邓肯张模型
- 格式:ppt
- 大小:613.00 KB
- 文档页数:22
可编辑修改精选全文完整版3.Duncan-Chang 模型参数的确定实验目的:Duncan 双曲线模型是一种建立在增量广义虎克定律基础上的非线性弹性模型,它在岩土工程界为人们所熟知和广泛应用。
这一类模型可以反映应力应变关系的非线性,参数的物理意义明确和易于确定, 本实验通过对不同围压的控制来模拟模型并确定其参数。
实验原理:点绘()a εσσ~31-曲线,如图3-1所示,Kondner 等人发现,可以用双曲线来拟和这些曲线。
对某一3σ,()a εσσ~31-关系可表示成:aab a εεσσ+=-31 (3-1)渐近线σ3=常量E iE tσ1-σ3(σ1-σ3)uεa 0εa /(σ1-σ3)uεa ba图 3-1 ()a εσσ~31-关系曲线 图3-2 ()a a εσσε--31/关系曲线式中:a 和b 为试验常数。
上式也可以写成:a ab a εσσε+=-31 (3-2)以()31/σσε-a 为纵坐标,a ε为横坐标,构成新的坐标系,则双曲线转换成直线。
见图3-2。
其斜率为b ,截距为a 。
有增量广义虎克定律,如果只沿某一方向,譬如Z 方向,给土体施加应力增量ΔZσ,而保持其他方向的应力不变,可得:E zx σεΔΔ=(3-3) Ev zx σεΔΔ-= (3-4)则 xzE εσΔΔ= (3-5)zxv εεΔΔ-= (3-6)邓肯和张利用上述关系推导出弹性模量公式。
由式(3-5)得:()()aa E εσσεσσεσ∂-∂=-==313111ΔΔΔ (3-7)由此可见虎克定律中所用的弹性模量实际上是常规三轴试验()a εσσ~31-曲线的切线斜率。
这样的模量叫做切线弹性模量,可用t E 表示,见图3-1。
将式(3-1)代入式(3-7),得到:()2a tb a aE ε+= (3-8)由式(3-2)可得:ba a --=311σσε (3-9)式(3-9)代入式(3-8),得: ()[]23111σσ--=b a E t (3-10)由式(3-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε(3-11)而双曲线的初始切线模量i E 为: 031→⎪⎪⎭⎫⎝⎛-=a a i E εεσσ (3-12) 见图3-1。
土体邓肯—张非线性弹性模型参数反演分析土体弹性是土力学和岩土工程研究中最重要的物理量之一,它是分析土壤的受力和强度状态以及土体的力学特性的重要参数。
土体弹性的反演和分析是开发和应用理论模型,评价土体性质和解决工程问题的基础。
在过去几十年中,在土体弹性学研究中,邓肯-张(D-Z)模型被广泛地应用于土壤力学和计算力学中,以定量地描述和分析土体的弹性反应。
邓肯-张(D-Z)模型是以邓肯(Dunkerley)模型为基础,借鉴张(Zhang)模型的结构,对邓肯(Dunkerley)模型进行改进和重新建模得到的。
它将土体弹性关系表达为完全非线性的方式,具有较强的实用性,能够更准确地反映土体弹性特性。
这种完全非线性模型有八个不同的参数,它们分别表示土体的基本特性。
因此,通过定量分析土体弹性参数对土体性质的影响,可以有效评价土体的强度和稳定性,并从而更好地解决工程问题。
本文的目的是基于邓肯-张(D-Z)模型,分析土体弹性参数的反演。
研究的结果表明:八个参数可以采用拟合介质的拟合方法,通过计算完成反演分析。
这样可以对邓肯-张(D-Z)模型参数进行精确拟合,有助于更准确地反演土体性质和弹性参数。
本文采用了统计学和数学方法,使用最小二乘法和拟合介质的拟合方法,反演分析了邓肯-张(D-Z)模型参数,从而提高了参数反演的准确性和稳定性,为岩土工程研究提供了参考依据。
首先,本文介绍了土体弹性的概念和它的重要性,并介绍了邓肯-张(D-Z)模型的拟合方法。
其次,根据统计学和数学方法,介绍了最小二乘法和拟合介质的拟合方法。
最后,本文讨论了邓肯-张(D-Z)模型参数反演分析的结果,总结了参数反演对土体性质和弹性参数的影响,为岩土工程的研究提供参考依据。
从总体上来看,邓肯-张(D-Z)模型具有较强的实用性和准确性,可用于更好地反映和分析土体的弹性特性。
本研究的结果证明,采用最小二乘法,通过拟合介质的拟合方法,可以更准确地反演出土体性质和弹性参数,有助于更好地解决岩土工程中相关问题。
邓肯张本构模型在FLAC3D中的开发与实现一、本文概述随着计算机技术的不断发展和数值模拟方法的日益成熟,岩土工程领域的数值模拟分析已成为研究岩土工程问题的重要手段。
邓肯张本构模型(Duncan-Chang Constitutive Model)作为一种能够描述岩土材料非线性、弹塑性行为的本构模型,在岩土工程领域具有广泛的应用。
然而,在岩土工程数值模拟软件FLAC3D中,邓肯张本构模型并未直接内置,因此需要对其进行开发与实现。
本文旨在探讨邓肯张本构模型在FLAC3D中的开发与实现过程。
将介绍邓肯张本构模型的基本原理和特点,包括其应力-应变关系、屈服准则、硬化法则等。
然后,将详细阐述如何在FLAC3D中通过用户自定义本构模型(User-Defined Constitutive Model)接口实现邓肯张本构模型,包括模型的初始化、应力更新、应变更新等关键步骤。
还将讨论邓肯张本构模型在FLAC3D中的数值实现方法,如如何设置模型参数、如何处理模型的非线性问题等。
通过本文的研究,旨在为FLAC3D用户提供一种在岩土工程数值模拟中应用邓肯张本构模型的有效方法,也为其他岩土工程数值模拟软件的本构模型开发与实现提供借鉴和参考。
本文的研究成果将有助于提高岩土工程数值模拟的准确性和可靠性,推动岩土工程领域的数值模拟研究向更高水平发展。
二、邓肯张本构模型基本理论邓肯张本构模型(Duncan-Chang Model)是一种广泛使用的岩土工程材料本构模型,主要用于描述土的应力-应变关系。
该模型基于土的弹塑性理论,能够模拟土的非线性、弹塑性和剪胀性等行为。
邓肯张本构模型的基本假设包括土的应力-应变关系是非线性的,土的应力路径对其后续行为有影响,以及土的体积变化与其应力状态有关。
模型的核心在于其应力-应变关系的数学描述,其中包括弹性部分和塑性部分。
在弹性部分,邓肯张模型采用了切线弹性模量来描述土的弹性行为,这个模量随着应力的变化而变化,体现了土的非线性弹性特性。
第四章本构模型第一节邓肯-张(Duncan—Chang)模型(1)(2)复合地基的数值解法主要以有限元方法为主,因为有限元法可以较方便地模拟桩土之间的相互作用,较灵活的处理复杂边界条件,而且还比较容易与其他方法相耦合,因此受到学术界的青睐。
(3)其斜率为b ,截距为a 。
有增量广义虎克定律,如果只沿某一方向,譬如Z 方向,给土体施加应力增量ΔZ σ,而保持其他方向的应力不变,可得:E zx σεΔΔ=(4-3) E v zx σεΔΔ-= (4-4)则 x zE εσΔΔ= (4-5)zxv εεΔΔ-= (4-6)邓肯和张利用上述关系推导出弹性模量公式。
由式(4-5)得:()()aa E εσσεσσεσ∂-∂=-==313111ΔΔΔ (4-7) 由此可见虎克定律中所用的弹性模量实际上是常规三轴试验()a εσσ~31-曲线的切线斜率。
这样的模量叫做切线弹性模量,可用t E 表示,见图4-1。
将式(4-1)代入式(3-7),得到:()2a tb a aE ε+= (4-8) 由式(4-2)可得:ba a --=311σσε (4-9)式(4-9)代入式(4-8),得: ()[]23111σσ--=b aE t (4-10) 由式(4-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε (4-11)而双曲线的初始切线模量i E 为:31→⎪⎪⎭⎫ ⎝⎛-=a a i E εεσσ (4-12) 见图4-1。
因此:iE a 1=(4-13) 这里表示a 是初始切线模量的倒数。
在双对数纸上点绘⎪⎭⎫⎝⎛a i P E lg 和⎪⎭⎫ ⎝⎛a P 3lg σ的关系,则近似的为一直线,如图4-3所示。
这里a P 为大气压力。
于是有:na a i P KP E ⎪⎪⎭⎫⎝⎛=3σ (4-14)由式(4-2)还可见,当∞→a ε时()()ua b 313111σσσσε-=-=∞→ (4-15) 试验破坏时的偏应力为()f 31σσ-,则: ()()uf fR 3131σσσσ--=(4-16)f R 叫破坏比将式(4-13),式(4-15),式(4-16)代入式(4-10)得:24.1.2 切线泊松比Kulhawy 和邓肯认为常规三轴试验测得的a ε与()r ε-关系也可用双曲线来拟和,如图4-5所示,点绘a r εε/-与r ε-关系,为一直线,如图4-6所示,其截距为f ,斜率为D ,于是有:可见,()arεε--曲线的切线斜率具有增量泊松比的物理意义,称为切线泊松比,以tv表示。
邓肯-张模型是一个非线性本构模型,既然是一个本构模型,可想而之他反应的是应力与应变之间的关系。
说它是非线性的,那么反映应力应变关系的模量就不是一个常数E那么简单。
在介绍该模型之前,先要介绍一个概念,就是反映非线性关系的增量广义胡克定律: 1123()tt tv d d d d E E σεσσ=-+ (1) 1963年,康纳(Kondner )根据大量土的三轴试验的应力应变关系曲线,提出可以用双曲线拟合出一般土的三轴试验13()~a σσε-曲线,即:13aaa b εσσε-=+ (2)其中,a 、b 为试验常数。
对于常规三轴压缩试验,1a εε=。
邓肯等人根据这一双曲线应力应变关系提出了一种目前被广泛的增量弹性模型,一般被称为邓肯-张(Duncan-Chang )模型。
在常规三轴压缩试验中,13aaa b εσσε-=+可以写成:1113a b εεσσ=+- (3)将常规三轴压缩试验的结果按1113~εεσσ-的关系进行整理,则二者近似成线性关系(见图1)。
其中,a 为直线的截距;b 为直线的斜率。
在常规三轴压缩试验中,由于230d d σσ==,所以切线模量为ε1/(σ1-σ3)1-σ3)ult图11113~εεσσ-线性关系图13211()()t d aE d a b σσεε-==+ (4) 在试验的起始点,10ε=,t i E E =,则:1i E a=,这表明a 表示的是在这个试验中的起始变形模量E i 的倒数。
如果1ε→∞,则: 131()ult bσσ-=(5) 由此可以看出b 代表的是双曲线的渐近线所对应的极限偏差应力13()ult σσ-的倒数。
在土的试样中,如果应力应变曲线近似于双曲线关系,则往往是根据一定的应变值(如115%ε=)来确定土的强度13()f σσ-,而不可能在试验中使1ε无限大,求取13()ult σσ-;对于有峰值点的情况,取1313()()f σσσσ-=-峰,这样1313()()f σσσσ--ult <。
应用MATLAB确定邓肯-张双曲线模型中的K,n参数简介:接合承德中密砂常规三轴试验数据,介绍应用Matlab语言编写计算及绘图程序来处理试验数据的方法,可显著提高试验研究的数据处理效率和结果的可视化程度。
关键字:Matlab 三轴试验邓肯-张模型1 前言基于广义胡克定律的线弹性理论形式简单,参数少,物理意义明确,而且在工程界有广泛深厚的基础,得以应用于许多工程领域中。
早期土力学中的变形计算主要是基于线弹性理论的,只有在计算机得到迅速发展之后,非线性理论模型才得到较广泛的应用。
邓肯-张模型是建立在增量广义胡克定律基础之上的变模量的弹性模型,可以反映土变形的非线性,并在一定程度上反映土变形的弹塑性,很容易为工程界所接受,加之所用参数和材料参数不多,物理意义明确,只需用常规三轴压缩试验即可确定这些参数及材料常数适应的土类比较广,所以该模型为岩土工程界所熟知,并得到了广泛的应用,成为土的最为普及的本构模型之一。
本文主要是应用MATLAB编写计算及绘图程序来处理承德中密砂常规三轴试验数据。
2 基于MATLAB的计算过程实现现场的观测数据经过采集和整理后,按照一定的格式把数据存储在数据文件中,然后可以使用MATLAB丰富的数值运算功能可以非常容易地编制出数据处理程序,先用函数fope n()打开数据文件,fid=fopen(‘filename’,’r’)再用fscanf 函数依次从文件中读取格式化数据来完成对各变量地赋值,其使用语法为:matrix=fscanf(fid,format)。
本文由于数据不是太多,所以在计算过程中没有采取调用存储文件地形式。
直接在计算过程中输入试验数据计算。
2.1 数据的处理对第一组数据,通过编写Matlab语言,由轴向应变和应力差的试验数据可以作出~()和~双曲线关系图形,主要用到的MATLAB命令为:plot(x1,y1);axis([0 0.04 0 3]) ;hold on%(1)plot(x1, x1./y1);a=polyfit(x1, x1./y1,1);t1=0:0.001:0.07;plot(x1, x1./y1,'.',t1,a(1)*t1 +a(2))%(2)其中x1代表第一组轴向应变,x2代表第一组应力差。
研究生课程作业邓肯张模型参数计算学生姓名李俊学科专业岩土工程学号201420105614任课教师周小文教授作业提交日期2014年12月1.计算轴向应变ch h∆∑=1ε式中 1ε-轴向应变;h ∆∑-固结下沉量,由轴向位移计测得0h -土样初始高度c h —按实测固结下沉的试样高度c h ∆—试样固结下沉量2.计算按实测固结下沉的试样高度,面积:式中 Ac -按实测固结下沉的试样面积0V -土样初始体积3.计算剪切过程中试样的平均面积:式中 a A -剪切过程中平均断面积c V -按实测固结下沉的试样的体积i V ∆-排水剪中剪切时的试样体积变化 按体变管或排水管读数求得1h ∆-固结下沉量,由轴向位移计测得 3. 计算主应力差cic h V V A ∆-=01h h V V A c i c a ∆-∆-=Cc c A h V ⨯=1031⨯=-aA CR σσ 式中 31σσ- - 主应力差 1σ―大主应力 3σ-小主应力 C -测力计率定系数 R -测力计读数2 数据处理2.1 3σ=100kPa 数据初步计算当3σ=100kPa 时,各数据初步计算如表1所示。
围压100kPa 数据初步计算表 表12.1.1 由切线模量计算数据 对公式)(311σσε-=a +b 1ε进行直线拟合,如图1所示。
图11131/()~εσσε-拟合曲线 a =0.0002,1i E a==5000kPa b ==0.0028,()131ult bσσ-==263.16kPa ()13f σσ-=204.26kPa ,()()1313f fultR σσσσ-=-=0.77622.1.2 由泊松比计算数据对公式()313/f D εεε-=+-进行直线拟合,如图2所示。
图2 313/~εεε--拟合曲线f=i ν=0.2122 D=2.72972.2 3σ=200kPa 数据初步计算当3σ=200kPa 时,各数据初步计算如表2所示。
土体邓肯—张非线性弹性模型参数反演分析《土体邓肯张非线性弹性模型参数反演分析》是一项重要的科学研究,在这项研究中,研究人员将利用非线性弹性模型的参数反演分析技术,来研究土体的张拉性能。
对于土体的张拉性能,其抗拉强度、塑性性能和力学特征都具有较强的不确定性。
为了克服这种不确定性,非线性弹性模型的参数反演分析技术提供了一种有效的手段,可以在试验过程中获取到准确的参数模型,并进一步深入研究土体的张拉性能。
一、非线性弹性模型的概述非线性弹性模型是一种利用实验测量的参数,结合物理模型的理论模型,用来研究弹性反应的内部结构和行为的模型。
它可以用来描述弹性物质的非线性物性,以及土体张拉时的力学特性。
典型的非线性弹性模型包括邓肯张模型、兰氏莫尔斯模型、HarrisYarwood模型、RiceVangenuchten模型等,其中邓肯张模型是最常用也是最具代表性的模型。
邓肯张模型是一种非线性弹性模型,其物理模型以弹性超塑性为基础,以土体张拉过程中的变形量、压实率及应力量的关系为参数,描述土体张拉过程中的行为特性。
二、参数反演分析技术参数反演分析技术是一种基于回归模型的参数估计的数学方法,可以利用与实验数据相关的模型参数,经过迭代优化,最终得到最佳匹配的参数模型。
非线性弹性模型的参数反演分析技术由实验中获取的非线性参数和迭代优化模型结合而成,可以对非线性弹性模型的参数进行更为准确的反演分析,实现对土体张拉特性和参数之间联系的准确描述。
三、土体邓肯张非线性弹性模型参数反演分析非线性弹性模型的参数反演分析,可以通过试验确定土体张拉过程中的力学特性,并反演出最佳的张拉参数,以深入了解土体的张拉性能。
本文以著名的邓肯张非线性弹性模型为例,通过实验过程,获取相关参数,建立非线性弹性模型,并以最小二乘法、Simplex法等为基础,进行参数反演分析。
经过迭代优化,最终获取到准确的非线性弹性模型参数,从而对土体的张拉性能更为准确的描述。