平面向量的概念及线性运算-高考理科数学试题
- 格式:doc
- 大小:152.00 KB
- 文档页数:5
考点测试26 平面向量的概念及线性运算高考概览考纲研读1.了解向量的实际背景2.理解平面向量的概念,理解两个向量相等的含义3.理解向量的几何表示4.掌握向量加法、减法的运算,并理解其几何意义5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义6.了解向量线性运算的性质及其几何意义一、基础小题1.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a+(-b).正确的个数是( )A.2 B.3 C.4 D.5答案 D解析由零向量和相反向量的性质知①②③④⑤均正确.2.若m∥n,n∥k,则向量m与向量k( )A.共线 B.不共线C.共线且同向 D.不一定共线答案 D解析如m∥0,0∥k,但k与m可能共线也可能不共线,故选D.3.如图,正六边形ABCDEF中,++=( )A.0B.C.D.答案 D解析++=++=.故选D.4.下列命题正确的是( )A.若|a|=|b|,则a=±b B.若|a|>|b|,则a>bC.若a∥b,则a=b D.若|a|=0,则a=0答案 D解析对于A,当|a|=|b|,即向量a,b的模相等时,方向不确定,故a=±b不一定成立;对于B,向量的模可以比较大小,但向量不可以比较大小,B不正确;C显然不正确.故选D.5.关于平面向量,下列说法正确的是( )A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一的C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量D.共线向量就是相等向量答案 C解析对于A,零向量是有方向的,其方向是任意的,故A不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C正确;对于D,由共线向量和相等向量的定义可知D不正确,故选C.6.已知m,n∈R,a,b是向量,有下列命题:①m(a-b)=ma-mb;②(m-n)a=ma-na;③若ma=mb,则a=b;④若ma=na,则m=n.其中正确的是( )A.①②③ B.①③④ C.②③④ D.①②答案 D解析由数乘向量的运算律知,数乘向量对数和向量都有分配律,所以①②正确;当m=0时,a,b不一定相等,当a=0时,m,n未必相等,所以③④错误.故选D.7.已知向量a=e1+2e2,b=2e1-e2,则a+2b与2a-b( )A.一定共线B.一定不共线C.当且仅当e1与e2共线时共线D.当且仅当e1=e2时共线答案 C解析由a+2b=5e1,2a-b=5e2可知,当且仅当e1与e2共线时,两向量共线.故选C.8.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa=0(λ为实数),则λ必为零;③λ,μ为实数,若λa=μb,则a与b共线.其中错误的命题的个数为( )A.0 B.1 C.2 D.3答案 D解析①错误,两向量共线要看其方向而不是起点或终点;②错误,当a=0时,不论λ为何值,λa=0;③错误,当λ=μ=0时,λa=μb=0,此时a与b可以是任意向量.错误的命题有3个,故选D.9.已知向量a,b是两个不共线的向量,若向量m=4a+b与n=a-λb共线,则实数λ的值为( )A.-4 B.- C. D.4答案 B解析因为向量a,b是两个不共线的向量,所以若向量m=4a+b与n=a-λb共线,则4×(-λ)=1×1,解得λ=-,故选B.10.已知a,b是不共线的向量,=λa+b,=a+μb,λ,μ∈R,则A,B,C三点共线的充要条件为( )A.λ+μ=2 B.λ-μ=1C.λμ=-1 D.λμ=1答案 D解析∵A,B,C三点共线,∴∥,设=m(m≠0),则λa+b=m(a+μb),∴∴λμ=1,故选D.11.已知点M是△ABC的边BC的中点,点E在边AC上,且=2,则=( )A.+ B.+C.+ D.+答案 C解析如图,∵=2,∴=+=+=+(-)=+.故选C.12.已知在四边形ABCD中,O是四边形ABCD内一点,=a,=b,=c,=a-b+c,则四边形ABCD的形状为( )A.梯形 B.正方形C.平行四边形 D.菱形答案 C解析因为=a-b+c,所以=c-b,又=c-b,所以∥且||=||,所以四边形ABCD是平行四边形.故选C.二、高考小题13.(2015·全国卷Ⅰ)设D为△ABC所在平面内一点,=3,则( )A.=-+ B.=-C.=+ D.=-答案 A解析=+=++=+=+(-)=-+.故选A.14.(2018·全国卷Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( ) A.- B.-C.+ D.+答案 A解析根据向量的运算法则,可得=-=-=-(+)=-,故选A.15.(2015·安徽高考)△ABC是边长为2的等边三角形,已知向量a,b满足=2a,=2a+b,则下列结论正确的是( )A.|b|=1 B.a⊥bC.a·b=1 D.(4a+b)⊥答案 D解析∵=2a,=2a+b,∴a=,b=-=,∵△ABC是边长为2的等边三角形,∴|b|=2,a·b=·=-1,故a,b不垂直,4a+b=2+=+,故(4a+b)·=(+)·=-2+2=0,∴(4a +b)⊥,故选D.16.(2015·北京高考)在△ABC中,点M,N满足=2,=.若=x+y,则x=________;y =________.答案-解析如图在△ABC中,=++=-++=-++(-)=-.∴x=,y=-.三、模拟小题17.(2018·河北张家口月考)如图,在正六边形ABCDEF中,++=( )A.0B.C.D.答案 A解析在正六边形ABCDEF中,CD∥AF,CD=AF,所以++=++=+=0,故选A.18.(2018·邯郸摸底)如图,在△ABC中,已知D为边BC的中点,E,F,G依次为线段AD 从上至下的3个四等分点,若+=4,则( )A.点P与图中的点D重合B.点P与图中的点E重合C.点P与图中的点F重合D.点P与图中的点G重合答案 C解析由平行四边形法则知+=2,又由+=4知2=4,即=2,所以P为AD的中点,即点P与点F重合.故选C.19.(2018·怀化一模)已知向量a,b不共线,向量=a+3b,=5a+3b,=-3a+3b,则( ) A.A,B,C三点共线 B.A,B,D三点共线C.A,C,D三点共线 D.B,C,D三点共线答案 B解析因为=+=2a+6b=2(a+3b)=2,所以,共线,又有公共点B,所以A,B,D三点共线.故选B.20.(2018·河南中原名校联考)如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,=3E,F为AE的中点,则=( )A.- B.-C.-+ D.-+答案 C解析=+=+=-+++=-+++=-+++(++)=-+.故选C.21.(2018·深圳模拟)如图所示,正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=( )A. B.C. D.2答案 B解析因为=λ+μ=λ(+)+μ(+)=λ++μ(-+)=(λ-μ)+λ+μ,且=+,所以得所以λ+μ=,故选B.22.(2018·福建高三4月质检)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A,B,C,D,E为顶点的多边形为正五边形,且=.下列关系中正确的是( )A.-= B.+=C.-= D.+=答案 A解析由题意得,-=-===,所以A正确;+=+==,所以B错误;-=-==,所以C错误;+=+,==-,若+=,则=0,不符合题意,所以D错误.故选A.23.(2018·银川一模)设点P是△ABC所在平面内一点,且+=2,则+=________.答案0解析因为+=2,由平行四边形法则知,点P为AC的中点,故+=0.24.(2018·衡阳模拟)在如图所示的方格纸中,向量a,b,c的起点和终点均在格点(小正方形顶点)上,若c与xa+yb(x,y为非零实数)共线,则的值为________.答案解析设e1,e2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c=e1-2e2,a=2e1+e2,b=-2e1-2e2,由c与xa+yb共线,得c=λ(xa+yb),所以e1-2e2=2λ(x -y)e1+λ(x-2y)e2,所以所以则的值为.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2018·山东莱芜模拟)如图,已知△OCB中,B,C关于点A对称,OD∶DB=2∶1,DC 和OA交于点E,设=a,=b.(1)用a和b表示向量,;(2)若=λ,求实数λ的值.解(1)由题意知,A是BC的中点,且=,由平行四边形法则,得+=2.∴=2-=2a-b,∴=-=(2a-b)-b=2a-b.(2)∵∥,=-=(2a-b)-λa=(2-λ)a-b,=2a-b,∴=,∴λ=.2.(2018·河南安阳模拟)如图所示,在△ABC中,在AC上取一点N,使得AN=AC,在AB 上取一点M,使得AM=AB,在BN的延长线上取点P,使得NP=BN,在CM的延长线上取点Q,使得=λ时,=,试确定λ的值.解∵=-=(-)=(+)=,=-=+λ.又∵=,∴+λ=,即λ=,∴λ=.。
2020年高考数学(理)总复习:平面向量题型一 平面向量的概念及线性运算 【题型要点】对于利用向量的线性运算、共线向量定理和平面向量基本定理解决“用已知向量(基向量)来表示一些未知向量”的问题.解决的关键是:①结合图形,合理运用平行四边形法则或三角形法则进行运算;②善于用待定系数法【例1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2【解析】 如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z =0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z 的最大值是3,即λ+μ的最大值是3.【答案】 A【例2】.点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,设△OBC 与△ABC 的面积分别为S 1、S 2,则S 1S 2=( )A.18B.16C.14D.12【解析】 延长OC 到D ,使OD =4OC ,延长CO 交AB 于E .∵O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,∴OD →+OA →+OB →=0,∴O 为△DAB 重心,E 为AB 中点,∴OD ∶OE =2∶1,∴OC ∶OE=1∶2,∴CE ∶OE =3∶2,∴S △AEC =S △BEC ,S △BOE =2S △BOC .∵△OBC 与△ABC 的面积分别为S 1、S 2,∴S 1S 2=16.故选B.【答案】 B .题组训练一 平面向量的概念及线性运算1.在梯形ABCD 中,AB →=3DC →,则BC →等于( ) A .-13AB →+23AD →B .-23AB →+43AD →C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形,则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【答案】 D2.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++C O B O A O22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】 如图所示:设AB 的中点是E ,∵O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,∵2EO →=OC →, ∴OP →=13()4EO →+OE →=EO →,∴P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【答案】 B3.设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【答案】 B题型二 平面向量的平行与垂直 【题型要点】(1)设a =(x 1,y 1),b =(x 2,y 2): ①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)设非零向量a =(x 1,y 1),b =(x 2,y 2):a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (3)利用向量平行或垂直的充要条件可建立方程或函数是求参数的取值.【例3】已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( )A.9 B.3C.109 D.310【解析】向量a=(2,-4),b=(-3,x),c=(1,-1),∴2a+b=(1,x-8),由(2a+b)⊥c,可得1+8-x=0,解得x=9.则|b|=(-3)2+92=310.故选D.【答案】 B【例4】.已知a=(3,2),b=(2,-1),若λa+b与a+λb平行,则λ=________.【解析】∵a=(3,2),b=(2,-1),∴λa+b=(3λ+2,2λ-1),a+λb=(3+2λ,2-λ),∵λa+b∥a+λb,∴(3λ+2)(2-λ)=(2λ-1)(3+2λ),解得λ=±1【答案】±1题组训练二平面向量的平行与垂直1.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________.【解析】由|a+b|2=|a|2+|b|2,得a⊥b,所以m×1+1×2=0,解得m=-2.【答案】-22.已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()A.55 B.15C.-55D.-15【解析】∵a=(3,1),b=(1,3),c=(k,-2),∴a-c=(3-k,3),∵(a-c)∥b,∴(3-k)·3=3×1,∴k=2,∴a·c=3×2+1×(-2)=4,∴|a|=10,|c|=22,∴cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A. 【答案】 A题型三 平面向量的数量积 【题型要点】(1)涉及数量积和模的计算问题,通常有两种求解思路: ①直接利用数量积的定义; ②建立坐标系,通过坐标运算求解.(2)在利用数量积的定义计算时,要善于将相关向量分解为图形中模和夹角已知的向量进行计算.求平面向量的模时,常把模的平方转化为向量的平方.【例5】在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2D .211【解析】如图,取AE 的中点G ,连接BG ∵AE →=23AD →,BF →=13BC →,∴AG →=12AE →=13AD →=13BC →=BF →,∴EF →=GB →,∴|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,∴|EF →|=|GB →|=25,故选B. 【答案】 B【例6】.已知A ,B 是圆O :x 2+y 2=4上的两个动点,|AB →|=2,OC →=53OA →-23OB →.若M是线段AB 的中点,则OC →·OM →的值为( )A .3B .2 3C .2D .-3【解析】 因为点M 是线段AB 的中点,所以OM →=12()OA →+OB →,|OA =|OB |=|AB |=2,所以△ABC 是等边三角形,即〈OA →,OB →〉=60°,OA →·OB →=2×2×cos60°=2,OC →·OM →=⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛-B O A O B O A O21213235=56OA →2-13OB 2+12OA →·OB → =56×22-13×22+12×2=3,故选A. 【答案】 A题组训练三 平面向量的数量积1.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( )A .-2B .-32C .-43D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ) 所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32 当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.【答案】 B2.已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB 的夹角为60°,且OC →⊥AB →,则实数mn的值为( )A.16B.14 C .6D .4【解析】 OA →·OB →=3×2×cos60°=3, ∵OC →=mOA →+nOB →,OC →⊥AB →,∴(mOA →+nOB →)·AB →=(mOA →+nOB →)·(OB →-OA →)=(m -n )OA →·OB →-mOA →2+nOB →2=0,∴3(m -n )-9m +4n =0,∴m n =16,故选A.【答案】 A题型四 数与形相辅相成求解向量问题【例7】 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1] 【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.∴|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解. 如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),∴OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, ∴OA →+OB →+OD →=OD →-ON →=ND →,∴|OA →+OB →+OD →|=|ND →|,∴|ND →|max =|NC →|+1=7+1,|ND →|min =7-1. 【答案】 D题组训练四 数与形相辅相成求解向量问题已知|b |=1,非零向量a 满足〈a ,b -a 〉=120°,则|a |的取值范围是________. 【解析】如图,设CA →=b ,CB →=a ,则b -a =BA →,在△ABC 中,AC =1,∠ABC =60°. 根据圆的性质:同弧所对的圆周角相等.作△ABC 的外接圆,当BC 为圆的直径时,|a |最大,此时|a |=BC =1sin 60°=233; 当B ,C 无限接近时,|a |=BC →0.故|a |的取值范围是⎥⎦⎤⎝⎛332,0 【答案】 ⎥⎦⎤⎝⎛332,0 【专题训练】 一、选择题1.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A .9 B .3 C.109D .310【解析】 向量a =(2,-4),b =(-3,x ),c =(1,-1),∴2a +b =(1,x -8), 由(2a +b )⊥c ,可得1+8-x =0,解得x =9.则|b |=(-3)2+92=310.故选D. 【答案】 D2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3D .4【解析】 ∵向量a =(1,k ),b =(2,2), ∴a +b =(3,k +2),又a +b 与a 共线. ∴(k +2)-3k =0,解得k =1,∴a ·b =(1,1)·(2,2)=1×2+1×2=4,故选D. 【答案】 D3.设向量a ,b 满足|a |=1,|b |=2,且a ⊥(a +b ),则向量a 在向量a +2b 方向上的投影为( )A .-1313B.1313C .-113D.113【解析】∵a ⊥(a +b ),∴a ·(a +b )=1+a ·b =0,∴a ·b =-1,∴|a +2b |2=1+4a ·b +16=13,则|a +2b |=13,又a ·(a +2b )=a ·(a +b )+a ·b =-1,故向量a 在向量a +2b 方向上的投影为-113=-1313.选A.【答案】 A4.已知A ,B ,C 是圆O 上的不同的三点,线段CO 与线段AB 交于点D ,若OC →=λOA →+μOB →(λ∈R ,μ∈R ),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0)【解析】 由题意可得OD →=kOC →=kλOA →+kμOB →(0<k <1),又A ,D ,B 三点共线可得kλ+kμ=1,则λ+μ=1k>1,即λ+μ的取值范围是(1,+∞),故选B.【答案】 B5.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则mn=( ) A .-3 B .-13C.13D .3【解析】 过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →=-26BC →+BA →=-13BC →+BA →,所以m n =1-13=-3.【答案】 A6.如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).∵AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫⎝⎛+-μλμλ2,2,∴⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,∵M ,N 分别为BC ,CD 的中点,∴AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【答案】 D7.如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b ∈R ),则ab 的值为( )A.14 B .1 C.12D.18【解析】由题意易知E 1(2,1),E 2(2,-1),∴e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,∴(2a +2b )24-(a -b )2=1,整理可得4ab =1,∴ab=14. 【答案】 A8.在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a 满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3D.6+2+1【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3),∴|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点,求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【答案】 B9.已知锐角△ABC 的外接圆的半径为1,∠B =π6,则BA →·BC →的取值范围为__________.【解析】 如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,∠B =π6.由正弦定理得a sin A =c sin C =2,∴a =2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,∴BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A =32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. ∵π3<A <π2,∴π3<2A -π3<2π3,∴32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,∴3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32.∴BA →·BC →的取值范围为⎥⎦⎤⎝⎛+233,3. 【答案】 ⎥⎦⎤ ⎝⎛+233,310.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【解析】 因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心.【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( )A .4B .2C .2 2D .2 3【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m ⊗OP →+n ⇒(x ,y )=⎪⎭⎫ ⎝⎛4,21⊗(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π⇒(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π⇒⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π⇒y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x ∈⎥⎦⎤⎢⎣⎡3,6ππ时, 由π6≤x ≤π3⇒π3≤2x ≤2π3⇒0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1⇒2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 【答案】 A 二、填空题12.如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n ∈R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB→+13AD →,又AC →=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12⇒m +n =32.故应填答案32.【答案】 3213.若函数f (x )=2sin ⎪⎭⎫⎝⎛+48ππx (-2<x <14)的图象与x 轴交于点A ,过点A 的直线l与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.【解析】 ∵-2<x <14,∴f (x )=0的解为x =6,即A (6,0),而A (6,0)恰为函数f (x )图象的一个对称中心,∴B 、C 关于A 对称,∴(OB →+OC →)·OA →=2OA →·OA →=2|OA |2=2×36=72. 【答案】 7214.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则|P A →|2+|PB →|2|PC →|2=________.【解析】 建立如图所示的平面直角坐标系, 设|CA →|=a ,|CB →|=b ,则A (a,0),B (0,b ) ∵点D 是斜边AB 的中点,∴D ⎪⎭⎫⎝⎛2,2b a , ∵点P 为线段CD 的中点,∴P ⎪⎭⎫⎝⎛4,4b a ∴|PC →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛b =a 216+b 216|PB →|2=24⎪⎭⎫ ⎝⎛a +24⎪⎭⎫ ⎝⎛-b b =a 216+9b 216|P A →|2=24⎪⎭⎫ ⎝⎛-a a +24⎪⎭⎫ ⎝⎛b =9a 216+b 216∴|P A →|2+|PB →|2=9a 216+b 216+a 216+9b 216=10⎪⎪⎭⎫ ⎝⎛+161622b a =10|PC →|2,∴|P A →|2+|PB →|2|PC →|2=10.【答案】 1015.在△ABC 中,AB ⊥AC ,AB =1t ,AC =t ,P 是△ABC 所在平面内一点,若AP →=4AB →|AB →|+AC →|AC →|,则△PBC 面积的最小值为________.【解析】 由题意建立如图所示的坐标系,可得A (0,0),B ⎪⎭⎫ ⎝⎛0,1t ,C (0,t ),∵AP →=4AB →|AB →|+AC →|AC →|=(4,0)+(0,1)=(4,1),∴P (4,1);又|BC |=221⎪⎭⎫⎝⎛+t t ,BC 的方程为tx +y t =1,∴点P 到直线BC 的距离为d =221114⎪⎭⎫ ⎝⎛+-+t t t t ,∴△PBC 的面积为S =12·|BC |·d=12·221⎪⎭⎫ ⎝⎛+t t ·221114⎪⎭⎫ ⎝⎛+-+t t t t=12|4t +1t -1|≥12·|24t ·1t -1|=32, 当且仅当4t =1t ,即t =12时取等号,∴△PBC 面积的最小值为32.【答案】 32。
专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。
5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示基础篇固本夯基考点一平面向量的概念及线性运算1.(2017课标Ⅱ,4,5分)设非零向量a,b满足|a+b|=|a-b|,则( )A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案 A2.(2022届江西重点中学联考二,5)设e1,e2是两个不共线的平面向量,若a=3e1-2e2,b=e1+ke2,且a与b共线,则实数k的值为( )A.-12B.12C.-23D.23答案 C3.(2018课标Ⅰ,6,5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗C.34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.14EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +34EE⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 A4.(2021宁夏吴忠4月模拟,5)如图所示,平行四边形ABCD的对角线相交于点O,E为AO的中点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ,μ∈R),则λ+μ等于( )A.1B.-1C.12D.-12答案 D5.(2021陕西延安重点中学模拟,6)设M是△ABC所在平面上的一点,且EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +32EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +32EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D是AC的中点,则|EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的值为( )A.13B.12C.1D.2答案 A6.(2020吉林梅河口五中4月模拟,5)在△ABC中,延长BC至点M使得BC=2CM,连接AM,点N为AM上一点且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ+μ=()A.13B.12C.-12D.-13答案 A7.(2022届山西吕梁11月月考,9)如图,△ABC中,点M是BC的中点,点N满足EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AM 与CN交于点D,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ=()A.23B.34C.45D.56答案 C8.(2022届安徽淮南一中月考,9)已知点M是△ABC所在平面内一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则△ABM与△BC M的面积之比为( )A.83B.52C.2D.43答案 C9.(2022届黑龙江八校期中,13)如图,在△ABC中,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,D是BE上的点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数x的值为.答案19考点二平面向量基本定理及坐标运算1.(2022届哈尔滨三中期中,3)已知对任意的平面向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(a,b),把EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ 绕其起点A沿逆时针方向旋转角φ得到向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(acosφ-bsinφ,asinφ+bcosφ),叫做把点B绕点A沿逆时针方向旋转角φ得到点P.已知A(1,2),B(1-√2,2+2√2),把点B绕点A沿逆时针方向旋转π4得到点P,则点P的坐标为( )A.(-3,1)B.(-2,1)C.(2,3)D.(-2,3)答案 D2.(2021云南统一检测一,7)已知向量a=(32,1),b=(-12,4),则( )A.a∥(a-b)B.a⊥(a-b)C.(a-b)∥(a+b)D.(a-b)⊥(a+b)答案 B3.(2020陕西咸阳一模,3)在平面直角坐标系中,O为坐标原点,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,12),若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ 绕点O逆时针旋转60°得到向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( ) A.(0,1) B.(1,0)C.(√32,-12) D.(12,-√32)答案 A4.(2022届江苏南通如皋调研,7)如图,已知OA=2,OB=2,OC=1,∠AOB=60°,∠BOC=90°,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE=( )A.√3B.12C.√33D.23答案 C5.(2022届四川绵阳中学模拟二,5)设向量EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-2),EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(a,-1),EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则1E +2E的最小值为( )A.4B.6C.8D.9答案 C6.(2021全国甲,14,5分)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则k= .答案-1037.(2018课标Ⅲ,13,5分)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=.答案128.(2019上海,9,5分)过曲线y2=4x的焦点F并垂直于x轴的直线分别与曲线y2=4x交于A、B,A在B上方,M为抛物线上一点,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(λ-2)EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ=.答案 39.(2022届云南五华模拟,15)如图,在矩形ABCD中,AB=4,AD=3,以CD为直径的半圆上有一点P,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ+μ的最大值为.答案73综合篇知能转换考法一平面向量线性运算的解题策略1.(2021广西百色重点中学4月模拟,5)已知点P为△ABC所在平面内一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,点Q是线段BP的中点,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13EE⃗⃗⃗⃗⃗⃗⃗⃗⃗C.16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ -16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ D.23EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +16EE⃗⃗⃗⃗⃗⃗⃗⃗⃗答案 D2.(20215·3原创题)△ABC中,点M为AC上的点,且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则1 E -1E的值为( )A.0B.-32C.1D.-1答案 B3.(2022届福州福清西山学校10月月考,8)我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.54a+35bB.35a+45bC.1225a+925bD.1625a+1225b 答案 D4.(2022届河南段考三)已知△ABC 的三个内角分别为A,B,C,动点P 满足EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ·(EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |sin E +EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗|EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |sin E),λ∈(0,+∞),则动点P 的轨迹一定经过△ABC 的( )A.重心B.垂心C.内心D.外心 答案 A5.(2021赣中南五校联考二,15)已知△ABC 的重心为G,过G 点的直线与边AB 和AC 的交点分别为M 和N,若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,且△AMN 与△ABC 的面积的比值为2554,则实数λ= .答案 5或546.(2017江苏,12,5分)如图,在同一个平面内,向量EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模分别为1,1,√2,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7,EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 与EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角为45°.若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =m EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +n EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (m,n∈R),则m+n= .答案 3考法二 向量共线问题的求解方法1.(2021山西孝义二模,6)已知EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,cosα),EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,0),EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2sinα),若A,B,D 三点共线,则tanα=( )A.-2B.-12C.12D.2答案 A2.(2021太原一模,6)已知梯形ABCD 中,AB∥DC,且AB=2DC,点P 在线段BC 上,若EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =56EE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λEE ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数λ=( )A.34 B.23 C.13 D.12 答案 C3.(2021江西上饶2月联考,10)在三角形ABC中,E、F分别为AC、AB上的点,BE与CF交于点Q,且EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,延长AQ交BC于点D,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则λ的值为( ) A.3 B.4 C.5 D.6答案 C4.(2022届河南平顶山月考,10)已知点O为正△ABC所在平面上一点,且满足EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +(1+λ)EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,若△OAC的面积与△OAB的面积比为1∶4,则λ的值为( )A.12B.13C.2D.3答案 B5.(2022届拉萨中学月考,15)在△ABC中,点D满足BD=34BC,E点在线段AD上移动,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +μEE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则t=(λ-1)2+μ2的最小值是.答案9106.(2020吉林桦甸四中等4月联考,15)在△ABC中,EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =3EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,P为线段AM上任意一点,若EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y EE⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x2+2x+y2的最小值为.答案916应用篇知行合一应用向量在物理中的应用1.(2021山西长治二中月考,3探索创新情境)已知两个大小相等的共点力F1,F2,当它们的夹角为90°时,合力大小为20N,当它们的夹角为120°时,合力大小为( )A.40NB.10√2NC.20√2ND.40√2N答案 B2.(2021咸阳模拟,9生活实践情境)渭河某处南北两岸平行,如图所示.某艘游船从南岸码头A出发向北航行到北岸.假设游船在静水中航行速度大小为|v1|=10km/h,水流速度的大小为|v2|=6km/h.设速度v1与速度v2的夹角为120°,北岸的点A'在码头A的正北方向,那么该游船航行到达北岸的位置应( )A.在A'东侧B.在A'西侧C.恰好与A'重合D.无法确定答案 A。
2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。
专题5.1 平面向量的概念及线性运算真题回放1.【2017年高考新课标Ⅱ卷文4题】设非零向量a ,b 满足+=-b b a a 则 ( ) A.a ⊥b B. =b a C. a ∥b D. >b a 【答案】A2.【2016年高考山东理8题】已知非零向量m ,n 满足4|m |=3|n |,cos ,m n =13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4(C )94(D )–94【答案】B【考点】平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从n ⊥(t m +n )出发,转化成为平面向量的数量积的计算.本题能较好地考查考生转化与化归思想、基本运算能力等.3.【2016年高考北京理4题】设,a b 是向量,则“||||=a b ”是“||||+=-a b a b ”的 (A ) 充分而不必要条件 (B )必要而不充分条件(C ) 充分必要条件 (D )既不充分也不必要条件 【答案】D【考点】充要条件,向量运算【名师点睛】由向量数量积的定义||||cos θ⋅=⋅⋅a b a b (θ为a ,b 的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法. 考点分析融会贯通题型一 平面向量的概念典例1 (2016-2017年河北武邑中学高二文周考)点C 在线段AB上,且,则ACuuu r 等于( )【答案】D【解析】因为点C 在线段AB 上,所以AC uuu r 等于 D.考点:向量的相等. 解题技巧与方法总结平面向量的概念问题需要牢牢抓住平行向量(共线向量)、相等向量、相反向量的概念及特征,需要注意平行向量可以包含两个向量重合的情况,这点需要与直线平行加以区别【变式训练1】(2016-2017学年河北武邑中学高一上学期月考)下列说法正确的是( ) A .零向量没有方向 B .单位向量都相等 C .任何向量的模都是正实数 D .共线向量又叫平行向量 【答案】D考点:向量的概念.【变式训练2】设a r是非零向量,λ是非零实数,下列结论中正确的是( )A .a r 与λa r的方向相反 B .a r 与2λa r 的方向相同 C .|-λa r |≥| a r|D .|-λa r |≥| λ|·a r【答案】B【解析】对于A ,当λ>0时,a r 与λa r 的方向相同,当λ<0时,a r 与λa r的方向相反,B 正确;对于C ,|-λa r |=|-λ|| a r |,由于|-λ|的大小不确定,故|-λa r |与| a r|的大小关系不确定;对于D ,|λ| a r 是向量,而|-λa r|表示长度,两者不能比较大小.【变式训练3】(2015-2016学年江西上饶铅山县一中高一下学期期中)下列关系式正确的是 ( )A. 0AB BA +=uu u r uu r rB. a b ⋅r r是一个向量 C. AB AC BC -=uu u r uuu r uu u r D. 00AB ⋅=uu u r r【答案】D 【解析】试题分析:A 相反向量的和为零向量,所以A 不正确;B 两向量的数量积是一个实数,所以B 不正确;C 根据向量的减法的三角形法则,得CB AC =-AB ,故C 不正确;D 零与任何向量的数量积等等于零向量,故D 正确.考点:平面向量的线性运算;向量的数量积的定义及其性质.1.向量:既有大小又有方向的量叫作向量.向量的大小叫向量的长度(或模).2.几个特殊的向量(1)零向量:长度为零的向量,记作0,其方向是任意的. (2)单位向量:长度等于1个单位长度的向量.(3)平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线.(4)相等向量:长度相等且方向相同的向量. (5)相反向量:长度相等且方向相反的向量.典例2 (青海省平安县第一高级中学2015~2016课后练习)设向量,a b rr 不平行,向量a b λ+r r 与2a b +r r平行,则实数λ=___________【答案】12考点:向量平行的条件 解题技巧与方法总结(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量,a b r r共线是指存在不全为零的实数12,λλ,使120a b λλ+=r r r 成立;若120a b λλ+=r r r ,当且仅当12λλ==0时成立,则向量,a b r r不共线.【变式训练1】(青海省平安县第一高级中学2015~2016课后练习)已知向量i r 与j r不共线,且,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线,则实数,m n 满足的条件是( )A. 1m n +=B. 1m n +=-C. 1mn =D. 1mn =-【解析】法一:Q ,,1AB i m j AD ni j m =+=+≠u u u r r r u u u r r r,若,,A B D 三点共线且,,A B D 三点共线所以存在非零实数λ,使AB AD λ=uu u r uuu r即()i m j ni j λ+=+r r r rQ i r 与j r不共线所以1n m λλ=⎧⎨=⎩1n m λλ⎧=⎪⇒⎨⎪=⎩∴1mn =法二:由题可得, AB CD uu u r uu u rP∴AB AD λ=uu u r uuu r∴11m n = ∴1mn =考点:向量共线定理【变式训练2】已知(1,0),(2,1)a b ==r r(1) 当k 为何值时,ka b -r r 与2a b +r r共线?(2) 若23AB a b =+uu u r r r ,BC a mb =+uu u r r r,且,,A B C 三点共线,求m 的值【答案】1-232(2)Q ,,A B C 三点共线AB BC ∴u u u r u u u rP故存在实数λ,使得AB BC λ=uu u r uu u r()23a b a mb λ+=+r r r r∴2λ=,32m =考点:向量的运算法则、共线定理 知识链接:平行向量:方向相同或相反的非零向量,平行向量又称为共线向量,规定0与任一向量共线. 两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =λa . 题型二 向量的线性运算 命题点1 简单的向量线性运算典例 (吉林省吉林大学附属中学2017届高三第五次摸底考试数学(理))在梯形ABCD 中,3AB DC =uu u r uuu r ,则BC uu u r等于( )【答案】D解题技巧与方法总结(1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系;④化简结果.【变式训练1】(河南省商丘市九校2016-2017学年高一下学期期中)如图12,e e u r u r为互相垂直的单位向量,向量a b c ++r r r可表示为( )A. 1223e e +u r u rB. 1232e e +u r u rC. 1232e e -u r u rD. 1233e e --u r u r【答案】B【解析】 1212122,2,2a e e b e e c e e =+=-=+u r u r u r u r u r u r r r r ,故 1232a b c e e ++=+u r u rr r r .知识链接:平面向量的基本定理如果12,e e u r u r是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数21,λλ使:1122a e e λλ=+r u r u r 其中不共线的向量12,e e u r u r叫做表示这一平面内所有向量的一组基底【变式训练2】(北京市东城区2017届高三5月综合练习(二模)数学理)设,a b rr 是非零向量,则“,a b rr 共线”是“ )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B命题点2 向量线性运算运用典例 (山东省淄博市临淄中学2016-2017学年高二上学期期末考试数学(理)试题)如图在空间四边形 OABC 中,点M 在OA 上,且 2OM MA = , N 为BC 中点,则MN uuu r等于( )A.121232OA OB OC -+uu ruu u r uuu r B.211322OA OB OC -++uu r uuu r uuu r C.111222OA OB OC +-uu ruu u r uuu r D.221332OA OB OC+-uu ruu u r uuu r【答案】B【名师点睛】进行向量的运算时,要尽可能转化到平行四边形或三角形中,选用从同一点出发的基本量或首尾相接的向量,运用向量的加减运算及数乘来求解,充分利用相等的向量,相反的向量和线段的比例关系,把未知向量转化为与已知向量有直接关系的向量来解决 【变式训练1】如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12b B.12a -bC .a +12b D.12a +b【答案】D【解析】连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【变式训练2】如图所示,设P 、Q 为△ABC 内的两点,且=+,=+,则△ABP与△ABQ 的面积之比为 .【答案】知识链接:1.向量加法:求两个向量和的运算叫做向量的加法,例AB BC AC +=uu u r uu u r uuu r(1)0+0a a a =+=r r r r r;(2)向量加法满足交换律与结合律;2.向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则. 向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”. 3.向量的减法 :向量a r 加上b r 的相反向量叫做a r 与b r的差,记作:()a b a b -=+-r r r r 求两个向量差的运算,叫做向量的减法4.作图法:a b -r r 可以表示为从b r 的终点指向a r 的终点的向量(a r 、b r有共同起点)命题点3 向量线性运算求参数值或取值范围典例 1(黑龙江省齐齐哈尔市第一中学校2016-2017学年高一3月月考数学(理)试题)已知在ABC ∆中,点在边上,且2,CD DB CD r AB sAC ==+u u u r u u u r u u u r u u u r u u u r,则的值为( ) A. 0 B. D. 3- 【答案】A【解析】分析试题由已知可得:()22223333CD CB AB AC AB AC ==-=-uu u r uu r uu u r uuu r uuu r uuu r ,所以=点睛:向量的线性运算,注意理解加法的三角形法则和平行四边形法则以及减法法则的运用. 【变式训练1】(2013·江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【答案】12【变式训练2】在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为 ( )A. 12B. 13C. 14D .1【答案】A【解析】∵M 为BC 上任意一点,∴可设AM →=x AB →+y AC →(x +y =1).∵N 为AM 的中点,∴AN →=12AM →=12x AB →+12y AC →=λ AB →+μ AC →,∴λ+μ=12(x +y )=12.知识链接:三点共线的性质定理:(1)若平面上三点A 、B 、C 共线,则AB →=λBC →.(2)若平面上三点A 、B 、C 共线,O 为不同于A 、B 、C 的任意一点,则OC →=λOA →+μOB →,且λ+μ=1.典例2【2014届广东省东莞市高三第二次模拟考试】如图所示,A 、B 、C 是圆O 上的三点,CO 的延长线与线段AB 交于圆内一点D ,若OC =uuu r xOA yOB +uu r uu u r,则 ( )A.01x y <+<B.1x y +>C.1x y +<-D.10x y -<+<【答案】C【变式训练】(2014北京东城高三期末)在直角梯形ABCD 中,90,30,2,A B A BB C ∠=︒∠=︒==,点E 在线段CD 上,若AE AD AB μ=+uu u r uuu r uu u r,则实数μ的取值范围是 .【答案】102⎡⎤⎢⎥⎣⎦, 【解析】由题意可求得1,AD CD ==2AB DC =uu u r uuu r.因为点E 在线段CD 上,所以DE DC λ=uuu r uuu r(01λ≤≤).因为AE AD DE =+uu u r uuu r uuu r ,又AE AD AB μ=+uu u r uuu r uu u r =2AD DC μ+u u u r u u u r =2AD DE μλ+uuur uuu r ,所以2μλ=1,即μ=2λ.因为0≤λ≤1,所以0≤μ≤12.知识交汇例1 如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.【答案】3【交汇技巧】本题将向量的共线定理与三角形重心的性质进行结合,三角形重心是三条边中线的交点,另外本题还结合了方程思想,通过消去λ得到m ,n 之间的关系例2 已知点O 为△ABC 外接圆的圆心,且0OA OB CO ++=uu r uu u r uu u r r,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120°【答案】A【解析】 由0OA OB CO ++=uu r uu u r uu u r r 得OA OB OC +=uu r uu u r uuu r,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知四边形OACB 为菱形,且∠CAO =60°,故A =30°.【交汇技巧】三角形外接圆的圆心是三角形三条边垂直平分线的交点,到三个顶点距离相等,结合0OA OB CO ++=uu r uu u r uu u r r可得四边形OACB 为平行四边形的条件,得出四边形OACB 为菱形,从而求出角A 的大小 练习检测1.【山东省淄博实验中学2015届高三第一学期第一次诊断考试试题,文10】在ABC ∆中,点,M N 分别是,AB AC 上,且32,5AM MB AN AC ==uuu r uuu r uuu r uuu r,线段CM 与BM 相交于点P ,且,AB a AC b ==u u u r r u u u r r,则AP uu u r 用a r 和b r 表示为( )A .4193AP a b =+uu u r r rB .4293AP a b =+uu u r r rC . 2493AP a b =+uu u r r rD .4377AP a b =+uu u r r r【答案】A2.(江西省南昌市重点学校2016-2017学年高一4月检测)已知ABC ∆的边BC 上有一点D 满足3BD DC =uu u r uuu r ,则AD uuu r可表示为( )A. 23AD AB AC =-+uuu r uu u r uuu rB.【答案】C【解析】如图所示,3.(2015届北京市156中学高三上学期期中考试理科)如图,向量b a -等于( )(A )2124e e -- (B )2142e e --(C )213e e - (D )213e e - 【答案】C点评:12,e e u r u r 是两个单位向量,从图上将,a b r r用单位向量表示出来4.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP →=2OA →+BA →,则 ( )A .点P 在线段AB 上B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上 【答案】B【解析】因为2OP →=2OA →+BA →,所以2AP →=BA →,所以点P 在线段AB 的反向延长线上,故选B. 5.(2016-2017学年天津市静海县第一中学高二上学期期末五校联考理)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若1,,AB a BC b AA c ===uu u r r uu u r r uuu r r,则BM uuu r 可表示为( )A. 1122a b c -++r r rB. 1122a b c ++r r rC. 1122a b c --+r r rD. 1122a b c -+r r r【答案】A【解析】()111222BN BA BC a b =+=-+uuu r uu r uu u r r r Q1122BM BN NM a b c ∴=+=-++uuu r uuu r uuur r r r,故本题正确答案为A6.(江西省赣州市十四县(市)2017届高三下学期期中联考(理))如图,平行四边形ABCD的两条对角线相交于点O ,点E , F 分别在边AB , AD 上,直线EF 交AC 于点K , AK AO λ=uuu r,则λ等于( )【答案】C7.在△ABC 中,E ,F 分别为AC ,AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.8.设点O 在ABC V 内部,且有40OA OB OC ++=uu r uu u r uuu r r,求△ABC 的面积与△OBC 的面积之比.【答案】S △ABC ∶S △OBC =3∶2.【解析】取BC 的中点D,连接OD,则+=2,4++=0,∴4=-(+)=-2,∴=-.∴O 、A 、D 三点共线,且||=2||,∴O 是中线AD 上靠近A 点的一个三等分点, ∴S △ABC ∶S △OBC =3∶2.9.在任意四边形ABCD 中,E 是AD 的中点,F 是BC 中点,求证:()1=+2EF AB DC uu u r uu u r uuu r法二:连接EB EC uu r uu u r , 则=+EC ED DC uu u r uu u r uuu r()()11==+++=22EF EC EB ED DC EA AB +uu u r uu u r uu r uu u r uuu r uu r uu u r ()1+2AB DC uuu r uuu r。
高中数学:平面向量的概念及其线性运算练习1.设a 是非零向量,λ是非零实数,下列结论中正确的是( B ) A .a 与λa 的方向相反 B .a 与λ2a 的方向相同 C .|-λa |≥|a |D .|-λa |≥|λ|·a解析:对于A,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小.2.(合肥质检)已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( C )A .23OA →-13OB → B .-13OA →+23OB →C .2OA→-OB → D .-OA→+2OB → 解析:因为AC→=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA→+OB →=0,所以OC →=2OA →-OB →. 3.(济宁模拟)如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB→=mAM →,AC →=nAN →,则m +n 的值为( B )A .1B .2C .3D .4解析:∵O 为BC 的中点,∴AO →=12(AB →+AC →)=12(mAM →+nAN→)=m 2AM →+n 2AN →, ∵M ,O ,N 三点共线,∴m 2+n2=1,∴m +n =2.4.(河南中原名校联考)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC→,F 为AE 的中点,则BF →=( C )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD →D .-13AB →+23AD →解析:BF→=BA →+AF →=BA →+12AE → =-AB →+12⎝ ⎛⎭⎪⎫AD →+12AB →+CE →=-AB →+12⎝ ⎛⎭⎪⎫AD →+12AB →+13CB →=-AB→+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.5.(长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD→=13AB →+12AC →,则S △BCD S △ABD=( B )A .16B .13C .12 D .23解析:由AD →=13AB →+12AC →得点D 在平行于AB 的中位线上,从而有S△ABD=12S △ABC ,又S △ACD =13S △ABC ,所以S △BCD =⎝ ⎛⎭⎪⎫1-12-13S △ABC =16S △ABC ,所以S △BCDS △ABD=13.故选B .6.(太原模拟)在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λ·AC →,则|AP →|的取值范围为( D ) A .⎣⎢⎡⎦⎥⎤2,210+333 B .⎣⎢⎡⎦⎥⎤2,83 C .⎣⎢⎡⎦⎥⎤0,2133 D .⎣⎢⎡⎦⎥⎤2,2133 解析:在AB 上取一点D ,使得AD→=23AB →,过D 作DH ∥AC ,交BC 于H .∵AP→=23AB →+λAC →,且点P 是△ABC 内一点(含边界),∴点P 在线段DH 上. 当P 在D 点时,|AP→|取得最小值2;当P 在H 点时,|AP →|取得最大值,此时B ,P ,C 三点共线, ∵AP→=23AB →+λAC →,∴λ=13, ∴AP→=13AC →+23AB →,∴AP →2=19AC →2+49AB →2+49AB →·AC→=529,∴|AP →|=2133.故|AP→|的取值范围为⎣⎢⎡⎦⎥⎤2,2133.故选D . 7.已知△ABC 和点M 满足MA→+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m=3__.解析:由已知条件得MB→+MC →=-MA →,如图,延长AM 交BC 于D 点, 则D 为BC 的中点.延长BM 交AC 于E 点,延长CM 交AB 于F 点, 同理可证E ,F 分别为AC ,AB 的中点,即M 为△ABC 的重心,∴AM→=23AD →=13(AB →+AC →),即AB→+AC →=3AM →,则m =3.8.(郑州模拟)设e 1与e 2是两个不共线向量,AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为-94.解析:由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB →=λBD →.又AB →=3e 1+2e 2,CB →=k e 1+e 2,CD →=3e 1-2k e 2, 所以BD →=CD →-CB →=3e 1-2k e 2-(k e 1+e 2)=(3-k )e 1-(2k +1)e 2, 所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2,又e 1与e 2不共线,所以⎩⎨⎧3=λ(3-k ),2=-λ(2k +1),解得k =-94.9.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB→,则μ的取值范围是⎣⎢⎡⎦⎥⎤0,12 . 解析:由题意可求得AD =1,CD =3,∴AB →=2DC →,∵点E 在线段CD 上,∴DE→=λDC →(0≤λ≤1).∵AE →=AD →+DE →,又AE→=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2,∵0≤λ≤1,∴0≤μ≤12. 即μ的取值范围是⎣⎢⎡⎦⎥⎤0,12. 10.(太原质检)设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B 的大小为60°__.解析:∵G 是△ABC 的重心,∴GA→+GB →+GC →=0,GA →=-(GB →+GC →), 将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB→+(sin C -sin A )GC →=0. 又GB→,GC →不共线,∴sin B -sin A =0,sin C -sin A =0. 则sin B =sin A =sin C . 根据正弦定理知,b =a =c , ∴△ABC 是等边三角形,则B =60°.11.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO→.解:由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),①又BO→=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b=-12(1+k 1)a +k 1b ,②所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎪⎨⎪⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎪⎨⎪⎧k 1=13,k 2=23.所以BO→=-23a +13B . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ).12.(四川成都外国语学校月考)设P 是△ABC 所在平面内的一点,若AB →·(CB →+CA →)=2AB →·CP →且|AB →|2=|AC →|2-2BC →·AP→,则点P 是△ABC 的( A ) A .外心 B .内心 C .重心D .垂心解析:由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+P A →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.因为|AB →|2=|AC →|2-2BC →·AP →,所以(AC →+AB →)·(AC →-AB →)=2BC →·AP →,所以BC →·(AC →+AB →-2AP →)=0.设BC 的中点为E ,同理可得BC →·PE→=0, 所以P 为AB 与BC 的垂直平分线的交点, 所以P 是△ABC 的外心.故选A .13.如图所示,在△ABC 中,AD =DB ,点F 在线段CD 上,设AB →=a ,AC →=b ,AF →=x a +y b ,则1x +4y +1的最小值为( D )A .6+2 2B .6 3C .6+4 2D .3+2 2解析:由题意知AF →=x a +y b =2xAD →+yAC →, 因为C ,F ,D 三点共线,所以2x +y =1,即y =1-2x . 由题图可知x >0且x ≠1. 所以1x +4y +1=1x +21-x =x +1x -x 2.令f (x )=x +1x -x 2,则f ′(x )=x 2+2x -1(x -x 2)2,令f ′(x )=0,得x =2-1或x =-2-1(舍). 当0<x <2-1时,f ′(x )<0, 当x >2-1且x ≠1时,f ′(x )>0.所以当x =2-1时,f (x )取得极小值,亦为最小值,最小值为f (2-1)=2(2-1)-(2-1)2=3+2 2.14.(河北百校联盟联考)已知在△ABC 中,点D 满足2BD→+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM→=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为3+223.解析:连接AD .因为2BD→+CD →=0,所以BD →=13BC →,AD→=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)= 23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R , 使AD→=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB→+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝ ⎛⎭⎪⎫2λ+1μ=13⎝ ⎛⎭⎪⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.15.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin 〈a ,b 〉,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是①③④__.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin 〈a ,b 〉, (λa )⊗b =|λa |·|b |sin 〈a ,b 〉,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin 〈a ,b 〉=0, 故a ⊗b =0恒成立,④a =λb ,且λ>0,则a +b =(1+λ)b ,(a +b )⊗c =|(1+λ)||b |·|c |sin 〈b ,c 〉,(a ⊗c )+(b ⊗c )=|λb |·|c |sin 〈b ,c 〉+|b |·|c |sin 〈b ,c 〉=|1+λ||b |·|c |sin 〈b ,c 〉, 故(a +b )⊗c =(a ⊗c )+(b ⊗c )恒成立.。
高考总复习高中数学高考总复习平面向量的概念及线性运算习题及详解一、选择题→→→1.在四边形 ABCD 中,AB =a+ 2b,BC=- 4a-b,CD =- 5a- 3b,其中a,b不共线,则四边形 ABCD 为 ()A .梯形B.平行四边形C.菱形D.矩形[答案 ]A[解析 ]→ → →→→→由已知得 AD = AB+ BC+CD =- 8a- 2b,故 AD= 2BC,由共线向量知识知 AD∥BC ,且 |AD |= 2|BC|,故四边形 ABCD 为梯形,所以选 A.2. (文 )(2010 芜·湖十二中 )已知平面向量a= (2m+ 1,3),b= (2, m),且a∥b,则实数 m 的值等于 ()33A.2 或-2 B.232C.- 2 或2D.-7[答案 ]C[解析 ]∵ a∥b,∴(2m+1)m-6=0,∴ 2m2+ m-6= 0,∴ m=- 2 或3.2(理 )(2010 广·东湛江一中 )已知向量a= (1,2) ,b= (x,1),c=a+ 2b,d= 2a-b,且c∥d,则实数 x 的值等于 ()A .-1B.-1 2611C.6D.2[答案 ]D[解析 ]c= a+2b=(1+2x,4),d=2a- b=(2-x,3),∵ c∥d,∴(1+2x)×3-4(2-x)=0,∴x=1.2→→与 e2不共线,且点P 在线段 AB 上, |AP |PB|= 2,如图3.设 OA =e1,OB=e2,若e1→)所示,则 OP= (12e2A. e1-3321B. e1+e23312 C.3e 1+3e 221D. 3e 1- 3e 2[答案 ]C[解析 ] →→→→→→, AP = 2PB ,∴ AB = AP +PB = 3PB→ → → → 1→OP = OB + BP = OB -3AB→→ →1e 1+ 2e 2.= OB -1(OB - OA)=33 34. (2010 重·庆南开中学 )已知一正方形,其顶点依次为 A 1, A 2, A 3, A 4,在平面上任取一点 P 0,设 P 0 关于 A 1 的对称点为 P 1,P 1 关于 A 2 的对称点为 P 2,P 2 关于 A 3 的对称点为 P 3,→P 3 关于 A 4 的对称点为 P 4 ,则向量 P 0P 4等于 ()→ → A. A 1A 2B.A 1A 4 →D . 0 C .2A 1A 4[答案 ]D1[解析 ]如图,由题意知 A 2A 3 是△ P 1P 2P 3 的中位线,故 A 2A 3 綊 2P 1P 3,又正方形 A 1A 2A 3A 4中, A 1A 4 綊 A 2A 3,∴ A 1A 4 1綊 P 1P 3,2∴ A 1A 4 是△ P 0P 1 P 3 的中位线,故 →P 0P 4= P 4P 3,P 3 关于 A 4 的对称点 P 4 ,即 P 0,∴ P 0P 4=0.5. (2010 胶·州三中 )已知平面向量 a = (1,- 3), b =(4 ,- 2), λa + b 与 b 垂直,则 λ等于() A .-1 B .1C .-2D .2[答案]C[解析 ]λa +b = (λ+ 4,- 3λ- 2),∵ λa + b 与 b 垂直,∴ (λ+ 4,- 3λ- 2) ·(4,- 2)= 4(λ+ 4) - 2(- 3λ- 2)= 10λ+ 20=0,∴ λ=- 2.→ →→→6.(文 )(2010 河·北唐山 )已知 P 、A 、B 、C 是平面内四个不同的点, 且 PA+PB +PC =AC ,则()A.A、B、C 三点共线B.A、 B、 P 三点共线C.A、 C、 P 三点共线D. B、 C、 P 三点共线[答案 ]B[解析 ]→→→∵AC= PC-PA,∴原条件式变形为:→→→→PB=-2PA,∴ PB∥PA,∴ A、 B、 P 三点共线.(理 )若点 M 为△ ABC 的重心,则下列各向量中与→共线的是 () AB→→→→→→A.AB+BC +AC B.AM+ MB+ BC→→→→→C.AM+ BM +CM D. 3AM+ AC [答案 ]C[解析 ]→→→→→→→ →AB+ BC+ AC= 2AC,与 AB不共线,故排除A;AM+MB+BC→→B;如图,设 E 为 BC 的中点,则→→=AC ,与AB不共线,故排除MB+ MC=→→→→→→→→→2ME=- MA ,∴ MA+MB+ MC=0,即 AM + BM + CM = 0,与 AB共线,→→→由图可知, 3AM+ AC显然不与 AB共线.7.(2010 湖·北文 )已知→→→→→ABC和点 M 满足 MA+MB+ MC= 0.若存在实数m 使得 AB+ AC→成立,则 m= ()=mAMA . 2B. 3C.4D. 5[答案 ]B[解析 ]→→→→→→∵AB+ AC= (AM+ MB )+ (AM + MC)→→→=MB+MC+ 2AM→→→→→→由MA+MB+MC=0 得, MB+MC=AM→→→∴ AB+ AC= 3AM,故 m= 3.→→→→→+ s 的值是 () 8.已知△ ABC 中,点 D 在 BC 边上,且 CD= 2DB,CD = rAB + sAC,则 r24A. 3B.3C.- 3D. 0含详解答案[解析 ]→ → → → → → CD = AD -AC ,DB = AB - AD . →→ → → → 1 → →∴ CD =AB - DB -AC =AB - CD - AC.23 → → →∴ CD =AB - AC ,2→ 2 → 2 →∴ CD = AB - AC .3 3→→→2 , s =-2 又 CD = rAB + sAC ,∴ r =,33∴ r + s = 0.9. (文 )(2010 重·庆一中 )已知 a , b 是不共线的向量,若 → = λ1 → = a + λ2 1, λ2AB a + b , AC b (λ∈R ),则 A 、 B 、 C 三点共线的充要条件为 ()= λ=- 1 B . λ= λ= 1 A . λ1 21 2λ-1= 0D . λλ+ 1=0C .λ1 2 1 2[答案 ] C[解析 ]→ →→ →∵ A 、 B 、C 共线,∴ AB 与 AC 共线,∴存在实数λ使 AB = λAC ,即 λ1a +b = λ(a+λ2b ),∴ (λ-1 λ)a = (λλ-2 1)b ,λ1- λ= 0∵ a 与 b 不共线,∴ ,λλ2- 1= 0∴ λ1λ2= 1.→→ → , O(理 )(2010 江·西萍乡中学 )设 OA = (1 ,- 2),OB = (a ,- 1), OC = (-b,0), a>0, b>0 为坐标原点,若A 、B 、C 三点共线,则 1+2的最小值是 ()a b A . 2 B . 4 C .6D . 8[答案 ]D[解析 ]→ →λ,使 (a - 1,1)= λ(- b - 1,2),∵ A 、 B 、C 共线,∴ AB 与 AC 共线,∴存在实数∴a + b = 1,∵ a>0 ,b>0,∴ 1+2= 1+ 24a + b≥ 8,等号在 a = 1, b =1时2 2a ba b ·(2a + b)= 4+ ba42成立.10.(文 )(2010 河·北邯郸 )如图,在等腰直角三角形ABC 中,点 O 是斜边 BC 的中点,过点O 的直线分别交直线AB 、 AC 于不同的两点M 、→ → → →)N ,若 AB = mAM , AC = nAN(m>0,n>0),则 mn 的最大值为 (1C .2D . 3[答案 ] B[解析 ]以 A 为原点,线段AC 、 AB 所在直线分别为x 轴、 y 轴建立直角坐标系,设三角形 ABC 的腰长为→ → →→2,则 B(0,2), C(2,0), O(1,1) .∵ AB =mAM , AC = nAN ,2 2nx my m n∴ M 0, m ,N ,0.∴直线 MN 的方程为2 +2 = 1.∵直线 MN 过点 O(1,1),∴2 + 2n2= 1? m + n = 2.∴mn ≤m + n= 1,当且仅当 m = n = 1 时取等号,4∴ mn 的最大值为 1. (理 )(2010 山·东日照一中 )已知向量a = (x 1,y 1),b = (x 2,y 2),若 |a |= 2,|b |= 3,a ·b =- 6,则x 1+y1的值为() x2+ y 222A. 3B .- 355 C.6D .- 6[答案 ] B[解析 ]因为 |a |= 2,|b |= 3,又 a ·b =|a ||b |cos 〈 a , b 〉= 2× 3× cos 〈 a ,b 〉=- 6,可得cos 〈a , b 〉=- 1.即 a ,b 为共线向量且反向,又 |a |= 2,|b |= 3,所以有 3(x 1, y 1 )=- 2(x 2,2y 2)? x 1 =- 2 , y =- 2 ,所以 x 1+ y 1= - 3 x 2+ y 2=- 2,从而选 B.x 2 1y 22+ y 2 2+ y 2 333xx二、填空题11. (文 )(2010 北·京东城区 )已知向量 a = (1,2),b = (- 3,2),则 a ·b = ______,若 k a + b与 b 平行,则 k = ______.[答案 ] 1,0[解析 ]a ·b =1× (- 3)+ 2× 2= 1,∵ k a + b 与 b 平行,k a + b = (k - 3,2k + 2),∴ (k - 3)× 2- ( -3) ×(2k + 2)= 0,∴ k = 0.(理 )(2010 天·津南开区模拟 ) 在直角坐标系xOy 中, i ,j 分别是与 x ,y 轴正方向同向的单→ →k 的值为 ______.位向量, OB = 2i + j , OC = 3i +k j ,若△ OBC 为直角三角形,则 [答案 ]-6或-1[解析 ] → → → → →∵OB =2i +j ,OC = 3i +k j ,∴ BC = OC - OB = i + (k - 1)j ,→ → → → → → ∵△ OBC 为 Rt △,∴ OB ·OC =6+ k = 0 或 OB ·BC = 2+ k - 1= 0,或 OC ·BC = 3+ k(k - 1)=0,∴ k =- 6 或- 1.π12.(2010 温·州十校 )非零向量a = (sin θ,2),b = (cos θ,1),若 a 与 b 共线, 则 tan θ- 4含详解答案[答案 ]13[解析 ] ∵非零向量 a 、 b 共线,∴存在实数λ,使 a = λb ,即 (sin θ, 2)= λ(cos θ, 1),∴λ= 2, sin θ= 2cos θ,π tan θ- 11 .∴ tan θ= 2,∴ tan(θ-)==4 1+ tan θ 313. (2010 浙·江宁波十校 )在平行四边形→ →→1→→ABCD 中, AB = e 1,AC =e 2,NC = AC ,BM =41 → →MC ,则 MN = ________(用 e 1, e 2 表示 )2[答案 ]2 5- e 1+e 23 12[解析 ]→ 1 →1→1 e2 ,∵NC = AC = e 2,∴ CN =-44 4→ 1→→→→→→∵ BM = 2MC , BM + MC =BC =AC - AB = e 2-e 1,→2→→ → 21 21+ 5∴ MC =2- e 1),∴ MN = MC + CN =2- e 12=-23(e3(e ) -4e3e12e.→ → →14.(文 )(2010 聊·城市模拟 )已知 D 为三角形 ABC 的边 BC 的中点,点 P 满足 PA + BP + CP → →=0, AP = λPD ,则实数 λ的值为 ________.[答案 ] - 2[解析 ]如图,∵ D 是 BC 中点,将△ ABC 补成平行四边形ABQC ,则 Q 在 AD 的延长→→→→→→ → 线上,且 |AQ|= 2|AD |= 2|DP |,∵ PA +BP + CP =BA +CP = 0,∴ BA = PC ,→ → 又BA =QC ,∴ P 与 Q 重合,→ → → 又∵ AP = λPD =- 2PD ,∴ λ=- 2.(理 )(2010 金·华十校 )△ ABO 三顶点坐标为 A(1,0),B(0,2),O(0,0),P(x ,y)是坐标平面内一点,满足 → → → →→ → AP ·OA ≤0, BP ·OB ≥ 0,则 OP ·AB 的最小值为 ________.[答案 ] 3[解析 ]→ →·(1,0)= x - 1≤ 0,∵AP ·OA = (x - 1, y)∴ x ≤ 1,∴- x ≥ -1,→ →∵ BP ·OB = (x , y - 2) ·(0,2)= 2(y -2) ≥0,∴ y ≥ 2.→ →∴ OP ·AB = (x , y) ·(- 1,2)= 2y -x ≥ 3.三、解答题→ → 15.如图,在平行四边形ABCD 中, M 、N 分别为 DC 、BC 的中点,已知 AM =c ,AN =→→d ,试用 c 、d 表示 AB 、 AD .→ →→ 1 →[解析 ] 解法一: AD = AM - DM =c - 2AB ①→ → → 1 →AB = AN - BN = d - AD ②2→2由①②得 AB = 3(2d - c ),→= 2(2c - d ).AD3→ →→ 1→解法二:设 AB = a , AD = b ,因为 M 、N 分别为 CD 、 BC 的中点,所以BN = b ,DM =212a ,于是有:1 2c = b + 2aa = 3 2d - c1,解得2,d = a + 2bb = 3 2c - d→ 2→2(2c - d ).即 AB =(2d - c ), AD =33→ → →16. (2010 重·庆市南开中学 )已知向量 OA = (3,- 4), OB = (6,- 3), OC = (5- m ,- 3-m).(1)若 A , B , C 三点共线,求实数 m 的值;(2)若∠ ABC 为锐角,求实数m 的取值范围.→ → →[解析 ] (1)已知向量 OA = (3,- 4), OB =(6 ,- 3), OC = (5- m ,- (3+m)).→ → ∴ AB = (3,1), AC = (2- m,1- m),∵ A 、 B 、 C 三点共线,∴ → →AB 与 AC 共线,1 ∴ 3(1- m)= 2- m ,∴ m = 2.→ →(2)由题设知 BA = (- 3,- 1), BC = (- 1-m ,- m) ∵∠ ABC 为锐角,→ → 3m + m>0? m>- 3 ∴ BA ·BC = 3+ 4又由 (1)可知,当 m = 12时,∠ ABC = 0°故 m ∈ - 3,1 ∪ 1,+ ∞ .4 2217. (文 )(2010 安·徽江南十校联考 )在锐角△ ABC 中,已知内角 A 、B 、C 所对的边分别为 a 、 b 、 c ,向量 m = (2sin(A + C), 3), n =(cos2B,2cos2B- 1),且向量 m ,n 共线. 2(1)求角 B 的大小;(2)如果 b = 1,求△ ABC 的面积 S △ ABC 的最大值.[解析 ] (1)由向量 m ,n 共线有: 2sin( A + C)(2cos 2B- 1)= 3cos2B ,2化简得 sin2B = 3cos2B ,即 tan2B = 3,又 0<B< ππ π,所以 0<2B<π,则 2B = ,即 B = .236(2)由余弦定理 b 2= a 2+ c 2- 2accosB 知,1= a 2+ c 2- 3ac = (a + c)2- (2+ 3)ac ≥ (2- 3) ac.等号在 a = c 时成立,∴ S △ ABC =121 π 1 1 11(2+3).因此△ ABC 面积的最大值为1 acsinB = acsin =ac ≤ ×= (2+ 3)26 442-34411π(理 )(2010 河·北正定中学模拟 )已知向量 a = sinx ,-sinx ,b =(2 ,cos2x) ,其中 x ∈ 0,2 .(1)试判断向量 a 与 b 能否平行,并说明理由? (2)求函数 f(x)=a ·b 的最小值.11[解析 ](1)若 a ∥ b ,则有 sinx ·cos2x + sinx ·2= 0.π∵ x ∈ 0, 2 ,∴ cos2x =- 2,这与 |cos2x|≤ 1 矛盾,∴ a 与 b 不能平行.2 -cos2x(2)∵ f(x)= a ·b =sinx sinx= 2- cos2x = 1+ 2sin 2x = 2sinx +1 , sinx sinxsinx∵ x ∈ 0, π,∴ sinx ∈ (0,1] ,2∴ f(x)=2sinx + 1 ≥ 2 2sinx ·1= 2 2.sinxsinx高考总复习当 2sinx=1,即 sinx=2时取等号,sinx2故函数 f(x)的最小值为 2 2.含详解答案。
5.1 平面向量的概念及线性运算一.向量的有关概念AB或||a|记作0交换律:a结合律:(的相反向量-|λa |=|λ||a |,当λ>0时,口诀:(加法三角形)首尾连,连首尾; (加法平行四边形)起点相同连对角; (减法三角形)共起点,连终点,指向被减. 三.向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa . 四.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.考向一 概念辨析【例1】判断下列各命题正确的是: (1)单位向量都相等;(2)|a |与|b |是否相等,与a ,b 的方向无关;(3)若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; (4)若a 与b 共线,b 与c 共线,则a 与c 也共线;(5)两向量a ,b 相等的充要条件是|a |=|b |且a ∥b . 【答案】(2)(3) 【解析】(1)不正确.(2)正确,两个向量的长度相等,但它们的方向不一定相同.(3)正确,∵AB →=DC →,∴|AB →|=|DC →|且AB ∥DC .又∵A ,B ,C ,D 是不共线的四点,∴四边形ABCD 是平行四边形.反之,若四边形ABCD 是平行四边形,则AB 綊DC ,且AB →与DC →方向相同.因此AB →=DC →.(4)不正确,当b =0时,a 与c 可以不共线.(5)不正确,当a ∥b ,但方向相反时,即使|a |=|b |,也不能得到a =b .【举一反三】 1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 【答案】 ③【解析】 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.考向二 平面向量的线性运算【例2】在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c (2)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. (3)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-13,0【答案】(1) A (2) 12 -16(3)D【解析】(1) ∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+A B →,∴AD →=23AC →+13AB →=23b +13c .(2)MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x =12,y =-16.(3)设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →. ∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0.【举一反三】1.如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A.29AB →+89AC →B.29AB →-89AC →C.29AB →+79AC →D.29AB →-79AC → 【答案】 B【解析】 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →.2.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R),则λ+μ=________.【答案】 34【解析】 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.3.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤0,12【解析】 由题意可求得AD =1,CD =3,∴AB →=2DC →. ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1).∵AE →=AD →+DE →=AD →+λDC →,又AE →=AD →+μAB →=AD →+2μDC →,∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.4.在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R),则x -y =________. 【答案】 2【解析】 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.考向三 共线定理及其运用【例3-1】 已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R).(1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 【答案】见解析【解析】(1)若m +n =1,则OP →=mOA →+(1-m )OB →=OB →+m (OA →-OB →),∴OP →-OB →=m (OA →-OB →),即BP →=mBA →,∴BP →与BA →共线.又∵B P →与B A →有公共点B ,∴A ,P ,B 三点共线.(2)若A ,P ,B 三点共线,存在实数λ,使BP →=λBA →,∴OP →-OB →=λ(OA →-OB →). 又OP →=mOA →+nOB →.故有mOA →+(n -1)OB →=λOA →-λOB →,即(m -λ)OA →+(n +λ-1)OB →=0. ∵O ,A ,B 不共线,∴OA →,OB →不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1.【例3-2】 (1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________.(2)已知ABC ∆的重心为O ,过O 任做一直线分别交边,AB AC 于,P Q 两点,设,AP mAB AQ nAC ==,则49m n +的最小值是________.(3)已知数列{}n a 为等差数列,且满足12107OA a OB a OC =+,若A B A C λ=(R λ∈),点O 为直线BC外一点,则1009a =( )【答案】(1) 3∶5 (2)253 (3)12【解析】(1)由5AM →=AB →+3AC →,得2AM →=2AD →+3AC →-3AM →,即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5,故S △ABM ∶S △ABC =3∶5.11111343494()9()333333m n λλλλ+=+++=++≥1343252333λλ+⋅=,当且仅当32λ=时等号成立,即55,69m n ==时49m n +取得最小值253.(3)∵数列{a n }为等差数列,满足12107OA a OB a OC =+,其中A ,B ,C 在一条直线上,O 为直线AB 外一点,∴a 1+a 2017=1,∵数列{a n }是等差数列,∴{a n }的1009121072a a a =+=1, 100912a =【举一反三】1.如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.,使AB AC λ=,则A【答案】12【解析】∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.2.在△ABC 中,O 为其内部一点,且满足OA →+OC →+3OB →=0,则△AOB 和△AOC 的面积比是( )A .3∶4B .3∶2C .1∶1D .1∶3 【答案】 D【解析】 根据题意,如图,在△ABC 中,M 为AC 的中点,则OA →+OC →=2OM →,又由OA →+OC →+3OB →=0,则有2OM →=-3OB →; 从而可得B ,O ,M 三点共线,且2OM =3BO ;由2OM =3BO 可得,S △AOC S △ABC =OM BM =35,S △AOB +S △BOC =25S △ABC ,又由S △AOB =S △BOC ,则S △AOB =15S △ABC ,则S △AOB S △AOC =13.故选D.3.已知点D 为△ABC 所在平面上一点,且满足A D →=15A B →-45C A →,若△ACD 的面积为1,则△ABD 的面积为( )A .1B .2C .3D .4 【答案】 D【解析】 由A D →=15A B →-45C A →,得5AD →=A B →+4A C →,所以A D →-A B →=4(A C →-A D →),即B D →=4D C →.所以点D 在边BC 上,且|B D →|=4|D C →|,所以S △ABD =4S △ACD =4.4.已知等差数列{}n a 的前n 项和为n S , P 、A 、B 三点共线,且32016OP a OA a OB =+,则2018S =__________. 【答案】10091.下列说法正确的是( )A .若||=||a b ,则a 、b 的长度相等且方向相同或相反B .若向量AB 、CD 满足||||AB CD >,且AB 与CD 同向,则AB CD >C .若a b ≠,则a 与b 可能是共线向量D .若非零向量AB 与CD 平行,则A 、B 、C 、D 四点共线 【答案】C【解析】对于A 选项,模相等的向量,方向不一定相同或者相反,也可能垂直,或者成其它的角度,故A 选项错误.对于B 选项,向量不能用大于或者小于号相连,向量的模可以比较大小,故B 选项错误.对于C 选项,不相等的向量可以共线,故C 选项正确.对于D 选项,平行向量,对应的四点不一定是共线的,故D 选项错误.综上所述,本小题选C.2.在四边形ABCD 中,AB AD =且BA CD =,则四边形ABCD 的形状一定是( ) A .正方形 B .矩形C .菱形D .等腰梯形【答案】C【解析】因为BA CD =,所以//,BA CD BA CD =,四边形是平行四边形又AB AD =,所以AB AD =,四边形是菱形,故选C. 3.下列说法中正确的是( ) A .单位向量都相等B .平行向量不一定是共线向量C .对于任意向量a ,b ,必有a b a b +≤+D .若a ,b 满足a b >且a 与b 同向,则a b >【答案】C【解析】对于A,单位向量模都相等,方向不一定相同,故错误,对于B,平行向量就是共线向量,对于C,若a ,b 同向共线,a b a b +=+,若a ,b 反向共线,a b a b +<+,若a ,b 不共线,根据向量加法的三角形法则及两边之和大于第三边知a b a b +<+,综上可知对于任意向量a ,b ,必有a b a b +≤+正确,对于D,两个向量不能比较大小,故错误.故选C.4.下列结论正确的是( ) A . B . C . , D .【答案】A【解析】逐一考查所给的说法: 若 ,则 ,选项A 说法正确;若 ,则由 不一定能得到 ,选项B 说法错误; 若 ,则由 , 不一定能得到 ,选项C 说法错误;两个向量无法比较大小,故结论 错误,选项D 说法错误;故选:A .5.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .92【答案】C【解析】设H 是BC 上除E 点外的令一个三等分点,连接FH ,连接BD 交AC 于O ,则//BD FH .在三角形CFH 中,,CG FG 是两条中线的交点,故G 是三角形CFH 的重心,结合23CH CF BH DF ==可知24.5CG CO =,由于O 是AC 中点,故224.529CG AC ==⨯.所以72AG CG =,由此可知72λ=,故选C.6.AB BD AC +-=( )A .ACB .CDC .ABD .DB【答案】B【解析】依题意AB AC BD CB BD CD -+=+=,故选B.7.设D 为△ABC 的边AB 的中点,P 为△ABC 内一点,且满足,AP →=AD →+25BC →,则S △APD S △ABC=( )A.35B.25C.15 D.310 【答案】 C【解析】 如图∵AD →+25BC →=AD →+DP →=AP →,∴D P →=25B C →,∠ADP =∠ABC ,∵D 是AB 的中点,∴AD =12AB .∴S △APD S △ABC =12·AD ·DP sin ∠ADP 12·AB ·BC sin ∠ABC =15.故选C.8.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值范围是( )A .(0,1)B .(1,+∞)C .(1,2]D .(-1,0) 【答案】 B【解析】 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1.故选B.10.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且OP →=3OA →-OB→2,则( ) A .点P 在线段AB 上 B .点P 在线段AB 的反向延长线上 C .点P 在线段AB 的延长线上 D .点P 不在直线AB 上 【答案】 B【解析】 OP →=3OA →-OB →2=32OA →-12OB →=OA →+12(OA →-OB →)=OA →+12BA →,即OP →-OA →=AP →=12BA →,所以点P 在线段AB的反向延长线上.故选B.11.若O 为△ABC 所在平面内一点,且OA →+2OB →+3OC →=0,则S △OBC ∶S △AOC ∶S △ABO =( )A .3∶2∶1B .2∶1∶3C .1∶3∶2D .1∶2∶3 【答案】D【解析】 如图所示,延长OB 到D ,使得BD =OB ,延长OC 到E ,使得CE =2OC .连接AD ,DE ,AE . ∵OA →+2OB →+3OC →=0,∴点O 为△ADE 的重心.∴S △OBC =16S △ODE =16×13S △ADE =118S △ADE ;S △AOC =13S △OAE =13×13S △ADE =19S △ADE ;S △ABO =12S △OAD =12×13S △ADE =16S △ADE .∴S △OBC ∶S △AOC ∶S △ABO =118∶19∶16=1∶2∶3.故选D.12.在△ABC 中,M 为边BC 上任意一点,N 为AM 中点,AN →=λAB →+μAC →,则λ+μ的值为( )A.12B.13C.14 D .1 【答案】 A【解析】 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+12tBC →=12AB →+t 2(AC →-AB →)=⎝ ⎛⎭⎪⎫12-t 2AB →+t 2AC →∴λ=12-t 2,μ=t 2∴λ+μ=12.故选A.13在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB→+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-13,0 【答案】 D【解析】 设C O →=yBC →,则AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →,∵BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),∴y ∈⎝ ⎛⎭⎪⎫0,13, ∵AO →=xAB →+(1-x )AC →,∴x ∈⎝ ⎛⎭⎪⎫-13,0.故选D.14.若M 为△ABC 内一点,AM →=13AB →+14AC →,则△ABM 和△ABC 的面积之比为( )A.14B.13C.12D.23 【答案】 A【解析】 设AD →=13AB →,AE →=14AC →,以AD ,AE 为邻边作平行四边形ADME ,延长EM 交BC 与F ,连接BM .则EF∥AB ,∴S △ABM S △ABC =AE AC =14.故选A.15.在ABC ∆中,O 为其内部一点,且满足30OA OC OB ++=,则AOB ∆和AOC ∆的面积比是( ) A .3:4 B .3:2C .1:1D .1:3【答案】D 【解析】取AC 中点M ,则由30OA OC OB ++= 得23OM OB =- ,所以2||3OM OB =,O 在线段BM 上,因此::2:213AOBAOCAOBAOMSSSSOB OM ===: ,选D.16.已知ABC ∆,点M 是边BC 的中点,若点O 满足230OA OB OC ++=,则( )A .0OM BC ∙=B .0OM AB ∙=C .//OM BCD .//OM AB【答案】D【解析】点M 是边BC 的中点,可得2OM OB OC =+,230OA OB OC ++=,可得OA OC ++2(OB OC +)23OA OBOA +=-+40OM =, 即2(OA OB -)+120OM =,可得AB =6OM ,即OM ∥AB ,故选:D .17.如图,在ABC ∆中,设,AB a AC b ==uu u v uuu v vv ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP ma nb=+uu u v v v ,则m n +=( )A .12B .23C .67D .1【答案】C【解析】由题意可得2,2AP QP QB QR ==,122AB a AQ QB AP QR ==+=+,① 1322AC AP PC AP RP AP QP QR AP AP QR AP QR b =+=+=+-=+-=-=,② 由①②解方程求得2477AP a b =+. 再由AP ma nb =+uu u vvv可得246,,777m n m n ==+=. 18.四边形OABC 中,,若 , ,则 =A . –B .–C . +D . –【答案】D【解析】由,可得, 所以,故选D.19.点 在 所在平面上,且满足 ,则( ) A .B .C .D .【答案】B【解析】因为,所以 ,所以 共线,且 ,所以.故选B. 20.如图所示,点O 是正六边形ABCDEF 的中心,则OA OC OE ++=( )A .0B .0C .AED .EA【答案】A【解析】OA OC OB +=,OB OE =-0OA OC OE OB OE ∴++=+=本题正确选项:A21.如图所示,在正方形ABCD 中,E 为AB 的中点,F 为CE 的中点,则AF =A .3144AB AD + B .1344AB AD + C .12AB AD + D .3142AB AD + 【答案】D【解析】根据题意得:1()2AF AC AE =+,又AC AB AD =+,12AE AB =,所以1131()2242AF AB AD AB AB AD =++=+.故选D.22.已知点P 是ABC ∆所在平面内一点,且满足()()cos cos AB AC AP R AB BAC Cλλ=+∈,则直线AP 必经过ABC ∆的( ) A .外心 B .内心C .重心D .垂心【答案】D【解析】()cos cos AB AC AP R AB B AC C λλ⎛⎫ ⎪=+∈ ⎪⎝⎭两边同乘以向量BC ,得AP BC ∴⊥ t ∈即点P 在BC 边的高线上,所以P 的轨迹过△ABC 的垂心,故选D.23.在ABC ∆中,1,3AN NC P =是BN 上的点,若29AP mAB AC =+,则实数m 的值为___________. 【答案】19【解析】因为13AN NC =,所以14AN AC =,即4AC AN =,所以 2899AP mAB AC mAB AN =+=+.又因为,,P B N 三点共线,所以819m +=, 所以19m =. 24如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.【答案】 29【解析】 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →, ∴AK →=λAC →=λ(AB →+AD →)=λ⎝ ⎛⎭⎪⎫52AE →+2AF →=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29.25.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R),则m -n =________.【答案】 -2【解析】 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →, 那么BC →=-3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2.26.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的取值范围是________. 【答案】 (1,+∞)【解析】 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →,又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m ,所以λ+μ>1.27.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 【答案】 3∶2【解析】 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →,即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点, ∴S △ABC ∶S △PBC =3∶2.28.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为________.【答案】 2【解析】 连接AO ,∵O 是BC 的中点,∴AO →=12(AB →+AC →). 又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n 2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.∴m +n =2.。
考点规范练25 平面向量的概念及线性运算基础巩固1.设a ,b 都是非零向量,下列四个条件中,使a|a |=b|b |成立的充分条件是( ) A.a =-b B.a ∥bC.a =2bD.a ∥b ,且|a |=|b |答案:C解析:由a|a |表示与a 同向的单位向量,b|b |表示与b 同向的单位向量,故只要a 与b 同向即可,观察可知C 满足题意.2.在△ABC 中,AB ⃗⃗⃗⃗⃗ =c ,AC ⃗⃗⃗⃗⃗ =b .若点D 满足BD ⃗⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,则AD ⃗⃗⃗⃗⃗ =( ) A .23b +13c B .53c -23bC .23b -13cD .13b +23c答案:A解析:如图,可知AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=c +23(b -c )=23b +13c .故选A .3.设向量a ,b 不共线,AB ⃗⃗⃗⃗⃗ =2a +p b ,BC ⃗⃗⃗⃗⃗ =a +b ,CD ⃗⃗⃗⃗⃗ =a -2b .若A ,B ,D 三点共线,则实数p 的值是( ) A.-2 B.-1 C.1 D.2 答案:B解析:∵BC ⃗⃗⃗⃗⃗ =a +b ,CD ⃗⃗⃗⃗⃗ =a -2b , ∴BD⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =2a -b . 又A ,B ,D 三点共线,∴AB ⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共线. ∴AB ⃗⃗⃗⃗⃗ =λBD⃗⃗⃗⃗⃗⃗ ,即2a +p b =λ(2a -b ). ∴2=2λ,p=-λ. ∴λ=1,p=-1.4.设E ,F 分别是正方形ABCD 的边AB ,BC 上的点,且AE=12AB ,BF=23BC.如果EF ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n AC ⃗⃗⃗⃗⃗ (m ,n 为实数),那么m+n 的值为( ) A.-12 B.0C .12D.1答案:C解析:如图,EF ⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ −13BC ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ −13(BA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) =-16AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ . ∵EF ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +n AC⃗⃗⃗⃗⃗ ,∴m=-16,n=23, ∴m+n=12.故选C .5.已知点O ,A ,B 不在同一条直线上,点P 为该平面上一点,且2OP ⃗⃗⃗⃗⃗ =2OA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ,则( )A.点P 在线段AB 上B.点P 在线段AB 的反向延长线上C.点P 在线段AB 的延长线上D.点P 不在直线AB 上 答案:B解析:因为2OP ⃗⃗⃗⃗⃗ =2OA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ,所以2AP ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ .所以点P 在线段AB 的反向延长线上,故选B .6.已知点O 为△ABC 外接圆的圆心,且OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,则△ABC 的内角A 等于( ) A.30° B.60° C.90° D.120° 答案:B解析:由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,得点O 为△ABC 的重心. 又O 为△ABC 外接圆的圆心,所以△ABC 为等边三角形,故A=60°.7.若点M 是△ABC 所在平面内的一点,且满足5AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +3AC ⃗⃗⃗⃗⃗ ,则△ABM 与△ABC 的面积比为( ) A .15 B .25 C .35 D .45答案:C解析:设AB 的中点为D.由5AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +3AC ⃗⃗⃗⃗⃗ ,得3AM ⃗⃗⃗⃗⃗⃗ -3AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ -2AM ⃗⃗⃗⃗⃗⃗ ,即3CM ⃗⃗⃗⃗⃗⃗ =2MD ⃗⃗⃗⃗⃗⃗ . 如图,故C ,M ,D 三点共线,且MD ⃗⃗⃗⃗⃗⃗ =35CD ⃗⃗⃗⃗⃗ ,也就是△ABM 与△ABC 对于边AB 上的两高之比为3∶5,则△ABM 与△ABC 的面积比为35,故选C .8.在四边形ABCD 中,AB ⃗⃗⃗⃗⃗ =a +2b ,BC ⃗⃗⃗⃗⃗ =-4a -b ,CD ⃗⃗⃗⃗⃗ =-5a -3b ,则四边形ABCD 的形状是( ) A.矩形 B.平行四边形 C.梯形 D.以上都不对 答案:C解析:∵AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =-8a -2b =2(-4a -b )=2BC⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ ∥BC⃗⃗⃗⃗⃗ . 又AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 不平行,∴四边形ABCD 是梯形.9.已知A ,B ,C 为圆O 上的三点,若AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为 . 答案:90°解析:由AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC=90°,故AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为90°. 10.已知D 为△ABC 的边BC 的中点,点P 满足PA ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ =0,AP⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,则实数λ的值为 . 答案:-2解析:如图,由AP ⃗⃗⃗⃗⃗ =λPD ⃗⃗⃗⃗⃗ ,且PA ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ +CP⃗⃗⃗⃗⃗ =0,得P 为以AB ,AC 为邻边的平行四边形的顶点,因此AP ⃗⃗⃗⃗⃗ =-2PD ⃗⃗⃗⃗⃗ ,则λ=-2.11.如图,在△ABC 中,∠BAC=π3,AB=2,AC=4,点D 为边BC 上一点,满足AC ⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ,点E 是AD 上一点,满足AE ⃗⃗⃗⃗⃗ =2ED ⃗⃗⃗⃗⃗ ,则BE= .答案:2√219解析:如图,延长AB 到点F ,使AF=2AB ,连接CF ,则AC=AF.取CF 的中点O ,连接AO , 则AC ⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ =2AO ⃗⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ , ∴A ,D ,O 三点共线,∠BAC=π3, ∴∠CAO=π6,且AO ⊥CF ,AC=4, ∴AO=2√3.∴AD=4√33. 又AE ⃗⃗⃗⃗⃗ =2ED ⃗⃗⃗⃗⃗ ,∴AE=2ED=23AD=8√39.又AB=2,∠BAE=π6,∴在△ABE 中,由余弦定理,得BE 2=4+6427-2×2×8√39×√32=2827.∴BE=2√219. 12.在任意四边形ABCD 中,E ,F 分别是AD ,BC 的中点.若EF⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μDC ⃗⃗⃗⃗⃗ ,则λ+μ= . 答案:1解析:如图,因为E ,F 分别是AD ,BC 的中点,所以EA ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =0. 又因为AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ =0, 所以EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EA ⃗⃗⃗⃗⃗ .① 同理EF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ .② 由①+②得,2EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ +(EA ⃗⃗⃗⃗⃗ +ED ⃗⃗⃗⃗⃗ )+(BF ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ , 所以EF ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ),所以λ=12,μ=12.所以λ+μ=1.能力提升13.已知在△ABC 中,D 是AB 边上的一点,CD ⃗⃗⃗⃗⃗ =λ(CA ⃗⃗⃗⃗⃗|CA ⃗⃗⃗⃗⃗ |+CB⃗⃗⃗⃗⃗|CB⃗⃗⃗⃗⃗ |),|CA ⃗⃗⃗⃗⃗ |=2,|CB ⃗⃗⃗⃗⃗ |=1.若CA ⃗⃗⃗⃗⃗ =b ,CB ⃗⃗⃗⃗⃗ =a ,则用a ,b 表示CD ⃗⃗⃗⃗⃗ 为( ) A .23a +13bB .13a +23bC .13a +13bD .23a +23b答案:A解析:由题意知,CD 是∠ACB 的平分线,故CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +23(CB ⃗⃗⃗⃗⃗ −CA ⃗⃗⃗⃗⃗ )=23CB ⃗⃗⃗⃗⃗ +13CA⃗⃗⃗⃗⃗ =23a +13b , 故选A.14.在△ABC 中,点O 在线段BC 的延长线上,且与点C 不重合.若AO ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +(1-x )AC⃗⃗⃗⃗⃗ ,则实数x 的取值范围是( ) A.(-∞,0) B.(0,+∞) C.(-1,0) D.(0,1) 答案:A解析:设BO⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ (λ>1), 则AO ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +λBC ⃗⃗⃗⃗⃗ =(1-λ)AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ . 又AO ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +(1-x )AC⃗⃗⃗⃗⃗ , 所以x AB ⃗⃗⃗⃗⃗ +(1-x )AC ⃗⃗⃗⃗⃗ =(1-λ)AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ . 所以λ=1-x>1,得x<0.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP ⃗⃗⃗⃗⃗ =13(12OA ⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ +2OC ⃗⃗⃗⃗⃗ ),则点P 一定为△ABC 的( ) A.边AB 中线的中点 B.边AB 中线的三等分点(非重心) C.重心 D.边AB 的中点 答案:B解析:设AB 的中点为M ,则12OA ⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ =OM ⃗⃗⃗⃗⃗⃗ ,所以OP ⃗⃗⃗⃗⃗ =13(OM ⃗⃗⃗⃗⃗⃗ +2OC ⃗⃗⃗⃗⃗ ),即3OP ⃗⃗⃗⃗⃗ =OM ⃗⃗⃗⃗⃗⃗ +2OC ⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ =2OC ⃗⃗⃗⃗⃗ -2OP ⃗⃗⃗⃗⃗ ,即MP ⃗⃗⃗⃗⃗⃗ =2PC⃗⃗⃗⃗⃗ . 又MP ⃗⃗⃗⃗⃗⃗ 与PC⃗⃗⃗⃗⃗ 有公共点P ,所以P ,M ,C 三点共线,且P 是CM 上靠近点C 的一个三等分点. 16.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ⃗⃗⃗⃗⃗ =14(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),AP ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +18BC⃗⃗⃗⃗⃗ ,则△APD 的面积为( ) A .√34B .√32C .√3 D.2√3答案:A解析:如图,取BC 的中点E ,连接AE ,因为△ABC 是边长为4的正三角形,所以AE ⊥BC ,AE ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ).又AD ⃗⃗⃗⃗⃗ =14(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ), 所以点D 是AE 的中点,AD=√3.取AF ⃗⃗⃗⃗⃗ =18BC ⃗⃗⃗⃗⃗ ,以AD ,AF 为邻边作平行四边形,可知AP ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +18BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +AF⃗⃗⃗⃗⃗ . 因为△APD 是直角三角形,AF=12,所以△APD 的面积为12×12×√3=√34. 17.如图,有5个全等的小正方形,BD ⃗⃗⃗⃗⃗⃗ =x AE ⃗⃗⃗⃗⃗ +y AF⃗⃗⃗⃗⃗ ,则x+y 的值是 .答案:1解析:由平面向量的运算可知BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ .∵AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ +HB ⃗⃗⃗⃗⃗⃗ =2AF ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗ -(2AF ⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ )=3AE ⃗⃗⃗⃗⃗ -2AF⃗⃗⃗⃗⃗ . 又AE ⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ 不共线,且BD ⃗⃗⃗⃗⃗⃗ =x AE ⃗⃗⃗⃗⃗ +y AF ⃗⃗⃗⃗⃗ , 即x AE ⃗⃗⃗⃗⃗ +y AF ⃗⃗⃗⃗⃗ =3AE ⃗⃗⃗⃗⃗ -2AF ⃗⃗⃗⃗⃗ , ∴x=3,y=-2,∴x+y=1.高考预测18.已知e 1,e 2为平面内两个不共线向量,MN ⃗⃗⃗⃗⃗⃗⃗ =2e 1-3e 2,则NP⃗⃗⃗⃗⃗⃗ =λe 1+6e 2.若M ,N ,P 三点共线,则λ= . 答案:-4解析:因为M ,N ,P 三点共线,所以存在实数k 使得MN ⃗⃗⃗⃗⃗⃗⃗ =k NP ⃗⃗⃗⃗⃗⃗ ,所以2e 1-3e 2=k (λe 1+6e 2). 又e 1,e 2为平面内两个不共线的向量, 所以{2=kλ,-3=6k ,解得λ=-4.。
(二十四) 平面向量的概念及线性运算[小题对点练——点点落实]对点练(一) 平面向量的有关概念1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量解析:选C 若a 与b 都是零向量,则a =b ,故选项C 正确.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.3.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的____________条件.解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q .若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线,即a =λb ,且λ>0,故q ⇒/ p .∴p 是q 的充分不必要条件.答案:充分不必要对点练(二) 平面向量的线性运算1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB ―→=a ,AD ―→=b , 则BE ―→=( )A.12b -a B.12a -b C .-12a +bD.12b +a 解析:选C BE ―→=BA ―→+AD ―→+12DC ―→=-a +b +12a =b -12a ,故选C.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 反向共线,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 反向共线,则存在实数k 使c =k d (k <0),于是λa +b =k []a +(2λ-1)b .整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.(2018·江西八校联考)在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB ―→=a ,AC ―→=b ,则PQ ―→=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A PQ ―→=PB ―→+BQ ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b ,故选A. 4.(2017·郑州二模)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2 D.2m +1n 是定值,定值为3解析:选D 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN ―→=n AC ―→可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AMAB=n n +n -12=2n 3n -1,因为AM ―→=m AB ―→,所以m =2n 3n -1,整理可得2m +1n =3. 法二:因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)·AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)·n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n =3,故选D.5.(2018·银川一模)设点P 是△ABC 所在平面内一点,且BC ―→+BA ―→=2BP ―→,则PC ―→+PA ―→=________.解析:因为BC ―→+BA ―→=2BP ―→,由平行四边形法则知,点P 为AC 的中点,故PC ―→+PA ―→=0.答案:06.(2018·衡阳模拟)在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上,若c 与x a +y b (x ,y 为非零实数)共线,则xy的值为________.解析:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b ),所以e 1-2e 2=2λ(x-y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λ(x -y )=1,λ(x -2y )=-2,所以⎩⎨⎧x =3λ,y =52λ,则x y 的值为65.答案:657.(2018·盐城一模)在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R ),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM ―→=34AB ―→,经计算得AN =AM =3,AD =3 3.答案:3 38.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE ―→=AD ―→+μAB ―→,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB ―→=2DC ―→. ∵点E 在线段CD 上,∴DE ―→=λDC ―→(0≤λ≤1). ∵AE ―→=AD ―→+DE ―→,又AE ―→=AD ―→+μAB ―→=AD ―→+2μDC ―→=AD ―→+2μλDE ―→,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB ―→=a ,AC ―→=b ,试用a ,b 表示AD ―→, AG ―→.解:AD ―→=12(AB ―→+AC ―→)=12a +12b .AG ―→=AB ―→+BG ―→=AB ―→+23BE ―→=AB ―→+13(BA ―→+BC ―→)=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b . 2.已知a ,b 不共线,OA ―→=a ,OB ―→=b , OC ―→=c , OD ―→=d , OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.3.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC ,如图, 所以AG ―→=AB ―→+AC ―→=a +b ,AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.。