概率的基本性质及古典
- 格式:doc
- 大小:51.00 KB
- 文档页数:3
概率论基础:定义与原理概率论是数学中的一个重要分支,研究随机现象的规律性和统计规律性。
在现代科学和工程技术中有着广泛的应用。
概率论的基础是概率的定义和概率的基本原理。
本文将介绍概率论的基础知识,包括概率的定义、概率的性质、概率的基本原理等内容。
一、概率的定义概率是描述随机事件发生可能性大小的数值。
在数学上,概率可以用数值来表示,通常用P(A)表示事件A发生的概率。
概率的定义有多种形式,其中最常见的是古典概率和统计概率。
1. 古典概率古典概率是指在随机试验中,样本空间有限且每个基本事件发生的可能性相同的情况下,事件A发生的概率可以用如下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的基本事件数,n(S)表示样本空间中基本事件的总数。
2. 统计概率统计概率是指在实际观察中,通过频率来估计事件发生的概率。
当试验次数足够多时,事件A发生的频率将逼近其概率值。
统计概率是概率论中最基本的概念之一,也是实际应用中最常用的概率计算方法。
二、概率的性质概率具有一些基本性质,这些性质是概率论研究的基础,也是概率计算的重要依据。
1. 非负性对于任意事件A,其概率值满足P(A) ≥ 0。
2. 规范性对于样本空间S,其概率值为1,即P(S) = 1。
3. 可列可加性对于任意两个互不相容的事件A和B,有P(A∪B) = P(A) + P(B)。
4. 对立事件的性质对立事件是指事件A和其补事件A',即A与A'互为对立事件。
对立事件的概率满足P(A) + P(A') = 1。
5. 事件的包含关系若事件A包含事件B,则P(A) ≥ P(B)。
三、概率的基本原理概率的基本原理包括加法法则和乘法法则,是概率计算的基础。
1. 加法法则加法法则是指对于任意两个事件A和B,它们的并事件的概率可以表示为:P(A∪B) = P(A) + P(B) - P(A∩B)其中,P(A∩B)表示事件A和事件B同时发生的概率。
概率的基本概念概率是概念一层次的产物,是对人们观察、实验中一系列结果出现的可能性进行度量的数值。
概率理论是一种基本的数理工具,广泛应用于统计学、自然科学、社会科学以及工程技术等领域。
在本文中,将介绍概率的基本概念及其应用。
一、概率的定义概率的定义一直是概率论的核心问题之一。
根据古典概率、频率概率和主观概率三种学派的观点,概率可以有多种定义方式。
1. 古典概率古典概率是一种基于理论计算或样本空间的概率定义方法。
它假设所有可能的结果是等可能发生的,概率可通过事件发生的次数与样本空间大小的比例来计算。
2. 频率概率频率概率是一种基于实际观测结果的概率定义方法。
它通过统计实验重复进行,事件发生的频率趋于一个稳定值,这个稳定值就是概率。
3. 主观概率主观概率是一种基于主观判断的概率定义方法。
它依赖于个体的主观信念、经验和判断,是一种主观确定的概率。
概率的定义方式有时候是灵活的,可以根据具体情况选择合适的定义方法。
概率具有多种基本性质,下面介绍几个重要的性质。
1. 非负性概率的取值范围在[0,1]之间,即概率值不会小于0,也不会大于1。
2. 规范性样本空间的概率为1,即必然事件的概率为1。
3. 可加性对于两个不相容事件A和B,它们的概率之和等于两个事件分别发生的概率的和。
4. 完备性对于样本空间Ω中的任意事件A,事件A发生的概率加上事件A不发生的概率等于1。
三、概率的计算方法概率的计算可以通过多种方法进行,根据问题的特点选择不同的计算方法。
1. 古典概率的计算古典概率的计算方法是最简单的,只需要将事件发生的可能性个数除以样本空间的可能性个数即可。
条件概率是在给定其他事件已经发生的条件下,某一事件发生的概率。
条件概率的计算可以通过贝叶斯定理进行。
3. 边际概率的计算边际概率是指多个事件中某一事件发生的概率。
边际概率的计算可以通过联合概率和条件概率进行。
四、概率的应用概率在现实生活中具有广泛的应用,下面介绍几个常见的概率应用场景。
概率的基本概念与性质总结概率是数学中一个重要的分支,用于描述随机事件发生的可能性。
通过对概率的研究,我们可以预测和解释各种自然和人为现象。
本文将总结概率的基本概念与性质,并探讨其在实际应用中的作用。
一、概率的基本概念1. 随机试验:指具有以下特点的试验,它的结果不确定,并且在相同条件下可以重复进行。
2. 样本空间:随机试验所有可能结果的集合,用S表示。
样本空间是随机试验的基本范围。
3. 事件:样本空间的子集称为事件,用A、B、C等表示。
事件是我们关注的实际结果。
4. 几何概率:指试验中一件事件发生的概率,用P(A)表示,其中P 代表概率,A为事件。
二、概率的性质1. 非负性:对于任意事件A,有P(A)≥0。
2. 规范性:对于样本空间S,有P(S)=1。
3. 可列可加性:对于任意两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
4. 对立性:事件A的对立事件(即A不发生)为A',有P(A)+P(A')=1。
三、概率的计算方法1. 古典概型:指样本空间有限且所有结果发生的可能性相等的情况。
例如,掷硬币的结果只有正面和反面,概率为1/2。
2. 几何概型:指试验结果具有一定几何形状的情况。
例如,从半径为1的圆盘中等概率随机选择一点落在圆内的概率为π/4。
3. 统计概型:指通过统计方法估计概率的情况。
根据大数定律,当试验次数足够多时,试验结果逼近真实概率。
四、概率的应用1. 风险管理:概率的研究可以帮助我们评估和管理风险。
例如,在保险业中,根据历史数据和概率模型,可以预测保险事故的发生概率,从而制定相应的保险费率和赔偿政策。
2. 统计推断:概率在统计学中起到重要的作用。
通过对样本数据的统计分析,可以推断出总体的特征和参数,进而做出科学的决策和预测。
3. 金融市场:概率的研究对于金融市场的投资决策具有重要意义。
通过对市场行情的分析和模拟,可以评估不同投资策略的预期收益和风险,并制定相应的交易策略。
概率的基本概念与性质概率是数学中一个非常重要的概念,在我们日常生活和各个学科中都有广泛的应用。
本文将介绍概率的基本概念和其性质,以帮助读者对概率有更深入的了解。
一、概率的概念概率是描述事件发生可能性的数值,通常用一个介于0到1之间的数表示。
0表示不可能事件,1表示必然事件。
在概率理论中,把某个随机试验的所有可能结果构成的集合称为样本空间Ω,包含于样本空间Ω的每一个结果称为样本点。
设A是样本空间Ω中的一个事件,则A的概率P(A)是指事件A发生的可能性大小。
二、概率的性质1. 非负性:对于任意事件A,概率值P(A)大于等于0。
2. 规范性:对于样本空间Ω,其概率值为1,即P(Ω)=1。
3. 容斥性:对于两个事件A和B,概率值的和可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
其中,P(A∩B)表示事件A和事件B同时发生的概率。
4. 加法性:对于两个互斥事件A和B(即事件A和B不可能同时发生),概率值的和可以表示为P(A∪B)=P(A)+P(B)。
5. 频率解释:概率可以通过重复试验的频率来估计。
当试验重复次数趋于无穷大时,某个事件发生的频率将接近其概率值。
三、计算概率的方法1. 古典概率:适用于每一个样本点发生的可能性相等的情况。
即P(A)=事件A包含的样本点数/样本空间Ω中的样本点数。
2. 几何概率:适用于具有几何结构的问题。
概率可以通过几何图形的面积、长度或体积来计算。
3. 统计概率:通过统计数据来计算概率,具体包括频率概率和条件概率。
四、条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。
条件概率可以通过求解P(A∩B)/P(B)得到。
五、独立事件两个事件A和B是独立的,当且仅当事件A的发生不依赖于事件B的发生。
对于独立事件,乘法公式可以表示为P(A∩B)=P(A)P(B)。
六、贝叶斯定理贝叶斯定理是用来计算反向概率,即在已知事件B发生的条件下,事件A发生的概率。
10.1.2 古典概型和概率的基本性质教学设计解:将两个红球编号为1,2,三个黄球编号为3,4,5.第一次摸球时有5种等可能的结果,对应第一次摸球的每个可能结果,第二次摸球时都有4种等可能结果。
将两次摸球的结果配对,组成20种等可能结果。
用10.1-2表示。
(1)第一次摸到红球的可能结果有8种(表中第1,2行),即A={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5)}()52208==A P 所以(2)第二次摸到红球的可能结果有8种(表中第1,2列),即B={(2,1),(3,1),(4,1),(5,1),(1,2),(3,2),(4,2),(5,2)}()52208==B P 所以(3)事件AB 包含2个可能结果,即AB={(1,2),(2,1)}()101202==AB P 所以 例4、从两名男生(记为B1和B2)、两名女生(记为G1和G2)中任意抽取两人。
(1)分别写出有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层抽样的样本空间。
(2)在三种抽样方式下,分别计算抽到的两人都是男生的概率。
解:设第一次抽取的人记为x1,第二次抽取的人即为x2,则可用数组(x1,x2)表示样本点。
(1)根据相应的抽样方法可知: 有放回简单随机抽样的样本空间为 Ω1={(B1,B1),(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,B2),(B2,G1),(B2,G2),(G1,B1),(G1,B2),(G1,G1),(G1,G2),(G2,B1),(G2,B2),(G2,G1),(G2,G2)}不放回简单随机抽样的样本空间为 Ω2={(B1,B2),(B1,G1),(B1,G2),(B2,B1),(B2,G1),⑷求摸出的两个球一红一黄的概率.解:(1)分别对红球编号为1、2、3、4、5号,对黄球编号为6、7、8号,从中任取两球,有如下等可能基本事件:共有28个等可能事件。
概率的基本概念与性质概率,是数学中一个重要的概念,用来描述随机事件发生的可能性大小。
它在各个领域都有广泛的应用,如统计学、经济学、物理学等。
本文将介绍概率的基本概念和性质,帮助读者更好地理解概率论的基础知识。
1. 概率的定义和表示方法概率是描述事物发生可能性的一个数值,通常用介于0和1之间的实数表示。
概率可以使用分数、小数或百分比来表示。
以事件A发生的概率为例,可以用P(A)或Pr(A)来表示。
2. 概率的性质(1) 非负性:对于任何事件A,其概率P(A)都大于等于0,即P(A)≥0。
(2) 可加性:对于任意的不相容事件(互斥事件)A和B,它们的概率可以相加,即P(A∪B) = P(A) + P(B)。
(3) 规范性:对于一定发生或一定不发生的事件,其概率分别为1和0,即P(S) = 1和P(∅) = 0,其中S代表样本空间,∅代表不可能事件。
3. 概率的计算方法(1) 古典概型:指的是所有可能的结果都是等可能发生的情况。
在古典概型中,事件A的概率等于事件A包含的有利结果数目与样本空间的大小之比,即P(A) = 有利结果数目 / 样本空间大小。
(2) 几何概型:指的是通过对空间的测量来计算概率。
例如,在计算一个点在一个平均分布的正方形区域中的概率时,可以用该点所在区域的面积与整个区域的面积之比。
(3) 统计概率:是通过观察和统计数据来计算概率。
统计概率常用于实际问题,根据大量数据的分析和推断得出概率值。
4. 概率的性质与公式(1) 加法规则:对于任意两个事件A和B,其概率可以通过加法规则计算,即P(A∪B) = P(A) + P(B) - P(A∩B)。
其中P(A∩B)表示事件A和B同时发生的概率。
(2) 乘法规则:对于相互独立的两个事件A和B,其概率可以通过乘法规则计算,即P(A∩B) = P(A) × P(B)。
注意,乘法规则只适用于独立事件。
(3) 条件概率:指在事件B发生的条件下,事件A发生的概率,表示为P(A|B)。
概率的基本性质及古典槪型复习学案
一、基础知识梳理
1.事件的有关概念(注意是在一定条件S下)
(1)必然事件(2)不可能事件(3)随机事件
2.n次试验中事件A出现的频率与该事件发生的概率之间关系:
3.事件的关系与运算
(1)包含事件:A
⊆B(或B⊇A)(2)相等事件:若A⊆B,且B⊆A,则A=B.
(3)并事件(和事件):C=A∪B(或A+B). (4)交事件(积事件):C=A∩B(或AB).
(5)互斥事件:A∩B=_____ P(A∩B)= (6)对立事件:A∩B=_____,P(A∪B)=______
4.概率的几个基本性质
(1)0≤P(A)≤1.
(2)事件A与B互斥,则 P(A∪B)=_________
(3)事件A与B对立,则P(A)+P(B)=______.
5.古典概型特点______________________
6.古典概型的概率公式P(A)=____________________
7. 利用古典概型的计算公式时应注意两点:
(1)所有的基本事件必须是互斥的;
(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏。
二、典例分析
例1判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于0℃时,冰融化”;
(3)“某人射击一次,中靶”;
(4)“如果a>b,那么a-b>0”;
(5)“掷一枚硬币,出现正面”;
(6)“导体通电后,发热”;
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(8)“某电话机在1分钟内收到2次呼叫”;
(9)“没有水份,种子能发芽”;
(10)“在常温下,焊锡熔化”.
必然事件:,不可能事件:,随机事件:变式练习1:下列说法错误的是( )
A.“在标准大气压下,水加热到100 ℃时沸腾”是必然事件
B.“姚明在一场比赛中投球的命中率为60%”是随机事件
C.“在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态”是不可能事件
D.“济南市明年今天的天气与今天一样”是必然事件
例2 从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列、事件是不是互斥事件,如果是,再判断它们是不是对立事件。
(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
变式训练2:从一批产品(正品数和次品数都不少于3件)中任取三件,
A={取出的三件全是次品},B={取出的三件全不是次品},C={取出的三件不全是次品},
试判断任意两个事件间的关系是否互斥?如果是,再判断它们是不是对立事件?
例3现有A、B、C、D四张卡片,从中任意抽取。
(1)先后不放回地抽取2张,求抽到A的概率;
(2)一次抽取2张,求抽到A的概率;
(3)先抽取一张,然后放回再抽取一张,求抽到A的概率;
变式训练3:一个密码箱的密码由2位数字组成,2个数字都可任意设定为0-9中的任意一个数字,假设某人已经设定了2位密码。
(1)若此人只记得密码的前1位数字,则一次就能把锁打开的概率;
(2)若此人忘了密码的所有数字,则他一次就能把锁打开的概率 .
例4抛掷一红、一蓝两颗均匀骰子
(1)求出现点数相同的概率.
(2)甲、乙两人打赌,点数之和出现4,则甲赢,点数之和出现10,则乙赢,其他情况平局,这样规定公平吗?平局的概率是多少?
变式训练4:甲乙两人玩“石头、剪刀、布”游戏.分别求平局、甲赢、乙赢的概率.
例5:已知甲、乙、丙三人在3天节日中值班,每人值班1天,
1)求甲排在第二天值班的概率。
2)求甲排在乙前面值班的概率。
变式训练5:甲、乙、丙、丁四人中选3人当代表,写出所有基本事件,并求甲被选上的概率三、巩固练习
1.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是
A.必然事件
B.不可能事件
C.随机事件
D.以上选项均不正
2.从整数中任取两数,其中是对立事件的是( )
①恰有一个是偶数和恰有一个是奇数②至少有一个是奇数和两个都是奇数
③至少有一个是奇数和两个都是偶数④至少有一个奇数和至少有一个偶数
A.①
B.②④
C.③
D.①③
3、从装有2个红球和2个黑球的袋子中任取2个球,那么互斥而不对立的事件是()
A.至少有一个黑球与都是黑球
B.至少有一个黑球与至少有一个红球
C.恰有一个黑球与恰有两个黑球
D.至少有一个黑球与都是红球
4.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成和棋的概率为( )
A.60%
B.30%
C.10%
D.50%
5、下列4个命题:
(1)对立事件一定是互斥事件
(2)A、B是两个事件,则P(A+B)=P(A)+P(B)
(3)若事件A、B、C彼此互斥,则P(A)+P(B)+P(C)=1
(4)事件A、B满足P(A)+P(B)=1,则A、B是对立事件,其中错误的有()
A、0个
B、1个
C、2个
D、3个
6.一枚伍分硬币连掷3次,只有1次正面向上的概率为( )
A.
3
8
B.
2
5
C.
1
3
D.
1
4
7、从0,1,2,3,4,5中任取3个组成没有重复数字的三位数,这个三位数是5的倍数的概率等于.
8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是____________________
9.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是。
10.一年按365天算, 2名同学在同一天过生日的概率是。
11.甲袋中有1个白球,2个红球,3个黑球,乙袋中有2个白球,3个红球,1个黑球,从两袋中各取一球,颜色不相同的概率是.
12.柜子里装有3双不同的鞋,随机地取出2只,试求下列事件的概率
(1)取出的鞋子都是左脚的;(2)取出的鞋子都是同一只脚的;
(3)取出的鞋子至少有一只是左脚的;(4)取出的鞋子至多有一只是左脚的。