作用下,会发生弯曲。
假设弯曲的角度为θ,则在弯曲部分的某一截面上,由于拉伸和压缩的应力分布不均匀,会产生一个应力σ。
根据力学原理,我们可以得出以下公式:M = EI * θσ = M / (π * r^3)其中,E 为材料的弹性模量,I 为截面的惯性矩,θ为弯曲角度,r 为截面上任意一点到中性轴的距离。
3.弯矩与应力的关系在实际工程中的应用在实际工程中,了解弯矩与应力的关系非常重要。
通过这一关系,可以分析结构的强度、刚度和稳定性。
在设计结构时,需要根据弯矩与应力的关系,选择合适的材料和截面形状,以保证结构在受力情况下不会发生破坏。
例如,对于桥梁结构,在车辆行驶过程中,梁体会受到不同方向和大小的弯矩作用。
为了保证桥梁的安全和稳定,需要根据弯矩与应力的关系,合理设计梁体的截面形状和材料,以承受这些弯矩。
总之,弯矩与应力的关系在结构力学中具有重要意义。
教学设计三杆件弯曲受力分析计算在学习绘制杆件弯曲受力分析图后,我们来学习一下杆件的弯曲受力分析计算,即我们杆件弯曲时在横截面上产生的弯曲正应力和弯曲剪应力的计算。
问题一,杆件弯曲横截面正应力计算问题梁在弯曲变形时,梁轴线方向截面纤维曲线,下部拉伸变长,上部压缩变短。
我们选取杆件的某段横截面,其截面上某处的微分段面积dA如图8.2所示。
由该截面的积分得到,截面为弯矩M大小为公式8.1。
(公式8.1)根据广义胡可定律得到公式8.2与弯曲应变几何条件分析公式8.3得到公式8.4。
(公式8.2)(公式8.3)(公式8.4)其中,ρ为梁弯曲的曲率半径。
将公式8.4和8.1合并得到公式8.5。
(公式8.5)分析公式8.5,其中:为截面绕Z轴的惯性矩。
公式8.5变形为8.6。
ρρρρρεyydxdx==-+=∆=dθdθdθdθy)dθ(⎰⋅=AyM dAσεσ⋅=EρεσyEE==⎰⎰⎰=⎪⎪⎭⎫⎝⎛=⋅=AA AyEyyEyM dAdAdA2ρρσZAIy=⎰dA2(公式8.6)将公式8.6与公式8.4合并,得到公式8.7(公式8.7)公式8.7为杆件弯曲截面上弯曲正应力一般计算公式。
如图8.2所示,y 为惯性轴到所计算应力位置的距离,分析公式我们发现当y 为0时,截面正应力为零,当y 等于截面高度一半时,截面正应力最大,说明在杆件中间有一条纤维线在受力弯曲时既不拉伸变长也不压缩变短,我们称这条纤维曲线为杆件的中性轴,此轴所在的水平层称为中性层,而在杆件截面上下边缘处,存在最大弯曲拉应力和最大弯曲压应力,也就是极值问题的出现。
我们引入新的物理量W ,抗弯截面模量,它的计算式为8.8。
(公式8.8)公式8.7可以化简为极值公式8.9。
(公式8.9)例题分析讲解 【例1】图8.3所示,悬臂矩形截面杆件,截面O 1上有A 、B 、C 、D 点,求它们的弯曲正应力。
【解】计算悬臂梁的弯矩计算梁截面的惯性矩计算抗弯截面模量 计算各点的正应力yIW Z=m kN 6.488.130212⋅=⨯⨯=M 001067.0124.02.01233=⨯==bh I 00533.0124.02.0622=⨯==bh W Z WM Z =σZZ I E M ⋅=ρ1y I M ZZ=σ(拉)MPa 12.900533.06.48===Z Z a W M σ(压)m 9.12kN a d ⋅=-=σσ0b =σ(压)4.55MPa 0.1106700.06.48b c =⨯==y I M Z Z σ问题二,杆件弯曲横截面剪应力计算问题与弯曲正应力不同,在截面上各点的弯曲剪应力指向相同,不论是否在中性层的上侧还是下侧;在同一剪力段,同一层的各点剪应力大小相同。
工程力学常用公式3、伸长率:* 1。
%断面收缩率: 字100%5、扭转切应力表达式:^,最大切应力:maxTP RW p , d 44I P ”(1),W P d'(1 4),强度校核: 16max TmaxW P[]6、单位扭转角:d—,刚度校核:maxTmax[], 长度为1dx Gl pGI P的一段轴两截面之间的相对扭转角證,扭转外力偶的计算公式: Me 9549P(KWLn(r/m in )8平面应力状态下斜截面应力的一般公式:最大切应力max -'' - ( x y )22,最大正应力方位2 Y 21、轴向拉压杆件截面正应力 牛,强度校核max2、轴向拉压杆件变形IFi Ni l i 4、胡克定律: E ,泊松比:,剪切胡克定律:G7、薄壁圆管的扭转切应力:T 2 R 29、 x yx ycos22 2 xsin 2-sin 2 x cos2平面应力状态三个主应力:II「( x 2y)2X, ''' 01、100%tan2 0 2xx y10、第三和第四强度理论: r3 X 24 2, r4211、平面弯曲杆件正应力:M ,截面上下对称时,MW Z矩形的惯性矩表达式:I Z兽圆形的惯性矩表达式:I ZV(1 644)矩形的抗扭截面系数:W Z £圆形的抗扭截面系数:W Z 4)13、平面弯曲杆件横截面上的最大切应力:F s S max* zmaxbi z14、平面弯曲杆件的强度校核:(1)弯曲正应力tmax [t ], cmaxc](2)弯曲切应力max [](3)第三类危险点:第三和第四强度理论 16、( 1)轴向载荷与横向载荷联合作用强度: ()FN M maxmax (min 丿15、平面弯曲杆件刚度校核:叠加法 严 [f], max [](2)偏心拉伸(偏心压缩):max ( min)A(3)弯扭变形杆件的强度计算:工程力学常用公式伸长率: F N ; A ;FA ;泊松比E 2(1 ),l bI 0l 0100%,断面收缩率:A o A b A 02、扭转: { M }N gm9549 {P}kW ,{ n} r/ min,W p max TW p,3、4、ddxTGIP,TloGI P弯曲:MdxEl应力状态:MET Z,MyIT,maxMy maxIlMW zd 2wdx2MEIM , xdx)dx CxEIx sin2i2cos 2;x y )22tg2 o拉压强度条件:max(F N)[\ 八/max L扭转强度条件:max(T)[]W p扭转刚度条件:(T)max []GI P梁的弯曲强度条件M maxmaxW.梁弯曲的刚度条件:V V max[]-欧拉公式:F c r -2EIl2,2Ecr 2柔度:-惯性半径:max(min][],maxi x y2max,max . [](丿max [],I zi'■ A。
杆件正应力怎么求计算公式杆件正应力的计算公式。
在工程力学中,杆件正应力是指在杆件内部由外部加载引起的正向拉伸或压缩应力。
正应力的计算是工程设计中非常重要的一部分,它可以帮助工程师确定杆件是否能够承受外部加载,并且可以帮助工程师选择合适的材料和尺寸来设计结构。
杆件正应力的计算公式可以通过简单的力学原理推导得出。
在这篇文章中,我们将介绍杆件正应力的计算公式,并且讨论一些实际应用中的例子。
杆件正应力的计算公式可以表示为:σ = P / A。
其中,σ表示杆件的正应力,P 表示施加在杆件上的外部力,A 表示杆件的横截面积。
这个公式的推导可以通过简单的力学原理来进行。
当一个外部力 P 作用在杆件上时,杆件内部会产生一个与外部力方向相反的内部应力。
根据牛顿第三定律,这个内部应力的大小与外部力的大小相等,方向相反。
而杆件的横截面积 A 则可以用来表示内部应力的分布情况。
因此,杆件的正应力可以表示为外部力 P 与横截面积 A 的比值。
在实际应用中,杆件正应力的计算可以通过这个简单的公式来进行。
例如,当一个钢杆承受一个拉力时,我们可以通过测量钢杆的横截面积和外部拉力来计算钢杆的正应力。
这个计算可以帮助工程师确定钢杆是否能够承受这个拉力,并且可以帮助工程师选择合适的钢材来设计结构。
除了上面提到的简单拉力的情况,杆件正应力的计算公式也可以应用在其他复杂的情况中。
例如,在梁的设计中,梁的横截面积不是均匀的,因此我们可以通过积分的方法来计算梁的正应力分布。
这个计算可以帮助工程师确定梁在不同位置的正应力大小,并且可以帮助工程师选择合适的梁的尺寸和材料来设计结构。
除了简单的拉力和梁的设计,杆件正应力的计算公式也可以应用在其他工程结构的设计中。
例如,在桥梁的设计中,我们可以通过计算桥梁的正应力来确定桥梁的承载能力,并且可以帮助工程师选择合适的桥梁的尺寸和材料来设计结构。
总之,杆件正应力的计算公式是工程设计中非常重要的一部分。
通过这个简单的公式,工程师可以确定杆件是否能够承受外部加载,并且可以帮助工程师选择合适的材料和尺寸来设计结构。
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
弯钢计算公式范文弯钢计算是建筑工程中重要的一项工作,它涉及到对材料的力学性能和几何形状的综合分析,以确定弯曲强度和弯曲角度等参数。
在弯钢计算中,有一些基本公式和理论可以帮助我们进行准确的计算。
以下是一些常用的弯钢计算公式:1.弯曲应力的计算公式弯曲应力是指材料在受到外力作用下,由于受到弯曲而产生的应力。
对于弯曲应力的计算,我们可以使用如下公式:σ=(M·y)/I其中,σ为弯曲应力,M为弯矩,y为截面形心距(即受力点到截面内各点形心的距离),I为截面抵抗弯曲的惯性矩。
2.弯曲角度的计算公式弯曲角度是指材料在受到外力作用下,由于受到弯曲而产生的变形。
对于弯曲角度的计算,我们可以使用如下公式:θ=(L·100)/(π·R)其中,θ为弯曲角度,L为受力点到弯曲点的距离,R为曲率半径。
3.弯曲力矩的计算公式弯曲力矩是指作用于弯曲杆件上的力矩,它反映了弯曲杆件在弯曲过程中所受到的力的大小。
对于弯曲力矩的计算,我们可以使用如下公式:M=F·L其中,M为弯曲力矩,F为作用于杆件上的力,L为力作用点到弯曲点的距离。
4.安全弯曲半径的计算公式安全弯曲半径是指杆件在弯曲过程中不会产生塑性变形和破坏的最小曲率半径。
对于安全弯曲半径的计算,我们可以使用如下公式:R=(Ks·y)/σ其中,R为安全弯曲半径,Ks为安全系数(根据具体材料和工程要求确定),σ为弯曲应力,y为截面形心距。
5.弯曲挠度的计算公式弯曲挠度是指材料在弯曲过程中产生的变形量。
对于弯曲挠度的计算,我们可以使用如下公式:δ=(5·F·L^4)/(384·E·I)其中,δ为弯曲挠度,F为作用于杆件上的力,L为受力点到弯曲点的距离,E为材料的弹性模量,I为截面抵抗弯曲的惯性矩。
以上是弯钢计算中常用的一些公式,它们可以帮助我们准确地分析和计算弯曲杆件的性能和变形。
在实际应用中,我们还需要考虑材料的特性、结构的几何形状和工程要求等因素,以确保计算的准确性和可靠性。
正应力(compressive stress)是指在材料受力后变形过程中,垂直于应力方向的截面上的内力与该截面的面积之比。
计算正应力的方法取决于所采用的计算模型和材料性质。
首先,让我们了解一种常见的梁弯曲问题。
在梁弯曲问题中,假设梁受到垂直于梁的集中力作用,此时梁会发生弯曲变形。
对于这个问题,可以使用简单的材料力学公式来计算正应力。
根据胡克定律,梁的变形量与所受的正应力成反比,因此可以通过测量变形量来估计正应力的大小。
根据公式,正应力σ的计算公式为:σ=F/W,其中F为集中力,W为梁的横截面积。
在另一个更复杂的例子中,考虑一个长杆受到扭矩作用。
在这种情况下,杆件会围绕其中心线旋转,导致杆件上的每个点都受到切向和法向应力。
其中,切向应力是由扭矩引起的,而法向应力则是由重力或其他外力引起的。
为了计算正应力,需要使用更复杂的公式,其中涉及杆件长度、截面面积、材料弹性模量等因素。
除了上述的梁弯曲和长杆扭矩问题,还可以使用有限元分析(FEA)方法来计算正应力。
这种方法通过将物体分解成许多小的单元或“块”,并对每个单元进行建模和计算。
通过这种方法,可以模拟物体在各种载荷条件下的变形和应力分布,并得到精确的正应力结果。
总之,正应力的计算方法取决于所研究的物体和所施加的载荷条件。
在简单的情况下,可以使用简单的材料力学公式来计算正应力;而在更复杂的情况下,可以使用有限元分析方法来获得更精确的结果。
这些方法需要了解物体的结构和材料性质,并使用适当的公式或软件来进行分析和计算。
杆件横截面正应力计算公式在工程领域中,杆件的设计和计算是非常重要的。
杆件在受力作用下会产生正应力,而正应力的计算对于杆件的安全性和稳定性具有重要意义。
本文将介绍杆件横截面正应力的计算公式及其应用。
杆件横截面正应力计算公式如下:σ = P/A。
其中,σ为杆件横截面上的正应力,P为作用在杆件上的力,A为杆件的横截面积。
在实际工程中,杆件通常会受到拉伸、压缩、弯曲等不同形式的受力。
对于不同形式的受力,杆件横截面正应力的计算公式也会有所不同。
首先,我们来看一下杆件受拉伸力作用下的正应力计算。
当杆件受到拉伸力P 作用时,横截面上的正应力可以通过上述公式计算得到。
在这种情况下,横截面上的正应力与拉伸力P成正比,横截面积A越大,正应力σ越小,杆件的承载能力也就越大。
接下来,我们来看一下杆件受压缩力作用下的正应力计算。
当杆件受到压缩力P作用时,横截面上的正应力同样可以通过上述公式计算得到。
在这种情况下,横截面上的正应力也与压缩力P成正比,横截面积A越大,正应力σ越小,杆件的承载能力也就越大。
此外,杆件在受力作用下还会产生弯曲。
在弯曲情况下,杆件横截面上的正应力计算公式为:σ = Mc/I。
其中,σ为杆件横截面上的正应力,M为弯矩,c为横截面上的某一点到中性轴的距离,I为横截面的惯性矩。
在弯曲情况下,横截面上的正应力与弯矩M成正比,c越大,正应力σ越小,杆件的承载能力也就越大。
而横截面的惯性矩I则反映了杆件抵抗弯曲变形的能力,I越大,杆件的抗弯能力越强。
综上所述,杆件横截面正应力的计算公式为σ = P/A,对于不同形式的受力,计算公式也会有所不同。
在实际工程中,我们需要根据杆件受力情况选择合适的计算公式,并结合材料的力学性能参数进行计算,以保证杆件的安全性和稳定性。
同时,合理设计杆件的横截面形状和尺寸,也可以有效地提高杆件的承载能力和使用寿命。
希望本文对杆件横截面正应力的计算有所帮助,谢谢阅读!。
截面正应力计算公式
1. 基本概念。
- 对于轴向拉压杆件,其横截面上的正应力计算公式为σ=(F_N)/(A)。
其中σ表示正应力,F_N为轴力(拉力为正,压力为负),A为横截面面积。
- 在计算轴力F_N时,通常采用截面法。
即假想地用一截面将杆件截开,研究其中一部分的受力平衡,从而确定轴力的大小和方向。
2. 梁弯曲时的正应力。
- 对于纯弯曲梁(梁的横截面上只有弯矩而无剪力的情况),其正应力计算公式为σ=(My)/(I_z)。
- 这里M为横截面上的弯矩,y为所求应力点到中性轴的距离,I_z为横截面对中性轴z的惯性矩。
- 对于横力弯曲(梁的横截面上既有弯矩又有剪力的情况),当梁的跨度l与横截面高度h之比l/h>5时,纯弯曲正应力公式σ=(My)/(I_z)仍可近似使用。
3. 组合变形下的正应力。
- 当杆件发生组合变形(如拉压与弯曲的组合、扭转与弯曲的组合等)时,可分别计算每种基本变形产生的正应力,然后根据叠加原理求出组合变形下的正应力。
- 例如对于拉压与弯曲组合变形的杆件,横截面上某点的正应力
σ=σ_N+σ_M,其中σ_N = (F_N)/(A)(拉压正应力),σ_M=(My)/(I_z)(弯曲正应力)。
如何计算物体的弯曲应力和应变?
要计算物体的弯曲应力和应变,首先需要了解一些基本概念和公式。
以下是一些可能有用的信息:
1. 弯曲应力:当物体受到外力作用时,它会在力的方向上产生弯曲。
这种弯曲会导致物体内部产生应力,称为弯曲应力。
弯曲应力的大小取决于外力的大小、物体的截面尺寸和材料性质等因素。
计算弯曲应力的公式为:σ= F/A,其中σ为弯曲应力,F为作用在物体上的外力,A为物体的截面面积。
2. 应变:当物体受到外力作用时,它会在力的方向上产生变形。
这种变形会导致物体内部产生应变。
应变的大小取决于外力的大小、物体的尺寸和材料性质等因素。
计算应变的公式为:ε= ΔL/L,其中ε为应变,ΔL为物体的变形量,L为物体原来的长度。
在实际应用中,为了更准确地计算弯曲应力和应变,需要考虑更多的因素,例如物体的形状、材料性质、温度等。
同时,还需要进行实验测试和有限元分析等方法来验证计算结果的准确性。